欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2539-2551.doi: 10.3724/SP.J.1006.2023.21062

• 耕作栽培·生理生化 • 上一篇    下一篇

不同降水年型水分运筹对冬小麦产量及其构成的影响

张丽华1(), 张经廷1, 董志强1, 侯万彬2, 翟立超1, 姚艳荣1, 吕丽华1, 赵一安3, 贾秀领1,*()   

  1. 1农业农村部华北地区作物栽培学观测站 / 河北省作物栽培生理与绿色生产重点实验室 / 河北省农林科学院粮油作物研究所, 河北石家庄 050035
    2河北省邯郸市永年区农业技术推广中心, 河北永年 057150
    3河北省张家口市农村合作经济经营管理站, 河北张家口 075000
  • 收稿日期:2022-09-09 接受日期:2023-02-21 出版日期:2023-09-12 网络出版日期:2023-03-06
  • 通讯作者: *贾秀领, E-mail: jiaxl2013@163.com
  • 作者简介:张丽华, E-mail: lnzlh@126.com
  • 基金资助:
    河北省农林科学院科技创新专项课题(2022KJCXZX-LYS-8);河北省农林科学院科技创新专项课题(2022KJCXZX-LYS-9)

Effect of water management on yield and its components of winter wheat in different precipitation years

ZHANG Li-Hua1(), ZHANG Jing-Ting1, DONG Zhi-Qiang1, HOU Wan-Bin2, ZHAI Li-Chao1, YAO Yan-Rong1, LYU Li-Hua1, ZHAO Yi-An3, JIA Xiu-Ling1,*()   

  1. 1Scientific Observing and Experimental Station of Crop Cultivation in North China, Ministry of Agriculture and Rural Affairs / Institute of Cereal & Oil Crops, Hebei Academy of Agricultural and Forestry Science, Shijiazhuang 050035, Hebei, China
    2Agricultural Technology Extension Center of Yongnian District, Yongnian 057150, Hebei, China
    3Hebei Zhangjiakou Rural Cooperative Economic Operation Management Station, Zhangjiakou 075000, Hebei, China
  • Received:2022-09-09 Accepted:2023-02-21 Published:2023-09-12 Published online:2023-03-06
  • Supported by:
    HAAFS Science and Technology Innovation Special Project(2022KJCXZX-LYS-8);HAAFS Science and Technology Innovation Special Project(2022KJCXZX-LYS-9)

摘要:

为明确不同降水条件下实现小麦产量及构成提高的灌水策略, 以冀麦585为试验材料, 于2010—2017年小麦季设置W0 (雨养)、W1 (拔节)、W2 (拔节、开花)、W3 (拔节、开花、灌浆)和W4 (越冬、拔节、开花、灌浆) 5种灌水处理, 分析了不同降水年型下降水、灌水与小麦产量及构成的关系。结果表明: (1) 不灌水条件下多数年份的小麦产量在6400~6800 kg hm-2, 穗数与产量显著正相关(r=0.860*); 增加灌水, 产量、穗粒数和千粒重增加, 但每增1水增产率显著下降(由13.8%下降到1.7%)。(2) 生育期总降水量及阶段降水量与产量无明显相关关系, 总降水量对千粒重的影响高于其他因素; W0和W1条件下, 总降水量对穗粒数的影响>穗数, 增加灌水后反之, 而该条件下穗粒数与拔节前降水呈显著正相关且W0下与2月1日至拔节前降水的相关性>播种到拔节前, 但随灌水增加其相关性降低; 除W4灌水与穗粒数和千粒重相关性>降水且相关显著以外, W1~W3条件下其相关性降水>灌水, 这表明灌水缓解降水不足对穗粒数的影响。(3) 前多后少年型(拔节前后降水88.2 mm + 29 mm)穗粒数和千粒重最高, 且3水产量最高, 但与2水无差异; 相对均衡年型(拔节前后降水<60 mm, 30~80 mm)的小麦产量及构成总体偏低但相对稳定, 灌水后穗粒数和千粒重增加, 但影响相对较小, 2~3水产量差异显著(后期降水<36 mm) (增产率为10.5%和22.9%); 前少后多年型(拔节前后降水<25 mm, 40~90 mm)增加灌水最高穗粒数增加1.5~7.1粒, 多水处理下千粒重差异较小, 4月无有效降雨时灌溉3水较2水产量显著增加13.4%。因此, 本区域小麦拔节前降水量低于60 mm时(尤其低于25 mm)灌溉拔节水对穗粒数增加作用明显; 相对均衡年型拔节后降水低于36 mm、前少后多年型4月份无明显有效降水年度灌溉3水, 其他年度灌水2次可实现有限灌水下的产量最大化。

关键词: 小麦, 灌水次数, 灌水时期, 产量, 降水量

Abstract:

To clarify the irrigation strategy for improving yield and its components, the relationship among precipitation, irrigation, yield, and its components was systemically studied under different rainfall conditions. In this experiment, Jimai 585 used as the experimental materials, and five irrigation treatments including W0 (rain fed), W1 (jointing), W2 (jointing, flowering), W3 (jointing, flowering, filling), and W4 (overwintering, jointing, flowering, filling) in the wheat season were set up from 2010 to 2017. The results were as follows: (1) wheat grain yield varied from 6400 to 6800 kg hm-2 under different irrigation treatment in most rainfall years, and spike numbers was positively correlated with grain yield (r = 0.860*), the grain yield, grain numbers per spike, and thousand grain weight increased with the increase of irrigation amount, however, the yield increase rate decreased with each additional water (from 13.8% to 1.7%). (2) There was no obvious correlation between the total precipitation and stage precipitation and grain yield, but the impact of total precipitation on the thousand grain weight was higher than the other factors. Under the conditions of W0 and W1, the effect of total precipitation on the numbers per spike was greater than spike numbers, and vice versa after increasing irrigation. At the same time, the grain numbers per spike was significantly positively correlated with the precipitation before jointing, and the correlation between the grain numbers per spike and the precipitation from February 1 to jointing under W0 was greater than that from sowing to jointing, but it decreased with the increase of irrigation amount. With the exception of the correlation between W4 irrigation and grain numbers per spike and thousand grain weight was higher than that of precipitation, the correlation between two factors and precipitation was higher under W1-W3 conditions, which indicating that irrigation alleviate the adverse effect of insufficient precipitation on grain number per spike. (3) The number of grains per spike and thousand grain weight were the highest in a rainfall year characterized with more precipitation at early growth stages and less precipitation at later growth stages (precipitation before and after jointing 88.2 mm + 29 mm), and the highest yield was observed under 3 irrigation times, and there was no significant difference between 3 irrigation times and 2 irrigation times. In years characterized balanced rainfall (precipitation before and after jointing < 60 mm, 30-80 mm), lower and relatively stable yield and its component appeared, and the grain numbers per spike and thousand grain weight increased slightly after irrigation, but the difference in grain yield between 2 and 3 irrigation times was significant (yield increase rate: 10.5% and 22.9%) (the rainfall after jointing < 36 mm). In year characterized with less precipitation at early growth stages and more precipitation at later growth stages in (precipitation before and after jointing < 25 mm, 40 to 90 mm), the maximum grain number per spike increased by 1.5 to 7.1 grains when irrigation increased, and the grain yield of irrigation 3 times was 13.4% higher than that of irrigation 2 times when inadequate effective rainfall happened in April. In conclusion, when the precipitation before jointing was less than 60 mm (especially less than 25 mm), irrigation at jointing had an obvious effect on the increase of grain number per spike, 3 times irrigation promoted grain yield when the precipitation after jointing is less than 36 mm in a relatively balanced rainfall year type and no sufficient effective rainfall in April in years characterized with less precipitation at early stages and more precipitation at late stages, and irrigation 2 times was suggested to achieve the maximum grain yield in other rainfall years.

Key words: wheat, irrigation times, irrigation period, yield, precipitation

表1

2010-2017年冬小麦生育期灌水次数、时期和灌水量"

处理Treatment 灌水时期
Irrigation stage
年份 Year
2010-2011 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017
W0 雨养R 0 0 0 0 0 0 0
W1 拔节J 62.2 87.4 82.7 111.9 89.5 80.0 67.4
W2 拔节+开花
J+An
154.1
(78.3+75.8)
179.3
(89.9+89.4)
144.4
(68.9+75.5)
191.5
(105.2+86.3)
161.1
(86.8+74.3)
155.7
(85.5+70.2)
130.2
(68.5+61.7)
W3 拔节+开花+灌浆J+An+F 184.8
(64.8+63.1+
56.8)
205.7
(74.8+66.1+
64.8)
201.0
(65.3+65.6+
70.1)
260.4
(105.4+80.9+
74.1)
216.6
(90.1+69.3+
57.2)
211.2
(72.1+74.5+
64.6)
191.1
(70.9+62.3+
57.9)
W4 越冬+拔节+
开花+灌浆O+J+An+F
242.8
(77.2+57.2+
63.2+45.2)
230.6
(62.9+52.5+
65.7+49.5)
205.3
(46.3+52.1+
56.7+50.2)
256.3
(66.2+61.6+
58.9+69.6)
284.3
(79.4+74.9+
69.7+60.3)
314.1
(82.3+78.4+
81.3+72.1)
246.7
(51.5+68.1+
63.2+63.9)

表2

2010-2017年冬小麦生育期降水量"

年度
Year
拔节前+后降水量(前/后)
Rainfall before and after jointing (before/after) (mm)
播种-1/31 #
Sowing-1/31 #
2/1-3/31 # 4/1-4/30 # 5/1-5/31 # 6/1 #-收获
6/1 #-harvest
合计
Total
2010-2011 19.3+58.6(0.33) 6.2 13.1 2.2 46.0 10.4 77.9
2011-2012 50.6+34.4(1.47) 46.5 4.1 4.1 16.6 13.7 85.0
2012-2013 57.9+81.8/36.7(0.71/1.58) 47.5 10.4 24.6 12.1 45.1 139.7
2013-2014 22.3+44.9(0.50) 15.4 6.9 13.9 28.2 2.8 67.2
2014-2015 11.5+87.8(0.13) 8.1 3.4 29.1 53.1 5.6 99.3
2015-2016 88.2+29.0(3.04) 69.8 18.4 12.5 16.5 0.0 117.2
2016-2017 50.8+35.8(1.42) 40.3 10.5 19.0 16.4 0.4 86.6

表3

2010-2017年际间冬小麦产量"

降水年型
Precipitation years
年份
Year
穗数
Spike number
(×104 hm-2)
穗粒数
Grain number per spike
千粒重
1000-grain
weight (g)
产量
Yield
(kg hm-2)
前少后多型Less before and more after type 2010-2011 667 d 30.2 b 41.07 b 6586 e
相对均衡型Relative equilibrium type 2011-2012 728 c 27.9 c 41.27 b 8301 c
相对均衡型Relative equilibrium type 2012-2013 711 c 28.6 c 32.15 c 7655 d
前少后多型Less before and more after type 2013-2014 800 a 26.7 d 43.18 a 9011 a
前少后多型Less before and more after type 2014-2015 645 e 31.0 b 43.13 a 8575 b
前多后少型More before and less after type 2015-2016 676 d 38.0 a 43.54 a 8839 a
相对均衡型Relative equilibrium type 2016-2017 752 b 30.1 b 40.93 b 8500 bc

表4

2010-2017年冬小麦平均产量及构成与不同阶段降水量相关系数"

阶段
Stage
穗数
Spike number
穗粒数
Grain number per spike
千粒重
1000-grain weight
产量
Yield
播种-12/31 # Sowing-12/31 # 0.076 0.522 -0.165 0.342
1/1-3/31 # -0.216 0.681 -0.270 -0.191
播种-1/31 # Sowing-1/31 # 0.062 0.518 -0.219 0.322
2/1-3/31 # -0.208 0.722 -0.042 -0.198
播种-3/31 # Sowing-3/31 # 0.014 0.602 -0.203 0.247
4/1 #-收获 4/1 #-harvest -0.449 -0.258 -0.468 -0.342
降水合计Total precipitation -0.410 0.407 -0.662 -0.057

表5

2010-2017年不同灌水处理下冬小麦平均产量"

处理
Treatment
穗数
Spike number (×104 hm-2)
穗粒数
Grain number per spike
千粒重
1000-grain weight (g)
产量
Yield (kg hm-2)
W0 583 c 28.9 b 39.56 bc 6247 d
W1 710 b 30.6 ab 38.14 c 7621 c
W2 746 ab 30.1 ab 41.33 ab 8670 b
W3 781 a 30.8 ab 42.36 a 9252 a
W4 736 b 31.4 a 42.38 a 9318 a

表6

不同灌水处理冬小麦产量及构成与灌水量及不同阶段降水量的相关系数"

处理
Treatment
阶段
Stage
穗数
Spike number
穗粒数
Grain number per spike
千粒重
1000-grain weight
产量
Yield
W0 播种-12/31# Sowing-12/31 # -0.081 0.695 -0.129 0.395
1/1-3/31 # -0.561 0.749 -0.186 -0.266
播种-1/31 # Sowing-1/31 # -0.073 0.686 -0.181 0.395
2/1-3/31 # -0.685 0.797* 0.040 -0.389
播种-3/31 # Sowing-3/31 # -0.199 0.765* -0.153 0.275
4/1 #-收获 4/1#-harvest 0.230 -0.527 -0.396 -0.078
降水合计Total precipitation -0.004 0.328 -0.541 -0.224
W1 播种-12/31# Sowing-12/31# 0.038 0.697 -0.113 0.235
1/1-3/31 # 0.078 0.694 -0.329 -0.258
播种-1/31# Sowing-1/31 # 0.028 0.692 -0.168 0.210
2/1-3/31 # 0.130 0.709 -0.117 -0.235
播种-3/31# Sowing-3/31 # 0.050 0.754* -0.172 0.141
4/1#-收获4/1#-harvest -0.474 -0.346 -0.470 -0.299
降水合计 Total precipitation -0.395 0.487 -0.632 -0.131
灌水合计Total irrigation 0.170 -0.386 0.281 0.767*
W2 播种-12/31# Sowing-12/31# 0.024 0.510 -0.270 0.345
1/1-3/31 # -0.143 0.682 -0.362 0.070
播种-1/31# Sowing-1/31# -0.002 0.511 -0.320 0.338
2/1-3/31 # -0.057 0.702 -0.150 0.050
播种-3/31# Sowing-3/31# -0.013 0.592 -0.313 0.310
4/1#-收获4/1#-harvest -0.602 -0.169 -0.391 -0.213
降水合计 Total precipitation -0.584 0.479 -0.710 -0.133
灌水合计Total irrigation 0.341 0.292 -0.389 0.186
W3 播种-12/31# Sowing-12/31# 0.089 0.370 -0.257 0.401
1/1-3/31 # -0.089 0.667 -0.280 0.007
播种-1/31# Sowing-1/31# 0.080 0.369 -0.311 0.368
2/1-3/31 # -0.083 0.726 -0.038 0.082
播种-3/31# Sowing-3/31# 0.055 0.470 -0.284 0.343
4/1#-收获4/1#-harvest -0.446 -0.152 -0.469 -0.637
降水合计Total precipitation -0.363 0.364 -0.751 -0.233
灌水合计Total irrigation 0.512 -0.290 0.347 0.475
W4 播种-12/31# Sowing-12/31# 0.237 0.274 -0.048 0.090
1/1-3/31 # -0.081 0.477 -0.172 -0.449
播种-1/31# Sowing-1/31# 0.216 0.268 -0.100 0.059
2/1-3/31 # -0.045 0.536 0.043 -0.409
播种-3/31# Sowing-3/31# 0.183 0.343 -0.080 -0.027
4/1#-收获 4/1#-harvest -0.589 -0.076 -0.533 -0.298
降水合计 Total precipitation -0.360 0.300 -0.592 -0.312
灌水合计Total irrigation -0.525 0.866* 0.803* 0.405

表7

不同水处理下冬小麦产量与构成相关系数"

灌水次数
Irrigation times
穗数
Spike number
穗粒数
Grain number per spike
千粒重
1000-grain weight
0 0.860* 0.081 -0.192
1 0.176 0.161 0.648
2 0.134 0.388 0.465
3 0.385 0.150 0.563
4 -0.072 0.091 0.632

表8

2010-2017年不同处理冬小麦产量及构成"

降水年型
Types of rainfall
年份
Year
灌水次数
Irrigation times
穗数
Spike number
(×104 hm-2)
穗粒数
Grain number per spike
千粒重
1000-grain
weight (g)
产量
Yield
(kg hm-2)
前少后多型
Less before and more after type
2010-2011 0 456 c 27.5 c 41.61 ab 3877 d
1 689 b 29.8 b 37.51 c 5881 c
2 729 a 29.7 b 40.95 b 7014 b
3 729 a 32.3 a 43.54 a 7951 a
4 732 a 31.6 a 41.75 ab 8207 a
2013-2014 0 642 d 26.6 b 40.08 b 6748 c
1 773 c 26.9 ab 40.88 b 8801 b
2 860 b 25.3 c 44.64 a 9722 a
3 923 a 26.6 b 45.71 a 9992 a
4 802 c 28.1 a 44.57 a 9790 a
2014-2015 0 644 a 27.1 d 42.04 b 6798 d
1 659 a 30.3 c 40.87 c 8237 c
2 652 a 31.4 bc 43.75 ab 9126 b
3 659 a 32.0 b 44.45 a 9153 b
4 613 b 34.2 a 44.54 a 9889 a
相对均衡型
Relative equilibrium type
2011-2012 0 590 d 26.7 b 41.15 ab 6637 d
1 679 c 29.8 a 39.59 b 7893 c
2 767 b 26.9 b 41.07 ab 8301 b
3 793 ab 27.6 b 42.32 a 9177 a
4 811 a 28.7 a 42.23 a 9495 a
2012-2013 0 607 d 27.0 b 31.25 b 6484 b
1 696 c 29.7 a 29.19 c 6730 b
2 717 bc 28.6 a 34.22 a 8277 a
3 794 a 28.7 a 32.71 ab 8223 a
4 741 b 28.8 a 33.40 a 8558 a
2016-2017 0 623 d 30.3 a 37.61 b 6757 d
1 779 b 30.6 a 37.80 b 7296 c
2 789 b 29.1 b 41.91 a 8237 b
3 834 a 29.6 ab 43.20 a 10,122 a
4 745 c 31.0 a 44.11 a 10,087 a
前多后少型
More before and less after type
2015-2016 0 520 c 37.1 b 43.19 b 6425 d
1 698 b 36.8 b 41.13 c 8508 c
2 719 ab 39.6 a 42.78 b 10,009 a
3 735 a 38.9 ab 44.56 ab 10,148 a
4 706 ab 37.5 b 46.03 a 9369 b

图1

1959-2018年小麦季拔节前后降水量"

[1] 赵稷伟, 王锡平, 杜汛雨, 尚志云. 河北省冬小麦生产空间格局及其控制因素. 中国生态农业学报, 2016, 24: 1683-1692.
Zhao J W, Wang X P, Du X Y, Shang Z Y. Spatial structure and control factors of winter wheat production in Hebei province. Chin J Eco-Agric, 2016, 24: 1683-1692. (in Chinese with English abstract)
[2] 王强, 刘卫星, 岳鹏莉, 李莎莎, 卫琼茹, 郑沙沙, 褚莹莹, 王晨阳. 不同灌水模式对小麦籽粒抗氧化物含量和产量的影响. 麦类作物学报, 2016, 36: 1037-1042.
Wang Q, Liu W X, Yue P L, Li S S, Wei Q R, Zheng S S, Chu Y Y, Wang C Y. Effect of different irrigation regimes on grain antioxidant content and yield of winter wheat. J Triticeae Crops, 2016, 36: 1037-1042. (in Chinese with English abstract)
[3] 孟建, 姚旭擎, 杨晓琳, 罗建美, 沈彦俊. 地下水超采区农业种植结构与作物耗水时空演变研究. 农业机械学报, 2020, 51(11): 302-312.
Meng J, Yao X Q, Yang X L, Luo J M, Shen Y J. Spatial and temporal evolution of agricultural planting structure and crop water consumption in groundwater overdraft area. Trans CSAM, 2020, 51(11): 302-312. (in Chinese with English abstract)
[4] 杨会峰, 孟瑞芳, 李文鹏, 李泽岩, 支传顺, 包锡麟, 李长青, 柳富田, 吴海平, 任宇. 海河流域地下水资源特征和开发利用潜力. 中国地质, 2021, 48: 1032-1051.
Yang H F, Meng R F, Li W P, Li Z Y, Zhi C S, Bao X L, Li C Q, Liu F T, Wu H P, Ren Y. Groundwater resources of the Haihe River basin and its development potential. Geol China, 2021, 48: 1032-1051. (in Chinese with English abstract)
[5] 王电龙, 张光辉. 不同气候条件下华北粮食主产区地下水保障能力时空特征与机制. 地球学报, 2017, 38(增刊1): 47-50.
Wang D L, Zhang G H. Groundwater ensure capacity spatial-temporal characteristics and mechanism in main grain producing Areas of north China plain under different climatic conditions. Acta Geosci Sin, 2017, 38(S1): 47-50. (in Chinese with English abstract)
[6] 田益民, 鲍振鑫, 宋晓猛, 莫昱晨, 王国庆, 刘翠善. 黄淮海平原地下水储量与埋深变化特征分析. 中国农村水利水电, 2021, (12): 115-121.
Tian Y M, Bao Z X, Song X M, Mo Y C, Wang G Q, Liu C S. Analysis of variation characteristics of groundwater reserves and buried depth in Huang-Huai-Hai plains. China Rural Water Hydrop, 2021, (12): 115-121. (in Chinese with English abstract)
[7] 封丽, 赵又霖. 华北地下水开采与粮食生产的脱钩效应及其空间差异性研究. 中国农村水利水电, 2021, (1): 132-138.
Feng L, Zhao Y L. Research on the decoupling effect and spatial difference between groundwater exploitation and grain production in north China plains. China Rural Water Hydrop, 2021, (1): 132-138. (in Chinese with English abstract)
[8] 张雪靓, 丁蓓蓓. 冬小麦“春浇一水”限水灌溉模式对浅层地下水采补平衡的影响——以河北省太行山山前平原为例. 灌溉排水学报, 2021, 40(9): 1-10.
Zhang X L, Ding B B. The effects of limiting irrigation frequency of winter wheat to one time on shallow groundwater balance and wheat yield: a simulation study on a piedmont plain of Taihang Mountain in Hebei Province. J Irrig Drain, 2021, 40(9): 1-10. (in Chinese with English abstract)
[9] 帅官印, 张先, 邵景力, 崔亚莉, 李豆. 农业限水灌溉对地下水恢复的影响研究—以河北省石家庄平原区为例. 灌溉排水学报, 2022, 41(8): 54-62.
Shuai G Y, Zhang X, Shao J L, Cui Y L, Li D. Groundwater recovery after restricting groundwater extraction for irrigation: taking Shijiazhuang plain in Hebei province as an example. J Irrig Drain, 2022, 41(8): 54-62. (in Chinese with English abstract)
[10] 傅晓艺, 王红光, 刘志连, 张聘, 李瑞奇. 不同水分处理对小麦氮素和干物质积累与分配的影响. 麦类作物学报, 2020, 40: 955-963.
Fu X Y, Wang H G, Liu Z L, Zhang P, Li R Q. Effect of different water treatments on nitrogen and dry matter accumulation and distribution in wheat. J Triticeae Crops, 2020, 40: 955-963. (in Chinese with English abstract)
[11] 方保停, 邵运辉, 岳俊芹, 李向东, 王汉芳, 秦峰, 张德奇, 吕凤荣, 马富举, 杨程. 灌水次数对豫北小麦水分利用和产量的影响. 西南农业学报, 2017, 30(2): 280-284.
Fang B T, Shao Y H, Yue J Q, Li X D, Wang H F, Qin F, Zhang D Q, Lyu F Q, MA F J, Yang C. Effect of irrigation frequency on water utilization and grain yield in north of Henan. Southwest China J Agric Sci, 2017, 30(2): 280-284. (in Chinese with English abstract)
[12] 杨永辉, 武继承, 高翠民, 张洁梅, 潘晓莹, 何方, 王越, 王芸. 灌溉方式、灌水量及施氮量对小麦、玉米周年水分利用的影响. 水土保持研究, 2020, 27(4): 134-141.
Yang Y H, Wu J C, Gao C M, Zhang J M, Pan X Y, He F, Wang Y, Wang Y. Effects of irrigation mode irrigation volume and application rate of nitrogen on annual water use of wheat and maize. Res Soil Water Conserv, 2020, 27(4): 134-141. (in Chinese with English abstract)
[13] 高翠民, 杨永辉, 何方, 韩伟峰, 王小非, 武继承. 不同灌溉技术下水氮耦合对小麦光合特性、灌水利用特性及产量的影响. 华北农学报, 2020, 35(5): 72-80.
doi: 10.7668/hbnxb.20191170
Gao C M, Yang Y H, He F, Han W F, Wang X F, Wu J C. Effects of water-nitrogen couplingon photosynthetic characteristics, Irrigation water use characteristics and yield in winter wheat under different irrigation technologies. Acta Agric Boreali-Sin, 2020, 35(5): 72-80. (in Chinese with English abstract)
[14] Jha S K, Ramatshaba T S, Wang G S, Liang Y P, Liu H, Gao Y, Duan A W. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agric Water Manag, 2019, 217: 292-302.
doi: 10.1016/j.agwat.2019.03.011
[15] 马富举, 杨程, 张德奇, 岳俊芹, 王汉芳, 邵运辉, 方保停, 李向东. 灌水模式对冬小麦光合特性、水分利用效率和产量的影响. 应用生态学报, 2018, 29: 1233-1239.
doi: 10.13287/j.1001-9332.201804.030
Ma F J, Yang C, Zhang D Q, Yue J Q, Wang H F, Shao Y H, Fang B T, Li X D. Effects of irrigation regimes on photosynthesis, water use efficiency and grain yield in winter wheat. Chin J Appl Ecol, 2018, 29: 1233-1239. (in Chinese with English abstract)
[16] 张向前, 曹承富, 乔玉强, 杜世州, 赵竹. 不同灌水方式对砂姜黑土小麦中后期生长及产量的影响. 华北农学报, 2015, 30(1): 225-232.
doi: 10.7668/hbnxb.2015.01.038
Zhang X Q, Cao C F, Qiao Y Q, Du S Z, Zhao Z. Impact of different irrigation methods on wheat growth, photosynthesis and yield at middle and late stage in lime concretion black soil. Acta Agric Boreali-Sin, 2015, 30(1): 225-232. (in Chinese with English abstract)
[17] Ali S, Xu Y Y, Ma X C, Ahmad I, Jia Z K. Deficit irrigation strategies to improve winter wheat productivity and regulating root growth under different planting patterns. Agric Water Manag, 2019, 219: 1-11.
doi: 10.1016/j.agwat.2019.03.038
[18] Mostafa H, El-Nady R, Awad M, El-Ansary M. Drip irrigation management for wheat under clay soil in arid conditions. Ecol Eng, 2018, 121: 35-43.
doi: 10.1016/j.ecoleng.2017.09.003
[19] 潘晓莹, 武继承, 张森森, 杨永辉, 王越, 李敏杰, 高翠民, 何方. 分期施肥补灌对小麦产量和水分利用效率的影响. 水利与建筑工程学报, 2020, 18(4): 63-69.
Pan X Y, Wu J C, Zhang S S, Yang Y H, Wang Y, Li M J, Gao C M, He F. Effects of staged fertilization and supplementary irrigation on wheat yield and water use. J Water Resourc Arch Engin, 2020, 18(4): 63-69. (in Chinese with English abstract)
[20] 郭培武, 赵俊晔, 石玉, 于振文. 水肥一体化对小麦水分利用和光合特性的影响. 应用生态学报, 2019, 30: 1170-1178.
doi: 10.13287/j.1001-9332.201904.010
Guo P W, Zhao J Y, Shi Y, Yu Z W. Effects of water-fertilizer integration on water use and photosynthetic characteristics of winter wheat. Chin J Appl Ecol, 2019, 30: 1170-1178. (in Chinese with English abstract)
[21] 吴宝建, 王东. 畦田节灌对冬小麦光合特性、产量和水分利用效率的影响. 灌溉排水学报, 2018, 37(12): 1-9.
Wu B J, Wang D. Response of photosynthesis, yield and water use efficiency of winter wheat to schedule of border irrigation. J Irrig Drain, 2018, 37(12): 1-9. (in Chinese with English abstract)
[22] 曹彩云, 党红凯, 郑春莲, 郭丽, 马俊永, 李科江. 不同灌溉模式对小麦产量、耗水及水分利用效率的影响. 华北农学报, 2016, 31(增刊1): 17-24.
Cao C Y, Dang H K, Zheng C L, Guo L, Ma J Y, Li K J. Effects of different irrigation regime on yield, water consumption and water use efficiency of winter wheat. Acta Agric Boreali-Sin, 2016, 31(S1): 17-24. (in Chinese with English abstract)
[23] 褚桂红, 杨丽霞. 非充分灌溉对冬小麦产量及水分利用效率影响研究. 节水灌溉, 2016, (8): 54-56.
Chu G H, Yang L X. Study on the effects of deficit irrigation on the yield and water use efficiency in winter wheat. Water Sav Irrig, 2016, (8): 54-56. (in Chinese with English abstract)
[24] 刘小利, 蔡铁, 徐悦, 贾志宽, 任小龙. 关中西部灌区限量节水灌溉对冬小麦水分利用效率和产量的影响. 节水灌溉, 2018, (1): 24-29.
Liu X L, Cai T, Xu Y, Jia Z K, Ren X L. Effect of limited water-saving irrigation on winter wheat water use efficiency and yield in Guanzhong irrigation district. Water Sav Irrig, 2018, (1): 24-29. (in Chinese with English abstract)
[25] Kheir A M S, Abdullah A A, Ghoneim A M, Ali E F, Magrash A, Zoghdan M G, Abdelkhalik S A M, Fahmy A E, Elnashar A. Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions. Agric Water Manag, 2021, 256: 107122.
doi: 10.1016/j.agwat.2021.107122
[26] 陈凯丽, 赵经华, 黄红建, 马英杰, 杨磊. 不同滴灌灌水定额对小麦的耗水特性和产量的影响. 灌溉排水学报, 2017, 36(3): 65-68.
Chen K L, Zhao J H, Huang H J, Ma Y J, Yang L. Effect of different irrigation quota on water consumption characteristics and yield of wheat. J Irrig Drain, 2017, 36(3): 65-68. (in Chinese with English abstract)
[27] 张洁梅, 武继承, 杨永辉, 潘晓莹, 王越, 何方. 不同节水灌溉方式对小麦产量及水分利用效率的影响. 节水灌溉, 2016, (8): 30-32.
Zhang J M, Wu J C, Yang Y H, Pan X Y, Wang Y, He F. Effect of different irrigation technology on yield and water use efficiency of wheat. Water Sav Irrig, 2016, (8): 30-32. (in Chinese with English abstract)
[28] 聂紫瑾, 陈源泉, 张建省, 师江涛, 李超, 高旺盛, 隋鹏. 黑龙港流域不同滴灌制度下的冬小麦产量和水分利用效率. 作物学报, 2013, 39: 1687-1689.
doi: 10.3724/SP.J.1006.2013.01687
Nie Z J, Chen Y Q, Zhang J S, Shi J T, Li C, Gao W S, Sui P. Effects of drip irrigation patterns on wheat yield and water use efficiency in Heilonggang region. Acta Agron Sin, 2013, 39: 1687-1689. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01687
[29] 何昕楠, 林祥, 谷淑波, 王东. 微喷补灌对麦田土壤物理性状及冬小麦耗水和产量的影响. 作物学报, 2019, 45: 879-892.
doi: 10.3724/SP.J.1006.2019.81070
He X N, Lin X, Gu S B, Wang D. Effects of supplemental irrigation with micro-sprinkling hoses on soil physical properties, water consumption and grain yield of winter wheat. Acta Agron Sin, 2019, 45: 879-892. (in Chinese with English abstract)
[30] 吕丽华, 董志强, 李谦, 张丽华, 姚艳荣, 张经廷, 贾秀领. 微喷灌模式冬小麦产量形成及水分利用特性研究. 麦类作物学报, 2020, 40: 185-194.
Lyu L H, Dong Z Q, Li Q, Zhang L H, Yao Y R, Zhang J T, Jia X L. Study on yield formation and water utilization characteristics of winter wheat under micro-sprinkling irrigation. J Triticeae Crops, 2020, 40: 185-194. (in Chinese with English abstract)
[31] 张凯, 王润元, 冯起, 王鹤龄, 赵鸿, 赵福年, 阳伏林, 雷俊. 模拟增温和降水变化对半干旱区春小麦生长及产量的影响. 农业工程学报, 2015, 31(增刊1): 161-170.
Zhang K, Wang R Y, Feng Q, Wang H L, Zhao H, Zhao F N, Yang F L, Lei J. Effects of simulated warming and precipitation change on growth characteristics and grain yield of spring wheat in semi-arid area. Trans CSAE, 2015, 31(S1): 161-170. (in Chinese with English abstract)
[32] 蔡剑, 姜东. 气候变化对中国冬小麦生产的影响. 农业环境科学学报, 2011, 30: 1726-1733.
Cai J, Jiang D. The effect of climate change on winter wheat production in China. J Agro-Environ Sci, 2011, 30: 1726-1733. (in Chinese with English abstract)
[33] 李月英, 柳斌辉, 刘全喜, 张文英, 张素美, 谢莉莉, 李新, 马敬民, 李爱国, 栗雨勤. 河北低平原气候条件对冬小麦产量的影响. 麦类作物学报, 2009, 29: 330-334.
Li Y Y, Liu B H, Liu Q X, Zhang W Y, Zhang S M, Xie L L, Li X, Ma J M, Li A G, Li Y Q. Effect of climatic conditions on winter wheat yield in Hebei low plain. J Triticeae Crops, 2009, 29: 330-334. (in Chinese with English abstract)
[34] 秦姗姗, 侯宗建, 吴忠东, 马东豪, 黄平. 水氮耦合对冬小麦氮素吸收及产量的影响. 排灌机械工程学, 2017, 35: 440-447.
Qin S S, Hou Z J, Wu Z D, Ma D H, Huang P. Effects of water and nitrogen coupling on nitrogen absorption and yield of winter wheat. J Drain Irrig Mach Engin, 2017, 35: 440-447. (in Chinese with English abstract)
[35] 高雪慧, 刘强, 王钧. 基于APSIM模型的陇中旱地春小麦产量对播期、施氮和降水量变化的响应模拟. 麦类作物学报, 2022, 42: 371-379.
Gao X H, Liu Q, Wang J. Simulation of response of spring wheat yield to sowing date, nitrogen application and precipitation in dryland of Longzhong based on APSIM model. J Triticeae Crops, 2022, 42: 371-379. (in Chinese with English abstract)
[36] 廖要明, 潘学标, 张强, 陈德亮. 逐日降水量的模拟及其在作物气候风险分析中的应用. 华北农学报, 2006, 21(增刊): 206-212.
Liao Y M, Pan X B, Zhang Q, Chen D L. Daily precipitation simulation and its application on crop production climate risk analysis. Acta Agric Boreali-Sin, 2006, 21(S1): 206-212. (in Chinese with English abstract)
[37] 王家瑞, 刘卫星, 陈雨露, 康娟, 张艳菲, 徐文俊, 侯阁阁, 李华, 王晨阳. 不同灌水模式对冬小麦产量及水分利用的调控效应. 麦类作物学报, 2018, 38: 1229-1236.
Wang J R, Liu W X, Chen Y L, Kang J, Zhang Y F, Xu W J, Hou G G, Li H, Wang C Y. Regulatory effect of different irrigation regimes on grain yield and water use efficiency of winter wheat. J Triticeae Crops, 2018, 38: 1229-1236. (in Chinese with English abstract)
[38] 裴雪霞, 党建友, 张定一, 王姣爱, 张晶, 董飞. 不同降水年型下播期对晋南旱地小麦产量和水分利用率的影响. 中国生态农业学报, 2017, 25: 553-562.
Pei X X, Dang J Y, Zhang D Y, Wang J A, Zhang J, Dong F. Impact of sowing date on yield and water use efficiency of wheat in different precipitation years in dryland of south Shanxi. Chin J Eco-Agric, 2017, 25: 553-562. (in Chinese with English abstract)
[39] 褚桂红, 李粉婵, 王仰仁. 水肥后移对冬小麦产量及水分利用效率的影响. 干旱区资源与环境, 2018, 32(7): 82-86.
Chu G H, Li F C, Wang Y R. Effects of irrigation and fertilization postponement on the yield and water use efficiency in winter wheat. J Arid Land Resourc Environ, 2018, 32(7): 82-86. (in Chinese with English abstract)
[40] 吴炳方, 闫娜娜, 曾宏伟, 蒋礼平, 朱伟伟. 节水农业的空间认知与建议. 中国科学院院刊, 2017, 32: 70-77.
Wu B F, Yan N N, Zeng H W, Jiang L P, Zhu W W. Outlook on water saving agriculture. Bull Chin Acad Sci, 2017, 32: 70-77. (in Chinese with English abstract)
[41] 范雪梅, 姜东, 戴廷波, 荆奇, 曹卫星. 不同水分条件下氮素供应对小麦植株氮代谢及籽粒蛋白质积累的影响. 生态学杂志, 2006, 25: 149-154.
Fan X M, Jiang D, Dai T B, Jing Q, Cao W X. Effects of nitrogen supply on nitrogen metabolism and grain protein accumulation of wheat under different water treatments. Chin J Ecol, 2006, 25: 149-154. (in Chinese with English abstract)
[42] 马兴华, 王东, 于振文, 王西芝, 许振柱. 不同施氮量下灌水量对小麦耗水特性和氮素分配的影响. 生态学报, 2010, 30: 1955-1965.
Ma X H, Wang D, Yu Z W, Wang X Z, Xu Z Z. Effect of irrigation regimes on water consumption characteristics and nitrogen distribution in wheat at different nitrogen applications. Acta Ecol Sin, 2010, 30: 1955-1965. (in Chinese with English abstract)
[43] 史印山, 王玉珍, 池俊成, 魏瑞江. 河北平原气候变化对冬小麦产量的影响. 中国生态农业学报, 2008, 16: 1444-1447.
Shi Y S, Wang Y Z, Chi J C, Wei R J. Impact of climate change on winter wheat production in the Hebei Plain. Chin J Eco-Agric, 2008, 16: 1444-1447. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2008.01444
[44] Zhang H P, Oweis T. Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region. Agric Water Manag, 1999, 38: 195-211.
doi: 10.1016/S0378-3774(98)00069-9
[45] 冯素伟, 刘朝阳, 胡铁柱, 丁位华, 王光涛, 茹振钢. 畦田补灌对冬小麦产量形成及水分利用效率的影响. 华北农学报, 2022, 37(3): 112-118.
doi: 10.7668/hbnxb.20192555
Feng S W, Liu C Y, Hu T Z, Ding W H, Wang G T, Ru Z G. Effects of border irrigation on yield formation and water use efficiency of winter wheat. Acta Agric Boreali-Sin, 2022, 37(3): 112-118. (in Chinese with English abstract)
doi: 10.7668/hbnxb.20192555
[46] 禹静涛, 赵晨, 双丽, 范李剑, 宋占兴, 杨思, 张晓琪, 夏清, 高志强, 杨珍平. 灌水对强筋小麦籽粒产量及营养品质的影响. 麦类作物学报, 2020, 40: 1514-1523.
Yu J T, Zhao C, Shuang L, Fan L J, Song Z X, Yang S, Zhang X Q, Xia Q, Gao Z Q, Yang Z P. Effect of irrigation on grain yield and nutritional quality of strong gluten wheat. J Triticeae Crops, 2020, 40: 1514-1523. (in Chinese with English abstract)
[47] 郭振清, 刘添, 张敏, 徐东娜, 安浩军, 姚红英, 李清瑶, 蔡瑞国. 减少灌水次数对河北冬性强筋小麦产量和品质的影响. 麦类作物学报, 2021, 41: 731-737.
Guo Z Q, Liu T, Zhang M, Xu D N, An H J, Yao H Y, Li Q Y, Cai R G. Effect of reducing irrigation frequency on yield and quality of strong gluten winter wheat in Hebei. J Triticeae Crops, 2021, 41: 731-737. (in Chinese with English abstract)
[48] 康绍忠, 孙景生, 张喜英, 佟玲, 王景雷, 李思恩. 中国北方主要作物需水量与耗水量. 北京: 中国水利水电出版社, 2018. pp 97-98.
Kang S Z, Sun J S, Zhang X Y, Tong L, Wang J L, Li S E. Water Demand and Consumption of major Crops in North China. Beijing: China Water Resources and Hydropower Press, 2018. pp 97-98. (in Chinese)
[49] An S Q, Liu G S, Guo A H. Consumption of available soil water stored at planting by winter wheat. Agric Water Manag, 2003, 63: 99-107.
doi: 10.1016/S0378-3774(03)00176-8
[50] 许卫娜, 杨宝平, 聂俊峰, 丁瑞霞, 杨万忠, 韩清芳, 王俊鹏, 张鹏, 韩文霆, 贾志宽. 底墒和补灌量对冬小麦产量和水分利用的影响. 干旱地区农业研究, 2022, 40(2): 119-128.
Xu W N, Yang B P, Nie J F, Ding R X, Yang W Z, Han Q F, Wang J P, Zhang P, Han W T, Jia Z K. Effects of soil moisture storage at planting and supplementary irrigation on winter wheat yield and water use. Agric Res Arid Areas, 2022, 40(2): 119-128. (in Chinese with English abstract)
[51] 于振文. 作物栽培学各论(北方本)(第3版). 北京: 中国农业出版社, 2021. pp 32-35.
Yu Z W. Theories of Crop Cultivation (Northern version), 3rd edn. Beijing: China Agriculture Press, 2021. pp 32-35. (in Chinese)
[52] Schillinger W F, Schofstoll S E, Alldredge J R. Available water and wheat grain yield relations in a Mediterranean climate. Field Crops Res, 2008, 109: 45-49.
doi: 10.1016/j.fcr.2008.06.008
[53] 张经廷, 吕丽华, 董志强, 张丽华, 姚艳荣, 申海平, 姚海坡, 贾秀领. 华北冬小麦开花期补灌的增产效应及其影响因素. 作物学报, 2019, 45: 1746-1755.
doi: 10.3724/SP.J.1006.2019.81060
Zhang J T, Lyu L H, Dong Z Q, Zhang L H, Yao Y R, Shen H P, Yao H P, Jia X L. Yield-increasing effect of supplementary irrigation at winter wheat flowering and its influencing factors based on water and nitrogen coupling in north China. Acta Agron Sin, 2019, 45: 1746-1755. (in Chinese with English abstract)
[54] Han S Q, Jia S J. Analysis on change tendency of the precipitation resource during growth period of the conventional crops in plain area before Taihang Mountains. Meteorol Environ Res, 2013, 4: 49-52.
[55] Xiao G J, Zhang Q, Yao Y B, Zhao H, Wang R Y, Bai H Z, Zhang F J. Impact of recent climatic change on the yield of winter wheat at low and high altitudes in semi-arid northwestern China. Agric Ecosyst Environ, 2008, 127: 37-42.
doi: 10.1016/j.agee.2008.02.007
[1] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[2] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[3] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[4] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[5] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[6] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143.
[7] 曹玉军, 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军. 吉林省不同年代玉米品种光合生理特性对施氮量的响应[J]. 作物学报, 2023, 49(8): 2183-2195.
[8] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[9] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[10] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[11] 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287.
[12] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[13] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[14] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[15] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[3] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[4] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[5] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[6] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[7] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[8] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[9] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .
[10] 邱崇力. 普通小麦与六倍体小黑麦杂交不亲和性的研究 Ⅰ.杂种的胚胎发育[J]. 作物学报, 1986, (01): 49 -56 .