作物学报 ›› 2018, Vol. 44 ›› Issue (10): 1433-1441.doi: 10.3724/SP.J.1006.2018.01433
Chen-Yu MA,Wei-Min ZHAN,Wen-Liang LI,Meng-Di ZHANG,Zhang-Ying XI()
摘要:
玉米籽粒发育和光周期特性是影响产量的关键因素。本文通过RT-PCR方法, 从玉米骨干自交系昌7-2籽粒的cDNA中克隆得到一个乙酰鸟氨酸脱酰酶基因, 命名为ZmNAOD。ZmNAOD的CDS (coding DNA sequence)长1344 bp, 编码447个氨基酸。qRT-PCR分析表明, ZmNAOD基因在玉米雄穗中的表达量最高, 其次是在籽粒、叶、茎、根中; 该基因在授粉后不同天数籽粒中的表达趋势为, 0~15 d快速上升, 之后迅速下降。对该基因的过表达转基因拟南芥的研究表明, ZmNAOD基因在转基因拟南芥的根中表达量最高; 经暗处理10 d后, 转基因株系根的长度显著长于野生型; 转基因拟南芥的生育期明显提前, 其粒长和千粒重显著大于野生型拟南芥。这些结果表明, ZmNAOD基因的表达可能与籽粒发育和光周期调控有关。
[1] |
Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M . Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008,40:1023-1028
doi: 10.1038/ng.169 pmid: 18604208 |
[2] |
Moles A T, Ackerly D D, Webb C O, Tweddle J C, Dickie J B, Westoby M . A brief history of seed size. Science, 2005,307:576-580
doi: 10.1126/science.1104863 pmid: 15681384 |
[3] |
Andres F, Coupland G . The genetic basis of flowering responses to seasonal cues. Nat Rev Genet, 2012,13:627-639
doi: 10.1038/nrg3291 pmid: 22898651 |
[4] |
Slocum R D . Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol Biochem, 2005,43:729-745
doi: 10.1016/j.plaphy.2005.06.007 pmid: 20202022020202020202020 |
[5] |
Shargool D, Jain J C, Mckay G . Ornithine biosynthesis, and arginine biosynthesis and degradation in plant cells. Phytochemistry, 1988,27:1571-1574
doi: 10.1016/0031-9422(88)80404-7 |
[6] |
Caldovic L, Tuchman M . N-acetylglutamate and its changing role through evolution. Biochem J, 2003,372:279-290
doi: 10.1042/BJ20030002 pmid: 12633501 |
[7] | Carbonell J, Navarro J L . Correlation of spermine levels with ovary senescence and with fruit set and development in Pisum sativum L. Planta, 1989,178:482-487 |
[8] |
Evans P T, Malmberg R L . Do polyamines have roles in plant development? Annu Rev Plant Physiol, 1989,40:235-269
doi: 10.1146/annurev.pp.40.060189.001315 |
[9] |
Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T . Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol, 2004,135:1565-1573
doi: 10.1104/pp.104.041699 |
[10] |
Liu J, Nada K, Pang X, Honda C, Kitashiba H, Moriguchi T . Role of polyamines in peach fruit development and storage. Tree Physiol, 2006,26:791-798
doi: 10.1093/treephys/26.6.791 pmid: 16510395 |
[11] |
Tiburcio A F, Altabella T, Bitrián M, Alcázar R . The roles of polyamines during the lifespan of plants: from development to stress. Planta, 2014,240:1-18
doi: 10.1007/s00425-014-2055-9 pmid: 24659098 |
[12] | Molesini B, Mennella G, Martini F, Francese G, Pandolfini T . Involvement of the putativeN-acetylornithine deacetylase from Arabidopsis thaliana in flowering and fruit development. Plant Cell Physiol, 2015,56:1084-1096 |
[13] | Molesini B, Zanzoni S, Mennella G, Francese G, Losa A, L Rotino G, Pandolfini T . The Arabidopsis N-acetylornithine deacetylase controls ornithine biosynthesis via a linear pathway with downstream effects on polyamine levels. Plant Cell Physiol, 2017,58:130-144 |
[14] |
Fabi J P, Seymour G B, Graham N S, Broadley M R, May S T, Lajolo F M, Cordenunsi B R , Oliveira do Nascimento J R. Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray. BMC Plant Biol, 2012,12:242-261
doi: 10.1186/1471-2229-12-242 pmid: 3562526 |
[15] |
Molesini B, Rotino G L, Spena A, Pandolfini T . Expression profile analysis of early fruit development in iaaM-parthenocarpic tomato plants. BMC Res Notes, 2009,2:143-149
doi: 10.1186/1756-0500-2-143 pmid: 2718906 |
[16] |
Petersen T N , Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods, 2011,8:785-786
doi: 10.1038/nmeth.1701 pmid: 21959131 |
[17] |
Kumar S, Stecher G, Tamura K . MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016,33:1870-1874
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[18] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S . PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucl Acids Res, 2002,30:325-327
doi: 10.1093/nar/30.1.325 |
[19] | Wang X T, Wu L J, Zhang S F, Wu L C, Ku L X, Wei X M, Xie L L, Chen Y H . Robust expression and association of ZmCCA1 with circadian. Plant Cell Rep, 2011,30:1261-1272 |
[20] |
Rajeevan M S, Ranamukhaarachchi D G, Vernon S D, Unger E R . Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001,25:443-451
doi: 10.1006/meth.2001.1266 |
[21] | Clough S J, Bent A F . Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998,16:735-743 |
[22] | Williams K, Munkvold J, Sorrells M . Comparison of digital image analysis using elliptic Fourier descriptors and major dimensions to phenotype seed shape in hexaploid wheat (Triticum aestivum L.). Euphytica, 2013,190:99-116 |
[23] |
Upadyayula N, da Sliva H S, Bohn M O, Rocheford T R . Genetic and QTL analysis of maize tassel and ear inflorescence architecture. Theor Appl Genet, 2006,112:592-606
doi: 10.1007/s00122-005-0133-x pmid: 16395569 |
[24] | Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D . The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev, 2001,15:2755-2766 |
[25] |
Bommert P, Nagasawa N S, Jackson D . Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet, 2013,45:334-337
doi: 10.1038/ng.2534 pmid: 23377180 |
[26] | Chuck G S, Brown P J, Meeley R, Hake S . Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci USA, 2014,111:18775-18780 |
[27] |
Thomas T L . Gene expression during plant embryogenesis and germination: an overview. Plant Cell, 1993,5:1401-1410
doi: 10.2307/3869791 pmid: 8281041 |
[28] | 张冬梅, 刘洋, 赵永锋, 祝丽英, 黄亚群, 郭晋杰, 陈景堂 . 不同杂种优势群玉米籽粒灌浆速率分析. 中国农业科学, 2014,47:3323-3335 |
Zhang D M, Liu Y, Zhao Y F, Zhu L Y, Huang Y Q, Guo J J, Chen J T . Analysis of maize grain filling rate in different heterotic groups. Sci Agric Sin, 2014,47:3323-3335 (in Chinese with English Abstract) | |
[29] | Pandolfini T, Molesini B, Spena A. Fruit development and seed dispersal. In: Østergaard L, ed. Annual Plant Reviews. UK: Wiley Blackwell Press, 2009, Vol 38, pp 326-345 |
[30] | Qiao D H, Dong Y B, Zhang L, Zhou Q, Hu C H, Ren Y L, Li Y L . Ectopic expression of the maize ZmADF3 gene in Arabidopsis revealing its functions in kernel development. Plant Cell Tissue Organ Cult, 2016,126:239-253 |
[31] | Millar A J, Kay S A . Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA, 1996,93:15491-15496 |
[32] |
Terzaghi W B, Cashmore A R . Light-regulated transcription. Annu Rev Plant Biol, 1995,46:445-474
doi: 10.1146/annurev.pp.46.060195.002305 |
[33] |
Tobin E M, Kehoe D M . Phytochrome-regulated gene expression. Semin Cell Biol, 1994,5:335-346
doi: 10.1006/scel.1994.1040 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[9] | 徐昕, 秦超, 赵涛, 刘斌, 李宏宇, 刘军. GmELF3s调控大豆开花时间和生物钟节律的功能分析[J]. 作物学报, 2022, 48(4): 812-824. |
[10] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[11] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[12] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[13] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[14] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[15] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
|