欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2122-2132.doi: 10.3724/SP.J.1006.2023.24205

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究

陈力1,2(), 王靖1,2, 邱晓3, 孙海莲3, 张文浩1, 王天佐1,*()   

  1. 1 中国科学院植物研究所, 北京 100093
    2 中国科学院大学生命科学学院, 北京 100049
    3 内蒙古自治区农牧业科学院, 内蒙古呼和浩特 010000
  • 收稿日期:2022-09-06 接受日期:2022-11-25 出版日期:2023-08-12 网络出版日期:2022-12-02
  • 通讯作者: 王天佐
  • 作者简介:E-mail: chenli125975@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFF1003203);内蒙古自治区科技计划项目(2021GG0372)

Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses

CHEN Li1,2(), WANG Jing1,2, QIU Xiao3, SUN Hai-Lian3, ZHANG Wen-Hao1, WANG Tian-Zuo1,*()   

  1. 1 Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    2 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    3 Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Huhhot 010000, Inner Mongolia, China
  • Received:2022-09-06 Accepted:2022-11-25 Published:2023-08-12 Published online:2022-12-02
  • Contact: WANG Tian-Zuo
  • Supported by:
    National Key Research and Development Program of China(2022YFF1003203);Science and Technology Program of Inner Mongolia Autonomous Region(2021GG0372)

摘要:

苜蓿是最重要的豆科牧草, 常被种植在干旱/半干旱地区。为研究不同耐旱性紫花苜蓿应对干旱胁迫的调控机制, 本研究以中科1号紫花苜蓿(Medicago sativa ‘Zhongke 1’)为试验材料, 以三得利紫花苜蓿(M. sativa ‘Sanditi’)为对照, 采用自然干旱法进行处理, 比较干旱胁迫对其生长性状、光合作用、叶绿素含量、叶片相对含水量、渗透调节物质和抗氧化酶活性等指标的影响, 并使用转录组测序分析2个品种响应干旱基因的差异。结果表明, 干旱胁迫显著降低了2个紫花苜蓿品种的株高、地上地下生物量、叶片相对含水量、光合速率、蒸腾速率、气孔导度、胞间二氧化碳浓度和叶绿素含量; 与三得利相比, 干旱胁迫下中科1号紫花苜蓿丙二醛含量和电导率更低, 渗透调节物质积累和活性氧清除能力更强。中科1号和三得利分别有5308个和8053个响应干旱的基因; GO功能注释分析发现, 中科1号的346个干旱响应基因被显著富集在6个GO类别, 而三得利的1683个干旱响应基因被显著富集在29个GO类别; 此外, 我们还筛选到19个在中科1号中表达量显著高于三得利的抗旱关键基因。本研究发现紫花苜蓿可能通过上调抗旱基因SUSP5CSLEASODPODPEPC、NCED等的表达, 提高渗透调节能力和抗氧化酶活性来维持相对较高的光合速率, 从而增强抗旱能力。研究结果为进一步挖掘紫花苜蓿响应干旱胁迫的候选基因和抗旱育种提供了理论依据。

关键词: 紫花苜蓿, 干旱胁迫, 生理特性, 转录组

Abstract:

Alfalfa is the most important legume forage, which is often planted in aird or semi-arid regions. The objective of this study is to explore the responsive mechanism of alfalfa with different drought tolerance to drought stress, which provides the theoretical basis for tolerant breeding of alfalfa. In this study, the new variety Medicago sativa ‘Zhongke 1’ was used as the test material, and M. sativa ‘Sanditi’ was used as the control. The effects of drought stress on growth traits, photosynthesis, chlorophyll concentration, leaf water content, osmotic adjustment substances, and antioxidant enzyme activities were determined by natural drought strategy in pots. The deferentially expressed genes were compared by transcriptome analysis. Drought stress significantly reduced plant height, biomass, relative water content of leaves, photosynthetic rate, transpiration rate, stomatal conductance, intercellular carbon dioxide and chlorophyll concentration of alfalfa. Compared with Sanditi, Zhongke 1 revealed the lower malondialdehyde concentration and electrical conductivity under drought stress, but stronger osmotic regulation ability and superoxide radical scavenging ability. Transcriptome sequencing identified 5308 and 8053 drought-responsive genes of Zhongke 1 and Sanditi, respectively. GO functional annotation demonstrated that 346 drought-responsive genes were significantly enriched in six GO item categories in Zhongke 1, while 1683 drought-responsive genes in Sanditi were significantly enriched in 29 GO item categories. The relative expression levels of 19 key drought-tolerant genes in Zhongke 1 were significantly higher than those in Sanditi. Alfalfa may maintain a relatively high photosynthetic rate by up-regulating the relative expression levels of drought tolerant genes SUS, P5CS, LEA, SOD, POD, PEPC, and NCED, thus improving osmotic regulation ability and antioxidant enzyme activity. The results provide a theoretical basis for further exploration of alfalfa’s candidate genes in response to drought stress and drought tolerant breeding.

Key words: alfalfa, drought stress, physiological characteristics, transcriptome

图1

干旱胁迫对不同耐旱性紫花苜蓿株高(A)、地上生物量(B)、地下生物量(C)和存活率(D)的影响 *代表同一处理不同品种间的显著性(*: P < 0.05; **: P < 0.01); #代表同一品种不同处理间的显著性(#: P < 0.05; ##: P < 0.01)。"

图2

干旱胁迫对不同耐旱性紫花苜蓿光合速率(A)、气孔导度(B)、胞间CO2浓度(C)、蒸腾速率(D)、水分利用效率(E)和叶绿素含量(F)的影响 *代表同一处理不同品种间的显著性(*: P < 0.05; **: P < 0.01); #代表同一品种不同处理间的显著性(#: P < 0.05; ##: P < 0.01)。"

图3

干旱胁迫对不同耐旱性紫花苜蓿相对电导率(A)和叶片相对含水量(B)的影响 *代表同一处理不同品种间的显著性(*: P < 0.05, **: P < 0.01); #代表同一品种不同处理间的显著性(#: P < 0.05, ##: P < 0.01)。"

图4

干旱胁迫对不同耐旱性紫花苜蓿叶片脯氨酸(A)和可溶性糖含量(B)的影响 *代表同一处理不同品种间的显著性(*: P < 0.05, **: P < 0.01); #代表同一品种不同处理间的显著性(#: P < 0.05, ##: P < 0.01)。"

图5

干旱胁迫对不同耐旱性紫花苜蓿丙二醛含量(A)和超氧化物歧化酶(B)、过氧化物酶(C)活性的影响 *代表同一处理不同品种间的显著性(*: P < 0.05; **: P < 0.01); #代表同一品种不同处理间的显著性(#: P < 0.05; ##: P < 0.01)。"

图6

在干旱胁迫和正常条件下的转录组数据分析 A: 转录组相关性分析热图; B: 转录组差异基因数量。"

表1

中科1号干旱与对照差异表达基因的GO注释分析"

类别
Categories
基因本体ID
GO ID
描述
Description
多重假设检验校正后的P
P-adj value
基因数
No. of genes
CC GO:0005618 细胞壁Cell wall 0.02 21
CC GO:0030312 外封装结构External encapsulating structure 0.02 21
MF GO:0046906 四吡咯结合Tetrapyrrole binding 0.05 85
MF GO:0016788 水解酶活性, 作用于酯键Hydrolase activity, acting on ester bonds 0.05 94
MF GO:0020037 血红素结合Heme binding 0.05 82
MF GO:0004553 水解酶活性, 水解O-糖基化合物
Hydrolase activity, hydrolyzing O-glycosyl compounds
0.05 85

表2

三得利干旱与对照差异表达基因的GO注释分析"

类别
Category
基因本体ID
GO ID
描述
Description
多重假设检验校正后的P
P-adj value
基因数
No. of genes
CC GO:0009521 光系统Photosystem 0.01×10-5 32
CC GO:0034357 光合膜Photosynthetic membrane 0.01×10-5 32
CC GO:0009579 类囊体Thylakoid 0.01×10-5 33
CC GO:0044436 类囊体部分Thylakoid part 0.01×10-5 33
MF GO:0016757 转移酶活性, 转移糖基Transferase activity, transferring glycosyl groups 0.08×10-5 149
CC GO:0009523 光系统II Photosystem II 0.03×10-3 20
MF GO:0016758 转移酶活性, 转移己糖基团Transferase activity, transferring hexosyl groups 0.04×10-3 132
MF GO:0004185 丝氨酸型羧肽酶活性Serine-type carboxypeptidase activity 0.04×10-3 29
MF GO:0046906 四吡咯结合Tetrapyrrole binding 0.04×10-3 131
MF GO:0016705 氧化还原酶活性, 作用于配对供体, 结合或减少分子氧
Oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen
0.04×10-3 113
BP GO:0015979 光合作用Photosynthesis 0.01×10-2 38
CC GO:0009654 光系统II析氧复合物Photosystem II oxygen evolving complex 0.02×10-2 14
CC GO:0042651 类囊体膜Thylakoid membrane 0.08×10-2 14
CC GO:1990204 氧化还原酶复合物Oxidoreductase complex 0.08×10-2 14
MF GO:0005506 铁离子结合Iron ion binding 0.09×10-2 119
CC GO:0019898 膜的外在成分Extrinsic component of membrane 0.04×10-1 13
MF GO:0003700 DNA结合转录因子活性DNA-binding transcription factor activity 0.07×10-1 116
MF GO:0016835 碳氧裂解酶活性Carbon-oxygen lyase activity 0.01 26
CC GO:0009522 光系统I Photosystem I 0.02 10
MF GO:0016747 转移酶活性, 转移除氨酰基以外的酰基
Transferase activity, transferring acyl groups other than amino-acyl groups
0.02 64
MF GO:0008236 丝氨酸型肽酶活性Serine-type peptidase activity 0.02 64
MF GO:0020037 血红素结合Heme binding 0.02 129
MF GO:0004180 羧肽酶活性Carboxypeptidase activity 0.03 29
MF GO:0070008 丝氨酸型外肽酶活性Serine-type exopeptidase activity 0.03 30
MF GO:0016746 转移酶活性, 转移酰基Transferase activity, transferring acyl groups 0.03 76
MF GO:0017171 丝氨酸水解酶活性Serine hydrolase activity 0.03 64
MF GO:0016701 氧化还原酶活性, 作用于单个供体并结合分子氧
Oxidoreductase activity, acting on single donors with incorporation of molecular oxygen
0.04 26
MF GO:0140110 转录调节活性Transcription regulator activity 0.04 122
MF GO:0008374 O-酰基转移酶活性O-acyltransferase activity 0.04 11

图7

干旱胁迫下的相关差异基因表达水平值热图 基因的表达(Z值)水平由绿(低)到红(高)的颜色表示。"

[1] 韩德梁, 王彦荣. 紫花苜蓿对干旱胁迫适应性的研究进展. 草业学报, 2005, 14(6): 7-13.
Han D L, Wang Y R. Adaptability of Medicago sativa under water stress. Acta Pratac Sin, 2005, 14(6): 7-13. (in Chinese with English abstract)
[2] Jia Y H, Shao M A. Temporal stability of soil water storage under four types of revegetation on the northern loess plateau of China. Agric Water Manag, 2013, 117: 33-42.
doi: 10.1016/j.agwat.2012.10.013
[3] 王晓娟, 张树振, 林双双, 邓志刚, 金樑. 紫花苜蓿(Medicago sativa L.)生物能源利用的研究进展. 中国农业科学, 2013, 46: 1694-1705.
Wang X J, Zhang S Z, Lin S S, Deng Z G, Jin L. Advances in study on bio-energy utilization of stem cell wall components in alfalfa (Medicago sativa L.). Sci Agric Sin, 2013, 46: 1694-1705. (in Chinese with English abstract)
[4] 张迪, 任立飞, 刘广彬, 罗伏青, 张文浩, 王天佐. 不同干燥方式对苜蓿种子代谢物的影响. 草业学报, 2021, 30(3): 158-166.
doi: 10.11686/cyxb2020147
Zhang D, Ren L F, Liu G B, Luo F Q, Zhang W H, Wang T Z. Comparative metabolite profiling of alfalfa seeds dried at different temperatures. Acta Pratac Sin, 2021, 30(3): 158-166. (in Chinese with English abstract)
[5] Mickky B M, Abbas M A, Ei-shhaby O A. Alterations in photosynthetic capacity and morpho-histological features of leaf in alfalfa plants subjected to water deficit-stress in different soil types. Indian J Plant Physiol, 2018, 23: 426-443.
doi: 10.1007/s40502-018-0383-7
[6] Wang T, Zhang W H. Priorities for the development of alfalfa pasture in northern China. Fundam Res, 2022, doi:10.1016/j.fmre.2022.04.017.
doi: 10.1016/j.fmre.2022.04.017
[7] 杨青川, 康俊梅, 张铁军, 刘凤歧, 龙瑞才, 孙彦. 苜蓿种质资源的分布、育种与利用. 科学通报, 2016, 61: 261-270.
Yang Q C, Kang J M, Zhang T J, Liu F Q, Long R C, Sun Y. Distribution, breeding and utilization of alfalfa germplasm resources. Chin Sci Bull, 2016, 61: 261-270 (in Chinese with English abstract).
doi: 10.1360/N972015-00879
[8] 陆姣云, 熊军波, 张鹤山, 田宏, 杨惠敏, 刘洋. 水分胁迫对紫花苜蓿产量、品质和微量元素的影响. 草业学报, 2020, 29(8): 126-133.
doi: 10.11686/cyxb2019462
Lu J Y, Xiong J B, Zhang H S, Tian H, Yang H M, Liu Y. Effects of water stress on yield, quality and trace element composition of alfalfa. Acta Pratac Sin, 2020, 29(8): 126-133. (in Chinese with English abstract)
[9] 张立全, 贾旭慧, 赵静玮. PEG模拟干旱胁迫对紫花苜蓿种子发芽及幼苗生长的影响. 分子植物育种, 2020, 18: 3759-3764.
Zhang L Q, Jia X H, Zhao J W. Effects of PEG simulated drought stress on seed germination and seedling growth of alfalfa. Mol Plant Breed, 2020, 18: 3759-3764 (in Chinese with English abstract).
[10] 李佳欢, 刘希强, 吕进英, 任成, 王开丽, 黄顶, 邓波, 王堃. 基于植株各器官生理响应对12种苜蓿抗旱性的综合评价. 草地学报, 2020, 28: 1319-1328.
doi: 10.11733/j.issn.1007-0435.2020.05.017
Li J H, Liu X Q, Lyu J Y, Ren C, Wang K L, Huang D, Deng B, Wang K. drought resistance evaluation of 12 alfalfa varieties based on physiological response of four plant organs. Acta Agrest Sin, 2020, 28: 1319-1328. (in Chinese with English abstract)
[11] Bid M, Haddad M, Ben Khaled A, Mansour E, Bachar K, Lacheheb B, Ferchichi A. Water relations and gas exchange in alfalfa leaves under drought conditions in southern Tunisian oases. Polish J Environ Stud, 2016, 25: 917-924.
doi: 10.15244/pjoes/61282
[12] 张曦, 王振南, 陆姣云, 杨梅, 杨惠敏. 紫花苜蓿叶性状对干旱的阶段性响应. 生态学报, 2016, 36: 2669-2676.
Zhang X, Wang Z N, Lu J Y, Yang M, Yang H M. Responses of leaf traits to drought at different growth stages of alfalfa. Acta Ecol Sin, 2016, 36: 2669-2676. (in Chinese with English abstract)
[13] Roy M, Niu J P, Irshad A, Kareem H A, Hassan M U, Xu N, Sui X, Guo Z P, Amo A, Wang Q Z. Exogenous melatonin protects alfalfa (Medicago sativa L.) seedlings from drought-induced damage by modulating reactive oxygen species metabolism, mineral balance and photosynthetic efficiency. Plant Stress, 2021, 2: 100044.
doi: 10.1016/j.stress.2021.100044
[14] 阿衣古力·阿布都瓦依提, 王铮, 木合塔尔·扎热, 齐曼·尤努斯. 干旱胁迫对3个苜蓿品种的生长及光合特性的影响. 中国农学通报, 2016, 32(14): 7-12.
doi: 10.11924/j.issn.1000-6850.casb15110133
Aygul A, Wang Z, Muhtar Z, Qiman Y. Effect of drought stress on plant growth and photosynthetic characteristics of three alfalfa varieties. Chin Agric Sci Bull, 2016, 32(14): 7-12. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb15110133
[15] Claeys H, Inzé D. The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol, 2013, 162: 1768-1779.
doi: 10.1104/pp.113.220921 pmid: 23766368
[16] Zhang C M, Shi S L, Liu Z, Yang F, Yin G L. Drought tolerance in alfalfa (Medicago sativa L.)varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. J Plant Physiol, 2019, 232: 226-240.
doi: 10.1016/j.jplph.2018.10.023
[17] SuzukI N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ, 2012, 35: 259-270.
doi: 10.1111/j.1365-3040.2011.02336.x
[18] Slama I, Tayachi S, Jdey A, Rouached A, Abdelly C. Differential response to water deficit stress in alfalfa (Medicago sativa) cultivars: growth, water relations, osmolyte accumulation and lipid peroxidation. Afr J Biotechnol, 2011, 10: 16250-16259.
[19] Quan W, Liu X, Wang H, Chan Z L. Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties. Front Plant Sci, 2016, 6: 1256.
[20] 冷暖, 刘晓巍, 张娜, 许立新. 草地早熟禾干旱胁迫转录组差异性分析. 草业学报, 2017, 26(12): 128-137.
doi: 10.11686/cyxb2017130
Leng N, Liu X W, Zhang N, Xu L X. Differential gene analysis of Poapratensis in response to drought stress. Acta Pratac Sin, 2017, 26(12): 128-137. (in Chinese with English abstract)
[21] Ma Q, Bao A K, Chai W W, Wang W Y, Zhang J L, Li Y X, Wang S M. Transcriptomic analysis of the succulent xerophyte Zygophyllum xanthoxylum in response to salt treatment and osmotic stress. Plant Soil, 2016, 402: 343-361.
doi: 10.1007/s11104-016-2809-1
[22] Swarbreck S M, Lindquist E A, Ackerly D D, Andersen G L. Analysis of leaf and root transcriptomes of soil-grown Avena barbata plants. Plant Cell Physiol, 2011, 52: 317-332.
doi: 10.1093/pcp/pcq188
[23] Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R, Rotter B, Steinhauer D, Amenc L, Drevon J J, Winter P, Kahl G. The salt-responsive transcriptome of chickpea roots and nodules via deep super SAGE. BMC Plant Biol, 2011, 11: 31.
doi: 10.1186/1471-2229-11-31
[24] 汤海港, 黄艳华, 路海博, 田丹阳, 张蕴薇. 转录组测序技术及其在能源草基因挖掘和品种选育中的应用前景分析. 草地学报, 2016, 24: 731-737.
doi: 10.11733/j.issn.1007-0435.2016.04.004
Tang H G, Huang Y H, Lu H B, Tian D Y, Zhang Y W. The application perspective of transcriptome sequencing on discovering the genes and variety breeding of bioenergy grass. Acta Agrest Sin, 2016, 24: 731-737. (in Chinese with English abstract)
[25] 王园园, 赵明, 张红香, 卢正宽, 穆春生. 干旱胁迫对紫花苜蓿幼苗形态和生理特征的影响. 中国草地学报, 2021, 43(9): 78-87.
Wang Y Y, Zhao M, Zhang H X, Lu Z K, Mu C S. Effects of drought stress on morphological and physiological characteristics of alfalfa seedlings. Chin J Grassland, 2021, 43(9): 78-87. (in Chinese with English abstract)
[26] 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响. 中国农业科学, 2018, 51: 868-882.
doi: 10.3864/j.issn.0578-1752.2018.05.006
Zhang C M, Shi S L, Wu F. Effects of drought stress on root and physiological responses of different drought tolerant alfalfa varieties. Sci Agric Sin, 2018, 51: 868-882. (in Chinese with English abstract)
[27] Wang T Z, Chen L, Zhao M G, Tian Q Y, Zhang W H. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics, 2011, 12: 367.
doi: 10.1186/1471-2164-12-367
[28] Smart R E. Rapid estimates of relative water content. Plant Physiol, 1974, 53: 258-260.
doi: 10.1104/pp.53.2.258 pmid: 16658686
[29] Nayyar H. Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environ Exp Bot, 2003, 50: 253-264.
doi: 10.1016/S0098-8472(03)00038-8
[30] Arnon D I. Copper enzymes in isolated chloroplasts- polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1-5.
doi: 10.1104/pp.24.1.1 pmid: 16654194
[31] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2007.
Zou Q. Plant Physiology Experiment Guidance. Beijing: China Agriculture Press, 2007. (in Chinese)
[32] Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol, 1977, 59: 309-314.
doi: 10.1104/pp.59.2.309 pmid: 16659839
[33] Pandolfini T, Gabbrielli R, Comparini C. Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environt, 1992, 15: 719-725.
[34] Shen C, Du H L, Chen Z, Lu H W, Zhu F G, Chen H, Meng X Z, Liu Q W, Liu P, Zheng L H, Li X X, Dong J L, Liang C Z, Wang T. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol Plant, 2020, 13: 1250-1261.
doi: S1674-2052(20)30216-1 pmid: 32673760
[35] 韩志顺, 郑敏娜, 梁秀芝, 康佳惠, 陈燕妮. 干旱胁迫对不同紫花苜蓿品种形态特征和生理特性的影响. 中国草地学报, 2020, 42(3): 37-43.
Han Z S, Zheng M N, Liang X Z, Kang J H, Chen Y N. Effects of drought stress on morphological and physiological characteristics of different alfalfa cultivars. Chin J Grassland, 2020, 42(3): 37-43. (in Chinese with English abstract)
[36] 刘军, 齐广平, 康燕霞, 马彦麟, 栗志. 土壤水分胁迫对紫花苜蓿光合特性及其生物量的影响. 干旱区研究, 2019, 36: 893-900.
Liu J, Qi G P, Kang Y X, Ma Y L, Li Z. Effects of soil water stress on photosynthetic characteristics and biomass of Medicago sativa. Arid Zone Res, 2019, 36: 893-900. (in Chinese with English abstract)
[37] 南思睿, 罗永忠, 于思敏, 何钰, 仝慧鑫. 干旱胁迫后复水对新疆大叶苜蓿幼苗光合和叶绿素荧光的影响. 草地学报, 2022, 30: 1141-1149.
doi: 10.11733/j.issn.1007-0435.2022.05.014
Nan S R, Luo Y Z, Yu S M, He Y, Tong H X. Effects of rewatering after drought stress on photosynthesis and chlorophyll fluorescence of Medicago sativa cv. Xingjiangdaye seedlings. Acta Agrest Sin, 2022, 30: 1141-1149 (in Chinese with English abstract).
[38] 韩瑞宏, 卢欣石, 高桂娟, 杨秀娟. 紫花苜蓿(Medicago sativa)对干旱胁迫的光合生理响应. 生态学报, 2007, 27: 5229-5237.
Han R H, Lu X S, Gao G J, Yang X J. Photosynthetic physiological response of alfalfa (Medicago sativa) to drought stress. Acta Ecol Sin, 2007, 27: 5229-5237 (in Chinese with English abstract).
[39] Leng P, Yuan B, Guo Y. The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot, 2014, 65: 4577-4588.
doi: 10.1093/jxb/eru204 pmid: 24821949
[40] 王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征. 草业学报, 2022, 31(3): 71-84.
doi: 10.11686/cyxb2020557
Wang Z H, Wei Y Q, Zhao Y R, Wang Y J. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings. Acta Pratac Sin, 2022, 31(3): 71-84. (in Chinese with English abstract)
[41] Zhang C M, Shang L S. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress. Front Plant Sci, 2018, 9: 242.
doi: 10.3389/fpls.2018.00242
[42] 韩瑞宏, 田华, 高桂娟, 卢欣石. 干旱胁迫下紫花苜蓿叶片水分代谢与两种渗透调节物质的变化. 华北农学报, 2008, 23(4): 140-144.
doi: 10.7668/hbnxb.2008.04.032
Han R H, Tian H, Gao G J, Lu X S. Change of water metabolism and two osmotic adjustment substances in the leaves of alfalfa under drought stress. Acta Agric Boreali-Sin, 2008, 23(4): 140-144. (in Chinese with English abstract)
[43] 张美, 张会. 胚胎发育晚期丰富蛋白(LEA蛋白)与植物抗逆性研究进展. 生物资源, 2017, 39(3): 155-161.
Zhang M, Zhang H. Research progress of late embryogenesis abundant (LEA) protein involved in plant tolerance to abiotic stresse. Biotic Resour, 2017, 39(3): 155-161. (in Chinese with English abstract)
[44] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
doi: 10.1016/j.plaphy.2010.08.016
[45] 权文利, 产祝龙. 紫花苜蓿抗旱机制研究进展. 生物技术通报, 2016, 32(10): 34-41.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.003
Quan W L, Chan Z L. Research progress on drought resistance mechanism of alfalfa. Biotechnol Bull, 2016, 32(10): 34-41. (in Chinese with English abstract)
[1] 王菲菲, 张胜忠, 胡晓辉, CHU Ye, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[2] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[3] 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881.
[4] 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894.
[5] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[6] 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798.
[7] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[8] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[9] 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376.
[10] 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制[J]. 作物学报, 2023, 49(1): 225-238.
[11] 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995.
[12] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[13] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[14] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[15] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .