作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2133-2143.doi: 10.3724/SP.J.1006.2023.21056
苏在兴(), 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛()
SU Zai-Xing(), HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan()
摘要:
在徐麦35原种繁育过程中发现1株天然矮秆突变体, 经连续多代单株选择, 该突变体株高性状稳定遗传, 将其命名为Xu1801 (徐1801)。为研究Xu1801矮化原因, 进行了农艺性状调查、倒伏指数分析、苗期赤霉素处理和矮秆相关基因检测。调查发现, Xu1801平均株高68.16 cm, 较野生型徐麦35株高降低24.05%, 其矮化效应表现为节间减少和各节间极显著缩短; 其中, 第5节间效应值最大, 达44.16%。Xu1801的旗叶宽度、叶绿素含量、小穗密度极显著高于徐麦35, 其他农艺性状与徐麦35差异较小。Xu1801产量达8604.17 kg hm-2, 低于徐麦35; 而蛋白质含量、湿面筋、沉降值等品质指标均显著优于徐麦35。Xu1801茎秆粗壮, 各节间充实度较好, 倒伏指数47.73, 极显著低于徐麦35。GA3处理可知, Xu1801和徐麦35同属于赤霉素反应不敏感型种质。分子标记检测发现, Xu1801可能含有Rht-D1b、Rht4、Rht8、Rht9和Rht12等矮秆相关基因; WMC317 (Rht4)和BARC102 (Rht5)在Xu1801和徐麦35之间呈现出不同条带, 其他标记扩增条带在两者之间较为一致。综上, Xu1801株高偏矮、抗倒伏能力强, 产量和品质性状协调, 具有一定的生产应用潜力, 同时携带多个矮秆基因, 可作为小麦株高遗传分析的种质资源。
[1] | Weibel R O, Pendleton J W. Effect of artificial lodging on winter wheat grain yield and quality. Agron J, 1964: 487-488. |
[2] |
Peake A S, Bell K L, Fischer R A, Gardner M, Das B T, Poole N, Mumford M. Cultivar × management interaction to reduce lodging and improve grain yield of irrigated spring wheat: optimising plant growth regulator use, N application timing, row spacing and sowing date. Front Plant Sci, 2020, 11: 401.
doi: 10.3389/fpls.2020.00401 pmid: 32411154 |
[3] |
Lyu D Y, Zhang C L, Yv R, Yao J X, Wu J H, Song X P, Jian J T, Song P B, Zhang Z Y, Han D J, Sun D J. Utilization of a Wheat50K SNP microarray-derived high-density genetic map for QTL mapping of plant height and grain traits in wheat. Plants, 2021, 10: 1167.
doi: 10.3390/plants10061167 |
[4] |
韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价. 作物学报, 2021, 47: 1188-1196.
doi: 10.3724/SP.J.1006.2021.01053 |
Han Y Z, Zhang Y, Yang Y, Gu Z Z, Wu K, Xie Q, Kong Z X, Jia H Y, Ma Z Q. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat. Acta Agron Sin, 2021, 47: 1188-1196. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01053 |
|
[5] |
Velde K V D, Thomas S G, Heyse F, Kaspar R, Straeten D V D, Rohde A. N-terminal truncated RHT-1 proteins generated by translational reinitiation cause semi-dwarfing of wheat green revolution alleles. Mol Plant, 2021, 14: 679-687.
doi: 10.1016/j.molp.2021.01.002 pmid: 33422695 |
[6] |
Guo B J, Jin X M, Chen J C, Xu H Y, Zhang M X, Lu X, Wu R G, Zhao Y, Guo Y, An Y R, Li S S. ATP-dependent DNA helicase (TaDHL), a novel reduced-height (Rht) gene in wheat. Genes, 2022, 13: 979.
doi: 10.3390/genes13060979 |
[7] |
Mo Y, Vanzetti L S, Hale I, Spagnolo E J, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor Appl Genet, 2018, 131: 2021-2035.
doi: 10.1007/s00122-018-3130-6 |
[8] |
Zhao K, Xiao J, Liu Y, Chen S, Yuan C, Cao A, You F M, Yang D, An S, Wang H, Wang X. 5Dq′) likely encodes a Q homeologue with pleiotropic effects on plant height and spike compactness. Theor Appl Genet, 2018, 131: 1825-1834.
doi: 10.1007/s00122-018-3115-5 |
[9] |
Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
doi: 10.1038/22307 |
[10] |
吕广德, 靳雪梅, 郭营, 赵岩, 钱兆国, 吴科, 李斯深. 小麦株高分子遗传学研究进展. 植物遗传资源学报, 2021, 22: 571-582.
doi: 10.13430/j.cnki.jpgr.20200927001 |
Lyu G D, Jin X M, Guo Y, Zhao Y, Qian Z G, Wu K, Li S S. Advances in molecular genetics of wheat plant height. J Plant Genet Resour, 2021, 22: 571-582. (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.20200927001 |
|
[11] |
贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析. 作物学报, 2021, 47: 974-982.
doi: 10.3724/SP.J.1006.2021.01066 |
He J Y, Yin S Q, Chen Y Q, Xiong J L, Wang W B, Zhou H B, Chen M, Wang M Y, Chen S W. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants. Acta Agron Sin, 2021, 47: 974-982. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01066 |
|
[12] | 卢媛.普通小麦矮秆突变体NM9的鉴定及突变基因Rht_NM9的定位和效应分析. 南京农业大学博士学位论文, 江苏南京, 2015. |
Lu Y.Characterization of a Dwarf Mutant, NM9, and Mapping and Effect Analysis of the Dwarfing Gene, Rht_NM9, in Triticum aestivum. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015. (in Chinese with English abstract) | |
[13] | 刘娟, 张凯, 范胜男, 韩洋, 冯玉梅, 李星岩, 韩冰, 杨燕. 小麦矮秆基因Rht-B1b和Rht-D1b的检测及其验证. 麦类作物学报, 2021, 41: 816-826. |
Liu J, Zhang K, Fan S N, Han Y, Feng Y M, Li X Y, Han B, Yang Y. Molecular detection and verification of dwarfing gene Rht-B1b and Rht-D1b in wheat. J Triticeae Crops, 2021, 41: 816-826. (in Chinese with English abstract) | |
[14] | 唐娜, 李博, 闵红, 胡银岗. 分子标记检测矮秆基因Rht-B1b、Rht-D1b和Rht8在我国小麦中的分布. 中国农业大学学报, 2012, 17: 21-26. |
Tang N, Li B, Min H, Hu Y G. Distribution of dwarfing genes Rht-B1b, Rht-D1b and Rht8 in Chinese bread wheat cultivars detected by molecular markers. J China Agric Univ, 2012, 17: 21-26. (in Chinese with English abstract) | |
[15] |
Worland A J, Sayers E J, Korzun V. Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes. Euphytica, 2001, 119: 157-161.
doi: 10.1023/A:1017582122775 |
[16] |
Xiong H C, Zhou C Y, Fu M Y, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Li Y T, Zhang J Z, Wang K, Li X J, Liu L X. Cloning and functional characterization of Rht8, a “green revolution” replacement gene in wheat. Mol Plant, 2022, 15: 373-376.
doi: 10.1016/j.molp.2022.01.014 |
[17] |
Chai L L, Xin M M, Dong C Q, Chen Z Y, Zhai H J, Zhuang J H, Cheng X J, Wang N J, Geng J, Wang X B, Bian R L, Yao Y Y, Guo W L, Hu Z R, Peng H R, Bai G H, Sun Q X, Su Z Q, Liu J, Ni Z F. A natural variation in ribonuclease H-like gene underlies Rht8 to confer “green revolution” trait in wheat. Mol Plant, 2022, 15: 377-380.
doi: 10.1016/j.molp.2022.01.013 |
[18] |
陈向东, 吴晓军, 胡喜贵, 李淦, 姜小苓, 李笑慧, 李小利, 胡铁柱, 茹振钢. 117份小麦种质中5个矮秆基因的分子检测. 新疆农业科学, 2019, 56: 1373-1381.
doi: 10.6048/j.issn.1001-4330.2019.08.001 |
Chen X D, Wu X J, Hu X G, Li G, Jiang X L, Li X H, Li X L, Hu T Z, Ru Z G. Molecular detection of five dwarf genes in 117 wheat germplasm resources. Xinjiang Agric Sci, 2019, 56: 1373-1381. (in Chinese with English abstract) | |
[19] |
Tian X L, Xia X C, Xu D G, Liu Y Q, Xie L, Hassan M A, Song J, Li F J, Wang D S, Zhang Y, Hao Y F, Li G Y, Chu C C, He Z H, Cao S H. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytol, 2022, 233: 738-750.
doi: 10.1111/nph.v233.2 |
[20] |
Buss W, Ford B A, Foo E, Schnippenkoetter W, Borrill P, Brooks B, Ashton A R, Chandler P M, Spielmeyer W. Overgrowth mutants determine the causal role of gibberellin GA2 oxidase A13 in Rht12 dwarfism of wheat. J Exp Bot, 2020, 71: 7171-7178.
doi: 10.1093/jxb/eraa443 |
[21] |
Sun L H, Yang W L, Li Y F, Shan Q Q, Ye X B, Wang D Z, Yu K, Lu W W, Xin P Y, Pei Z, Guo X L, Liu D C, Sun J Z, Zhan K H, Chu J F, Zhang A M. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. Plant J, 2019, 97: 887-900.
doi: 10.1111/tpj.2019.97.issue-5 |
[22] | 赵秋实, 李倩倩, 王超杰, 蒋宏宝, 耿皆飞, 杨媛, 刘录祥, 张小燕, 谢彦周, 王成社. 普通小麦品种陕农33矮秆突变体的矮化效应分析. 麦类作物学报, 2018, 38: 1053-1064. |
Zhao Q S, Li Q Q, Wang C J, Jiang H B, Geng J F, Yang Y, Liu L X, Zhang X Y, Xie Y Z, Wang C S.Analysis of the dwarfing mutagenic effect on dwarf mutants of common wheat variety Shaannong 33. J Triticeae Crops, 2018, 38: 1053-1064. (in Chinese with English abstract) | |
[23] |
Lu Y, Xing L, Xing S, Hu P, Cui C, Zhang M, Xiao J, Wang H, Zhang R, Wang X, Chen P, Cao A. Characterization of a putative new semi-dominant reduced height gene, Rht_NM9, in wheat (Triticum aestivum L.). J Genet Genom, 2015, 42: 685-698.
doi: 10.1016/j.jgg.2015.08.007 |
[24] |
陈晓光, 史春余, 尹燕枰, 王振林, 石玉华, 彭佃亮, 倪英丽, 蔡铁. 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011, 37: 1616-1622.
doi: 10.3724/SP.J.1006.2011.01616 |
Chen X G, Shi C Y, Yin Y P, Wang Z L, Shi Y H, Peng D L, Ni Y L, Cai T. Relationship between lignin metabolism and lodging resistance in wheat. Acta Agron Sin, 2011, 37: 1616-1622. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.01616 |
|
[25] | 刘慧婷, 李瑞奇, 王红光, 李东晓, 李浩然. 密度和施氮量对强筋小麦藁优2018产量和抗倒性的影响. 麦类作物学报, 2017, 37: 1619-1626. |
Liu H T, Li R Q, Wang H G, Li D X, Li H R. Effect of planting density and nitrogen fertilization rate on lodging resistance and grain yield of strong gluten wheat Gaoyou 2018. J Triticeae Crops, 2017, 37: 1619-1626. (in Chinese with English abstract) | |
[26] | 柴建芳, 刘旭, 贾继增. 一种适于PCR扩增的小麦基因组DNA快速提取法. 植物遗传资源学报, 2006, 7: 246-248. |
Chai J F, Liu X, Jia J Z. A rapid isolation method of wheat DNA suitable for PCR analysis. J Plant Genet Resour, 2006, 7: 246-248. (in Chinese with English abstract) | |
[27] |
Ellis M H, Spielmeyer W, Gale K R, Rebetzke G J, Richards R A. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet, 2002, 105: 1038-1042.
doi: 10.1007/s00122-002-1048-4 pmid: 12582931 |
[28] |
Ellis M H, Rebetzke G J, Azanza F, Richards R A, Spielmeyer W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet, 2005, 111: 423-430.
doi: 10.1007/s00122-005-2008-6 pmid: 15968526 |
[29] |
Ellis M H, Bonnett D G, Rebetzke G J. A 192 bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica, 2007, 157: 209-214.
doi: 10.1007/s10681-007-9413-7 |
[30] | 苏在兴, 高闰飞, 易媛, 王波, 常勇, 黄忠勤, 周兴根. 小麦穗发芽抗性分析及相关分子标记检测. 麦类作物学报, 2019, 39: 1173-1179. |
Su Z X, Gao R F, Yi Y, Wang B, Chang Y, Huang Z Q, Zhou X G. Analysis of pre-harvest sprouting (PHS) resistance and detection on PHS associated molecular markers in wheat (Triticum aestivum L.). J Triticeae Crops, 2019, 39: 1173-1179. (in Chinese with English abstract) | |
[31] |
Wen S Z, Zhang M H, Tu K L, Fan C F, Tian S, Bi C, Chen Z L, Zhao H H, Wei C X, Shi X T, Yu J Z, Sun Q X, You M S. A major quantitative trait loci cluster controlling three components of yield and plant height identified on chromosome 4B of common wheat. Front Plant Sci, 2022, 12: 799520.
doi: 10.3389/fpls.2021.799520 |
[32] |
Wu Q H, Chen Y X, Xie J Z, Dong L L, Wang Z Z, Lu P, Wang R G, Yuan C G, Zhang Y, Liu Z Y. A36 Mb terminal deletion of chromosome 2BL is responsible for a wheat semi-dwarf mutation. Crop J, 2021, 9: 873-881.
doi: 10.1016/j.cj.2020.06.015 |
[33] |
Agarwal P, Balyan H S, Gupta P K. Identification of modifiers of the plant height in wheat using an induced dwarf mutant controlled by RhtB4c allele. Physiol Mol Biol Plants, 2020, 26: 2283-2289.
doi: 10.1007/s12298-020-00904-0 |
[34] |
Dreccer M F, Macdonald B, Farnsworth C A, Paccapelo M V, Awasi M A, Condon A G, Forrest K, Lee Long I, McIntyre C L. Multi-donor × elite-based populations reveal QTL for low-lodging wheat. Theor Appl Genet, 2022, 135: 1685-1703.
doi: 10.1007/s00122-022-04063-6 |
[35] |
Zhang H J, Li T, Liu H W, Mai C Y, Yu G J, Li H L, Yu L Q, Meng L Z, Jian D W, Yang L, Li H J, Zhou Y. Genetic progress in stem lodging resistance of the dominant wheat cultivars adapted to Yellow-Huai River valleys winter wheat zone in China since 1964. J Integr Agric, 2020, 19: 438-448.
doi: 10.1016/S2095-3119(19)62627-4 |
[36] |
卢媛, 崔超凡, 胡平, 陈佩度, 沈雪芳, 韩晴, 王义发, 邢莉萍, 曹爱忠. 矮秆基因Rht_NM9在小麦株高建成中对内源激素含量的影响. 作物学报, 2017, 43: 1272-1279.
doi: 10.3724/SP.J.1006.2017.01272 |
Lu Y, Cui C F, Hu P, Chen P D, Shen X F, Han Q, Wang Y F, Xing L P, Cao A Z. Effects of dwarf gene Rht_NM9 on contents of endogenous hormone regulating plant height of common wheat. Acta Agron Sin, 2017, 43: 1272-1279. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01272 |
|
[37] |
Si X M, Wang W X, Wang K, Liu Y C, Bai J P, Meng Y X, Zhang X Y, Liu H X. A sheathed spike gene, TaWUS-like inhibits stem elongation in common wheat by regulating hormone levels. Int J Mol Sci, 2021, 22: 11210.
doi: 10.3390/ijms222011210 |
[38] |
付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位. 作物学报, 2022, 48: 580-589.
doi: 10.3724/SP.J.1006.2022.11015 |
Fu M Y, Xiong H C, Zhou C Y, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Xu Y H, Liu L X. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene. Acta Agron Sin, 2022, 48: 580-589. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11015 |
|
[39] |
刘晴, 古佳玉, 赵紫伟, 赵林姝, 郭会君, 谢永盾, 宋希云, 刘录祥. 小麦矮秆突变体DC20的转录组分析. 核农学报, 2019, 33: 1451-1458.
doi: 10.11869/j.issn.100-8551.2019.08.1451 |
Liu Q, Gu J Y, Zhao Z W, Zhao L S, Guo H J, Xie Y D, Song X Y, Liu L X.RNA-Seq analysis of wheat dwarf mutant DC20. J Nucl Agric Sci, 2019, 33: 1451-1458. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2019.08.1451 |
|
[40] |
曹丽, 钱鹏, 张紫晋, 粟永英, 陈杰明, 刘汉梅, 杜小刚, 陈洋尔, 张怀渝. 航天搭载小麦矮秆突变体DMR88-1矮化效应分析. 核农学报, 2015, 29: 2049-2057.
doi: 10.11869/j.issn.100-8551.2015.11.2049 |
Cao L, Qian P, Zhang Z J, Su Y Y, Chen J M, Liu H M, Du X G, Chen Y E, Zhang H Y. Analysis of the dwarfing mutagenic effect on a wheat mutant line DMR88-1 by space mutation. J Nucl Agric Sci, 2015, 29: 2049-2057. (in Chinese with English abstract) |
[1] | 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551. |
[2] | 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581. |
[3] | 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209. |
[4] | 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224. |
[5] | 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258. |
[6] | 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287. |
[7] | 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307. |
[8] | 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905. |
[9] | 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918. |
[10] | 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953. |
[11] | 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817. |
[12] | 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600. |
[13] | 高欣, 郭雷, 单宝雪, 肖延军, 刘秀坤, 李豪圣, 刘建军, 赵振东, 曹新有. 淀粉颗粒类型及其比例在小麦品质特性形成与改良中的作用[J]. 作物学报, 2023, 49(6): 1447-1454. |
[14] | 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714. |
[15] | 冯连杰, 于振文, 张永丽, 石玉. 灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响[J]. 作物学报, 2023, 49(6): 1653-1667. |
|