欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 2002-2011.doi: 10.3724/SP.J.1006.2023.24179

• 研究简报 • 上一篇    下一篇

氮肥用量对冬油菜籽粒产量和品质的影响

宋毅(), 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛*(), 鲁剑巍   

  1. 华中农业大学资源与环境学院 / 农业农村部长江中下游耕地保育重点实验室 / 华中农业大学微量元素研究中心, 湖北武汉 430070
  • 收稿日期:2022-08-03 接受日期:2022-11-28 出版日期:2023-07-12 网络出版日期:2022-12-06
  • 通讯作者: *任涛, E-mail: rentao@mail.hzau.edu.cn
  • 作者简介:E-mail: songyi2020@webmail.hzau.edu.cn
  • 基金资助:
    本研究由国家自然科学基金项目(31872173);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-12);湖北省现代农业产业技术体系(HBHZD-ZB-2020-005);中央高校基本科研业务费专项基金项目(2662020ZHPY005)

Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.)

SONG Yi(), LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao*(), LU Jian-Wei   

  1. College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs / Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-08-03 Accepted:2022-11-28 Published:2023-07-12 Published online:2022-12-06
  • Contact: *E-mail: rentao@mail.hzau.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(31872173);The China Agriculture Research System of MOF and MARA(CARS-12);The Hubei Province Agriculture Research System(HBHZD-ZB-2020-005);The Fundamental Research Funds for the Central Universities(2662020ZHPY005)

摘要:

为探明不同氮肥用量对冬油菜籽粒产量和品质的影响, 于2019/2020以及2020/2021年在湖北省武穴市开展田间试验, 试验设置0、90、180、270、360 kg N hm-2 5个氮肥施用水平。在成熟期测定油菜籽产量、氮含量和油菜籽品质指标。结果表明, 施氮显著提高冬油菜籽粒产量及氮含量, 与不施氮相比, 氮肥施用后平均增产1548 kg hm-2, 平均增产率达32.9%, 在施氮量为0~270 kg N hm-2范围内, 油菜籽产量随氮肥施用量显著增加, 继续增施氮肥, 油菜籽产量无明显变化或有下降趋势, 施氮主要通过提高单株角果数来提高油菜籽粒产量。施氮显著增加了籽粒蛋白质含量, 当施氮量达270 kg N hm-2时籽粒氮含量和蛋白质含量最高。施氮显著降低籽粒含油量, 氮肥用量每增加100 kg N hm-2, 籽粒含油量下降1.6个百分点。随着氮肥用量的增加, 籽粒硫甙、油酸、亚麻酸、芥酸以及饱和脂肪酸 (棕榈酸和硬脂酸)呈升高趋势, 亚油酸呈降低趋势, 油菜籽粒品质整体呈降低趋势。综上所述, 以追求高品质食用油为目标, 同时兼顾油菜籽粒产量, 氮肥适宜用量约为180 kg N hm-2; 以追求油菜籽粒产量并考虑油菜饼粕作饲料为目标时, 氮肥适宜用量约为270 kg N hm-2

关键词: 氮肥用量, 冬油菜, 品质, 含油率, 蛋白质产量

Abstract:

To explore the effects of N fertilizer rates on seed yield and quality of winter rapeseed, field experiments were carried out in Wuxue County, Hubei Province during 2019/2020 and 2020/2021 seasons. The experiments were set at five nitrogen application levels of 0, 90, 180, 270, and 360 kg N hm-2. Rapeseed yield, N concentration, and rapeseed quality indexes were measured at maturity stage. The results showed that N application significantly increased rapeseed yield and N content. Compared with the zero N application, the average yield increase after N application was 1548 kg N hm-2, and the average yield increase rate was up to 32.9%. Within the range of N application rate of 0-270 kg N hm-2, rapeseed yield increased significantly with the application of N fertilizer. If N application was continued, rapeseed yield did not change significantly or had a downward trend. N application mainly improved rapeseed yield by increasing the number of pods per plant. N application significantly increased protein content in rapeseed. When the N application rate was 270 kg N hm-2, the protein content was the highest. N application significantly reduced the seed oil content. For every 100 kg N hm-2 increase in nitrogen application, the seed oil content decreased by 1.6%. With the increase of N fertilizer application rate, glucosinolate, oleic acid, linolenic acid, erucic acid, and saturated fatty acids (palmitic acid and stearic acid) increased, while linoleic acid decreased in rapeseed. Rapeseed quality decreased as a whole. In conclusion, to pursue high-quality edible oil and take into account rapeseed yield, the application rate of N fertilizer was 180 kg N hm-2. The optimal application rate of N fertilizer was 270 kg N hm-2 when rapeseed yield and rapeseed cake were taken into account.

Key words: nitrogen fertilizer rate, winter oilseed rape (Brassica napus L.), quality, oil content, protein yield

表1

氮肥用量对2019/2020和2020/2021年油菜产量的影响"

氮肥用量
N fertilizer rate
(kg N hm-2)
年份Year 平均
Average (kg hm-2)
2019/2020 2020/2021
0 560±75 d 855±165 d 707
90 2051±240 c 1523±60 c 1787
180 2617±299 b 1889±161 b 2253
270 3077±269 a 2371±62 a 2724
360 3140±182 a 2111±208 b 2626
方差分析 ANOVA F F-value
氮肥 Nitrogen (N) 167.0**
年份 Year (Y) 90.0**
N×Y 15.4**

表2

氮肥用量对2019/2020和2020/2021年油菜产量构成因子的影响"

氮肥用量
N fertilizer rate
(kg N hm-2)
单株角果数
Number of pods per plant
(No. plant-1)
角粒数
Seed number
(No. pod-1)
千粒重
1000-seed weight
(g)
2019/2020 2020/2021 2020/2021 2020/2021 2019/2020 2020/2021
0 126±36 d 125±31 b 21.4±0.7 c 20.0±0.4 c 4.24±0.27 b 4.86±0.52 b
90 244±9 c 201±28 a 21.2±0.3 c 20.0±0.4 c 4.32±0.02 b 4.95±0.47 b
180 341±7 b 274±23 a 21.8±0.4 bc 21.3±0.6 b 4.65±0.18 a 5.29±0.21 a
270 409±12 a 263±64 a 22.5±0.1 b 22.7±0.2 a 4.98±0.05 a 5.94±0.22 a
360 447±35 a 249±3 a 23.3±0.4 a 21.2±0.3 b 4.80±0.17 a 5.87±0.43 a
方差分析ANOVA FF-value
氮肥 Nitrogen (N) 54.9** 24.5** 11.7**
年份Year (Y) 65.2** 39.1** 54.8**
N×Y 10.0** 6.2* 0.8 ns

图1

氮肥用量对2019/2020和2020/2021年油菜籽粒氮含量的影响 N0、N90、N180、N270、N360表示氮肥施用量为0、90、180、270、360 kg N hm-2。图中小写字母表示相同年份不同氮肥处理间在0.05概率水平差异显著。**表示P < 0.01, ns表示无显著差异。N: 氮肥用量; Y: 不同年份; N×Y: 氮肥用量和年份的交互效应。"

表3

氮肥用量对2019/2020和2020/2021年油菜籽粒油脂含量、蛋白质含量、硫甙、含水量、产油量和蛋白质产量的影响"

年份
Year
氮肥用量
N fertilizer
rate
(kg N hm-2)
油脂含量
Oil
concentration
(%)
蛋白质含量
Protein
concentration
(%)
硫甙
Glucosinolate
(μmol g-1)
含水量
Water
concentration
(%)
产油量
Oil
yield
(kg hm-2)
蛋白质产量
Protein
yield
(kg hm-2)
2019/2020 0 50.3±2.1 a 19.8±2.6 b 20.3±5.0 b 4.52±0.19 a 281±28 c 112±29 c
90 48.9±3.0 a 20.4±1.1 b 26.8±5.4 ab 4.63±0.03 a 998±60 b 419±66 b
180 48.6±0.4 ab 21.0±1.3 b 33.4±2.5 ab 4.28±0.02 a 1272±138 a 551±97 b
270 45.0±0.1 bc 24.5±3.2 a 31.4±9.8 a 4.28±0.27 a 1384±121 a 760±165 a
360 44.7±2.5 c 25.1±1.0 a 36.7±4.0 a 4.58±0.17 a 1408±160 a 788±77 a
2020/2021 0 52.5±1.7 a 21.4±2.4 b 23.7±4.1 a 3.72±0.25 a 447±73 d 185±54 b
90 50.4±2.0 ab 23.4±1.4 b 23.6±4.6 a 3.83±0.07 a 767±48 c 357±31 b
180 48.2±2.5 b 24.3±2.7 ab 25.2±2.0 a 3.93±0.24 a 909±79 b 461±82 b
270 44.7±0.4 c 27.6±0.3 a 29.5±8.8 a 4.1±0.06 a 1060±22 a 654±23 a
360 44.9±0.5 c 27.7±0.6 a 33.7±3.8 a 3.98±0.11 a 947±85 ab 584±62 a
方差分析 ANOVA F F-value
氮肥 Nitrogen (N) 15.4** 39.5* 4.6* 1.1ns 117.4** 58.4**
年份 Year (Y) 0.8ns 55.5** 1.5ns 77.3** 70.0** 8.3*
N×Y 0.6ns 0.7ns 0.8ns 3.9* 14.0** 2.7ns

表4

氮肥用量对2019/2020和2020/2021年油菜籽粒脂肪酸含量的影响"

氮肥用量
N fertilizer rate
(kg N hm-2)
硬脂酸
Stearic acid (%)
棕榈酸
Palmitic acid (%)
油酸
Oleic acid (%)
亚油酸
Linoleic acid (%)
亚麻酸
linolenic acid (%)
芥酸
Erucic acid (%)
2019/
2020
2020/
2021
2019/
2020
2020/
2021
2019/
2020
2020/
2021
2019/
2020
2019/
2020
2020/
2021
2020/
2021
2019/
2020
2020/
2021
0 2.25 a 1.93 b 3.76 a 4.08 a 57.8bc 72.9 a 16.67 a 18.49 a 8.08 a 6.91 a 1.13 a 1.00 a
90 2.17 a 2.10 ab 3.87 a 4.19 a 55.6 c 83.4 a 15.93 a 18.43 a 8.27 a 7.30 a 1.62 a 2.49 a
180 2.21 a 2.21 ab 3.97 a 4.39 a 67.2 ab 88.5 a 15.23 a 18.70 a 8.24 a 7.64 a 2.21 a 2.48 a
270 2.29 a 2.26 ab 3.96 a 4.33 a 68.8 ab 90.4 a 14.73 a 17.81 a 8.65 a 7.75 a 2.26 a 2.86 a
360 2.33 a 2.65 a 4.12 a 4.40 a 73.7 a 92.6 a 14.94 a 17.55 a 8.69 a 7.95 a 3.46 a 2.93 a
方差分析 ANOVA F F-value
氮肥 Nitrogen (N) 2.6ns 1.3ns 6.2** 1.0ns 0.6ns 3.7*
年份 Year (Y) 0.1ns 10.7** 62.5** 26.3* 5.1* 0.4ns
N×Y 1.4ns 0.1ns 0.6ns 0.3ns 0.1ns 0.5ns

图2

油菜籽产量与品质性状间的相关关系 相关性分析使用试验所有养分、产量、品质和脂肪酸数据。*、**和***分别表示在0.05、0.01和0.001概率水平差异显著。"

图3

氮肥用量与籽粒产量、蛋白质含量、硫甙含量、油含量、和饱和脂肪酸比例的关系 使用2年数据进行拟合, 其氮肥用量与产量使用二次函数进行拟合, 蛋白质产量、含油量、硫甙和饱和脂肪酸比例使用线性拟合, 分别取拟合最高产量的75%和95%为生产目标以确定氮肥施肥量。"

[1] Bang T C, Husted S, Laursen K H, Persson D P, Schjoerring J K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol, 2021, 229: 2446-2469.
doi: 10.1111/nph.17074 pmid: 33175410
[2] Hou W F, Xue X X, Li X K, Khan M R, Yan J Y, Ren T, Cong R H, Lu J. Interactive effects of nitrogen and potassium on: grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crops Res, 2019, 236: 14-23.
doi: 10.1016/j.fcr.2019.03.006
[3] 郭欣. 不同氮肥施用量及施用方式对油菜产量、品质和土壤肥力的影响. 西南大学硕士学位论文, 重庆, 2020.
Gou X. Effects of Different Nitrogen Fertilizer Application Rates and Application Methods on Rapeseed Yield, Quality and Soil. MS Thesis of Southwest University, Chongqing, China, 2020. (in Chinese with English abstract)
[4] 左青松, 蒯婕, 杨士芬, 曹石, 杨阳, 吴莲蓉, 孙盈盈, 周广生, 吴江生. 不同氮肥和密度对直播油菜冠层结构及群体特征的影响. 作物学报, 2015, 41: 758-765.
doi: 10.3724/SP.J.1006.2015.00758
Zuo Q S, Kuai J, Yang S F, Cao S, Yang Y, Wu L R, Sun Y Y, Zhou G S, Wu J S. Effects of nitrogen fertilizer and planting density on canopy structure and population characteristic of rapeseed with direct seeding treatment. Acta Agron Sin, 2015, 41: 758-765. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00758
[5] Tian D, Niu S. A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett, 2015, 10: 1714-1721.
[6] 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响. 作物学报, 2023, 49: 1090-1101.
doi: 10.3724/SP.J.1006.2023.24087
Wu S Y, Chen K J, Lyu Z F, Xu X M, Pang L J, Lu G Q. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweet potato. Acta Agron Sin, 2023, 49: 1090-1101.
[7] 赵灿, 刘光明, 戴其根, 许轲, 高辉, 霍中洋. 氮肥对水稻产量、品质和氮利用效率的影响研究进展. 中国稻米, 2022, 28(1): 48-52.
doi: 10.3969/j.issn.1006-8082.2022.01.010
Zhao C, Liu G M, Dai Q K, Xu K, Gao H, Huo Z Y. Research progress on the effects of nitrogen fertilizer on rice yield, quality and nitrogen use efficient. China Rice, 2022, 28(1): 48-52. (in Chinese with English abstract)
[8] 王佳友, 何秀荣, 王茵. 中国油脂油料进口替代关系的计量经济研究. 统计与信息论坛, 2017, 32(5): 69-75.
Wang J Y, He X R, Wang Y. Econometric research on import substitution relationship between oils and oilseeds in China. J Stat Infor, 2017, 32(5): 69-75. (in Chinese with English abstract)
[9] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract)
[10] 农全东, 杨永超, 文和明. 双低油菜育种进展. 安徽农业科学, 2014, 42: 12434-12436.
Nong Q D, Yang Y C, Wen H M. Review on double-low rapeseed breeding. J Anhui Agric Sci, 2014, 42: 12434-12436. (in Chinese with English abstract)
[11] 王康春. 推广双低油菜促进产业化发展. 中国食品, 2020, (15): 120.
Wang K C. Popularizing double low rapeseed and promoting the development of industrialization. China Food, 2020, (15): 120. (in Chinese)
[12] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系. 作物学报, 2021, 47: 416-426.
doi: 10.3724/SP.J.1006.2021.04108
Tang J Q, Wang N, Gao J, Liu T T, Wen J, Yi B, Tu J X, Fu T D, Shen J X. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. Acta Agron Sin, 2021, 47: 416-426. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04108
[13] 谷贺贺, 李静, 张洋洋, 李小坤, 丛日环, 任涛, 鲁剑巍. 钾肥与我国主要作物品质关系的整合分析. 植物营养与肥料学报, 2020, 26: 1749-1757.
Gu H H, Li J, Zhang Y Y, Li X K, Cong R H, Ren T, Lu J W. Meta-analysis of the relationship between potassium fertilizer and the quality of main crops in China. J Plant Nutr Fert, 2020, 26: 1749-1757. (in Chinese with English abstract)
[14] 左青松, 杨海燕, 冷锁虎, 曹石, 曾讲学, 吴江生, 周广生. 施氮量对油菜氮素积累和运转及氮素利用率的影响. 作物学报, 2014, 40: 511-518.
doi: 10.3724/SP.J.1006.2014.00511
Zuo Q S, Yang H Y, Leng S H, Cao S, Zeng J X, Wu J S, Zhou G S, Effects of nitrogen fertilizer on nitrogen accumulation, translocation and nitrogen use efficiency in rapeseed (Brassica napus L.). Acta Agron Sin, 2014, 40: 511-518. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00511
[15] 李静, 闫金垚, 胡文诗, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮钾配施对油菜产量及氮素利用的影响. 作物学报, 2019, 45: 941-948.
doi: 10.3724/SP.J.1006.2019.84146
Li J, Yan J Y, Hu W S, Li X K, Cong R H, Ren T, Lu J W. Effects of combined application of nitrogen and potassium on seed yield and nitrogen utilization of winter oilseed rape (Brassica napus L.). Acta Agron Sin, 2019, 45: 941-948. (in Chinese with English abstract)
[16] Wang C, Li Z J, Zhang L X, Gao Y, Cai X H, Wu W. et al. Identifying key metabolites associated with glucosinolate biosynthesis in response to nitrogen management strategies in two rapeseed (Brassica napus) varieties. J Agric Food Chem, 2022, 70: 634-645.
doi: 10.1021/acs.jafc.1c06472
[17] 李慧.中国冬油菜氮磷钾肥施用效果与推荐用量研究. 华中农业大学博士学位论文, 湖北武汉, 2015.
Li H.Fertilization Effect and Fertilizer Recommendation of Nitrogen, Phosphorus and Potassium on the Winter Oilseed Rape of China. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2015. (in Chinese with English abstract)
[18] 邹娟, 鲁剑巍, 陈防, 李银水, 李小坤. 冬油菜施氮的增产和养分吸收效应及氮肥利用率研究. 中国农业科学, 2011, 44: 745-752.
Zou J, Lu J W, Chen F, Li Y S, Li X K. Study on Yield increasing and nutrient uptake effect by nitrogen application and nitrogen use efficiency for winter rapeseed. Sci Agric Sin, 2011, 44: 745-752. (in Chinese with English abstract)
[19] 王小军, 王春丽, 张智, 杨建利, 高亚军. 陕南地区冬油菜种植体系中的氮肥优化施用量. 中国油料作物学报, 2022, 44: 1065-1073.
Wang X J, Wang C L, Zhang Z, Yang J L, Gao Y J. Optimal application rate of nitrogen fertilizer in winter rape planting area in southern Shaanxi province. Chin J Oil Crop Sci, 2022, 44: 1065-1073. (in Chinese with English abstract)
[20] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D. Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. pp 25-114. (in Chinese)
[21] 智文良, 信晓阳, 崔建民, 胡胜武, 张文, 李培武. 一种国产近红外仪分析油菜籽三种品质参数. 中国油料作物学报, 2012, 34: 305-310.
Zhi W L, Xin X Y, Cui J M, Hu S W, Zhang W, Li P W. Determination of three major quality parameters of rapeseed with near infrared analyzer NYDL-3000. Chin J Oil Crop Sci, 2012, 34: 305-310. (in Chinese with English abstract)
[22] 汪瑞清, 杨国正, 史茜莎, 姚艳丽, 宋峥, 彭运磊. 氮磷钾镁锌混合施用对油菜产油量和蛋白质产量的影响. 湖北农业科学, 2009, 48: 1096-1100.
Wang R Q, Yang G Z, Shi Q S, Yao Y L, Song Z, Peng Y L. Effects of the mixed application of N, P, K, Mg, Zn on oil and protein yield of rapeseed (Brassica napus L.). Hubei Agric Sci, 2009, 48: 1096-1100. (in Chinese with English abstract)
[23] 李志玉, 郭庆元, 廖星, 秦亚平. 不同氮水平对双低油菜中双9号产量和品质的影响. 中国油料作物学报, 2007, 29: 184-188.
Li Z Y, Guo Y Q, Liao X, Qin Y P. Effects of different amount of nitrogen on yield, quality and economics of Zhongshuang No. 9. Chin J Oil Crop Sci, 2007, 29: 184-188. (in Chinese with English abstract)
[24] 冷锁虎, 左青松, 戴敬, 喻义珠. 油菜高产群体质量指标研究. 中国油料作物学报, 2004, 26: 40-46.
Leng S H, Zou Q S, Dai J, Yu Y Z. Studies on indices of high yield population quality of rapeseed Chin J Oil Crop Sci, 2004, 26: 40-46. (in Chinese with English abstract)
[25] 王玲. 油菜光合面积指数消长变化及高产群体指标研究. 华中农业大学研究生院硕士学位论文, 湖北武汉, 2019.
Wang L. Study on the Dynamic Chances of Photosynthetic Area Index and the Canopy Indices of High Yield Rapeseed. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019. (in Chinese with English abstract)
[26] 左青, 孙勤, 甘光生, 左晖, 张伟春, 杨伟峰. 提高双低油菜籽利用价值的探讨. 中国油脂, 2019, 44(10): 124-128.
Zou Q, Sun Q, Gan G S, Zou H, Zhang W C, Yang W F. Improvement of utilization benefit of double-low rapeseed. China Oils Fats, 2019, 44(10): 124-128. (in Chinese with English abstract)
[27] 张巍, 杨雪海, 严念东, 郭万正, 魏金涛, 熊本海. 湖北地区商品油菜籽品质分析. 饲料工业, 2020, 41(24): 27-33.
Zhang W, Yang X H, Yan N D, Guo W Z, Wei J T, Xiong B H. Quality analysis of commercial rapeseed in Hubei, Feed Ind, 2020, 41(24): 27-33. (in Chinese with English abstract)
[28] 刘后利. 实用油菜栽培学. 上海: 上海科学技术出版社. 1987. pp 189-209.
Liu H L. Practical Rape Cultivation. Shanghai: Shanghai Scientific and Technical Publishers, 1987. pp 189-209. (in Chinese)
[29] 赵继献, 程国平, 任廷波, 高志宏. 不同氮水平对优质甘蓝型黄籽杂交油菜产量和品质性状的影响. 植物营养与肥料学报, 2007, 13: 882-889.
Zhao J X, Cheng G P, Ren T B, Gao Z H. Effect of different nitrogen rates on yield and quality parameters of high grade yellow seed hybrid rape. Plant Nutr Fert Sci, 2007, 13: 882-889. (in Chinese with English abstract)
[30] 吴永成, 李壮, 牛应泽. 高密度直播油菜高产优质和氮肥高效的适宜氮肥施用模式. 植物营养与肥料学报, 2015, 21: 1184-1189.
Wu Y C, Li Z, Niu Y Z. Suitable nitrogen fertilization mode for high yield and quality and high N use efficiency in high density direct-sown rapeseed (Brassica napus L.). J Plant Nutr Fert, 2015, 21: 1184-1189. (in Chinese with English abstract)
[31] Tripathi M K, Mishra A S. Glucosinolates in animal nutrition: a review. Anim Feed Sci Technol, 2007, 132: 1-27.
doi: 10.1016/j.anifeedsci.2006.03.003
[32] 雷红, 蔡亮亮, 操丽丽. 菜籽油中芥酸含量对小鼠食用安全性的影响. 食品科学, 2010, 31: 321-324.
doi: 10.7506/spkx1002-6630-201019070
Lei H, Cai L L, Cao L L. Effect of erucic Acid content in rapeseed ail on food intake safety in mice. Food Sci, 2010, 31: 321-324. (in Chinese with English abstract)
[33] Figen Mert-Türk M. Kemal G, Egesel C. Nitrogen and fungicide applications against Erysiphe cruciferarum affect quality components of oilseed rape. Mycopathologia, 2008, 165: 27-35.
pmid: 17934794
[34] 王成. 氮肥水平对冬油菜产量和品质协同调控机制研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2022.
Wang C. Synergistic Regulation Mechanism of Nitrogen Fertilizer Level on Yield and Quality of Rapeseed (Brassica napus L.). MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2022. (in Chinese with English abstract)
[35] Wang C, Li Z, Zhang L, Gao Y, Cai X, Wu W. Identifying key metabolites associated with Glucosinolate biosynthesis in response to nitrogen management strategies in two rapeseed (Brassica napus L.) varieties. J Age Food Chem, 2022, 70: 634-645.
[36] GB/T11762-2006. 油菜籽国家标准. 北京: 中国标准出版社, 2006. p 3.
GB/T1162-2006. National Standard for Rapeseed. Beijing: Standards Press of China, 2006. p 3. (in Chinese)
[37] Sarwar F. The role of oilseeds nutrition in human health: a critical review. J Essent Oil Res, 2013, 4: 97-100.
doi: 10.1080/10412905.1992.9698023
[38] Ghafoor A, Karim H, Asghar M A, Raza A, Hussain M I, Javed H H, Shafiq I, Xiao P, Yue H, Ahmad B, Manzoor A, Ali U, Wu Y C. Carbohydrates accumulation, oil quality and yield of rapeseed genotypes at different nitrogen rates. Plant Prod Sci, 2022, 25: 49-69.
[39] Zapletalova A, Ducsay L, Varga L, Sitkey J, Javorekova S, Hozlar P. Influence of nitrogen nutrition on fatty acids in oilseed rape (Brassica napus L.). Plants, 2022, 11: 44.
doi: 10.3390/plants11010044
[40] Mi C, Wang Q, Zhao Y N. Changes in the differentially expressed proteins and total fatty acid contents in winter rapeseed (Brassica napus L.) leaves under drought stress. Russ J Plant Physiol, 2022, 69: 31.
doi: 10.1134/S1021443722020133
[41] Chandra-Shekara A C, Venugopal S C, Barman S R. Plastidial fatty acid levels regulate resistance gene-dependent defense signaling in Arabidopsis. Proc Natl Acad Sci USA, 2007, 104: 7277-7282.
[42] Zhang J L, Li J, Geng G T, Hu W S, Ren T, Cong R H, Li X K, Lu J W. Combined application of nitrogen and potassium reduces seed yield loss of oilseed rape (Brassica napus L.) caused by Sclerotinia stem rot disease. Agron J, 2020, 112: 5143-5157.
doi: 10.1002/agj2.v112.6
[43] 杨燕宇. 油菜脂肪酸、硫苷、含油量近红外光谱分析模型的建立. 湖南农业大学硕士学位论文, 湖南长沙, 2007.
Yang Y Y. Development of Near-infrared Reflectance Spectroscopy Equations of Fatty Acid Composition, Glucosinolates & Oil Content. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2007. (in Chinese with English abstract)
[44] 中国营养学会. 中国居民膳食营养素参考摄入量. 北京: 中国轻工业出版社, 2000. pp 101-102.
Chinese Nutrition Society. Reference Intake of Dietary Nutrients for Chinese Residents. Beijing: China Light Industry Press, 2000. pp 101-102. (in Chinese)
[45] 周玉娇, 陈晓宁, 唐秀清, 邓昌俊, 晏宇翔. 食用油与人体健康研究. 北京农业, 2014, (24): 339.
Zhou Y J, Chen X N, Tang X Q, Deng C J, Yan Y X. Research on edible oil and human health. Beijing Agric, 2014, (24): 339. (in Chinese)
[46] 张冉, 曹娟娟, 濮超, 李育, 金海刚. 中国油菜籽、菜籽油供需分析及发展建议. 中国油脂, 2022 [2022-09-27]. DOI:10. 19902/j.cnki.zgyz.1003-7969.210729.
doi: 10. 19902/j.cnki.zgyz.1003-7969.210729
Zhang R, Cao J J, Pu C, Li Y, Jing H G. Supply and demand analysis and development suggestions of rapeseed and rapeseed oil in China. China Oils Fats, 2022 [2022-09-27]. DOI: 10.19902/j.cnki.zgyz.1003-7969.210729.
doi: 10.19902/j.cnki.zgyz.1003-7969.210729
[47] 唐建昭, 肖登攀, 王靖, 王仁德, 柏会子, 郭风华, 刘剑锋. 不同生产目标条件的马铃薯水氮管理优化. 农业工程学报, 2021, 37(20): 108-116.
Tang J Z, Xiao D P, Wang J, Wang R D, Bai H Z, Guo F H, Liu J F. Optimizing irrigation and nitrogen management for potato production under multi-objective production conditions. Trans CSAE, 2021, 37(20): 108-116 (in Chinese with English abstract).
[48] 张庆, 郭保卫, 胡雅杰, 张洪程, 徐玉峰, 徐晓杰, 朱邦辉, 徐洁芬, 钮中一, 凃荣文. 不同氮肥水平下优质高产软米粳稻的产量与品质差异. 中国水稻科学, 2021, 35: 606-616.
doi: 10.16819/j.1001-7216.2021.201101
Zhang Q, Guo B W, Hu Y J, Zhang H C, Xu Y F, Xu X J, Zhu B H, Xu J F, Niu Z Y, Tu R W. Differences in yield and rice quality of soft japonica rice with high quality and high yield under different nitrogen levels. Chin J Rice Sci, 2021, 35: 606-616. (in Chinese with English abstract)
[1] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[2] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[3] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[4] 闫金垚, 宋毅, 陆志峰, 任涛, 鲁剑巍. 磷肥用量对油菜籽产量及品质的影响[J]. 作物学报, 2023, 49(6): 1668-1677.
[5] 张晓, 陆成彬, 江伟, 张勇, 吕国锋, 吴宏亚, 王朝顺, 李曼, 吴素兰, 高德荣. 弱筋小麦育种品质选择指标及亲本组配原则[J]. 作物学报, 2023, 49(5): 1282-1291.
[6] 舒泽兵, 罗万宇, 蒲甜, 陈国鹏, 梁冰, 杨文钰, 王小春. 基于高产与高效条件下鲜食玉米鲜食大豆带状间作田间配置技术优化[J]. 作物学报, 2023, 49(4): 1140-1150.
[7] 郭宏, 于霁雯, 裴文锋, 关永虎, 李航, 李长喜, 刘金伟, 王伟, 王宝全, 梅拥军. 南疆陆地棉杂种F2的遗传分析及遗传主效聚类[J]. 作物学报, 2023, 49(3): 608-621.
[8] 朱大洲, 武宁, 张勇, 孙君茂, 陈萌山. 营养导向型作物新品种选育与审定现状、问题与展望[J]. 作物学报, 2023, 49(1): 1-11.
[9] 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261.
[10] 马骊, 白静, 赵玉红, 孙柏林, 侯献飞, 方彦, 王旺田, 蒲媛媛, 刘丽君, 徐佳, 陶肖蕾, 孙万仓, 武军艳. 冷胁迫下甘蓝型冬油菜表达蛋白及BnGSTs基因家族的鉴定与分析[J]. 作物学报, 2023, 49(1): 153-166.
[11] 蒋岩, 赵灿, 陈越, 刘光明, 赵凌天, 廖平强, 王维领, 许轲, 李国辉, 吴文革, 霍中洋. 氮素穗肥对粳米淀粉特性和结构的影响及其与食用特征的关系[J]. 作物学报, 2023, 49(1): 200-210.
[12] 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976.
[13] 陶钰, 姚宇, 王坤庭, 邢志鹏, 翟海涛, 冯源, 刘秋员, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 穗肥氮素用量与结实期遮光复合作用对常规粳稻品质的影响[J]. 作物学报, 2022, 48(7): 1730-1745.
[14] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[15] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .