欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2552-2561.doi: 10.3724/SP.J.1006.2023.21064

• 耕作栽培·生理生化 • 上一篇    下一篇

淀粉特性及其表面结合蛋白与裸燕麦籽粒硬度的关系研究

南金生1(), 安江红1,2, 柴明娜1, 蒋屿潋1, 朱志强1, 杨燕1, 韩冰1,*()   

  1. 1内蒙古农业大学 / 麦类种质创新利用自治区高等学校重点实验室, 内蒙古呼和浩特 010018
    2内蒙古自治区农牧业科学院, 内蒙古呼和浩特 010018
  • 收稿日期:2022-10-05 接受日期:2023-02-10 出版日期:2023-09-12 网络出版日期:2023-02-27
  • 通讯作者: *韩冰, E-mail: hb_nmg@163.com
  • 作者简介:南金生, E-mail: 470917658@qq.com
  • 基金资助:
    本研究由国家重点研发计划项目(2022YFE0119800);麦类种质创新利用自治区高等学校重点实验室和“饲用作物及有益微生物种质资源与分子育种”团队经费项目(TD202103)

Relationship between the starch properties and its surface-bound proteins in grains with hardness in Avena nuda L.

NAN Jin-Sheng1(), AN Jiang-Hong1,2, CHAI Ming-Na1, JIANG Yu-Lian1, ZHU Zhi-Qiang1, YANG Yan1, HAN Bing1,*()   

  1. 1Key Laboratory of Wheat Germplasm Innovation and Utilization Autonomous Region Higher School / Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
    2Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot 010018, Inner Mongolia, China
  • Received:2022-10-05 Accepted:2023-02-10 Published:2023-09-12 Published online:2023-02-27
  • Supported by:
    National Key Research and Development Program of China(2022YFE0119800);Key Laboratory of Wheat Germplasm Innovation and Utilization Autonomous Region Higher School, and Forage Crops and Beneficial Microorganism Germplasm Resources and Molecular Breeding Team Funding(TD202103)

摘要:

籽粒硬度可以反映麦类籽粒胚乳质地, 与其碾磨性能和食用加工品质密切相关。为了探究裸燕麦(Avena nuda L.)籽粒淀粉特性及其表面结合蛋白与籽粒硬度的关系。本文以5份软质和5份硬质裸燕麦种质为材料, 测定总淀粉、支链和直链淀粉含量, 观察淀粉粒特性和粒度, 对淀粉颗粒表面结合蛋白进行质谱鉴定。结果表明: 成熟籽粒中淀粉颗粒的形状有圆形、椭圆形和不规则形, 淀粉粒的数量、体积和表面积均呈现单峰分布; 淀粉粒大小可分为小(粒径<6 μm)、中(6~40 μm)和大淀粉粒(粒径>40 μm), 裸燕麦籽粒主要由小和中淀粉粒组成; 硬度不同的裸燕麦籽粒中淀粉的粒度分布不同, 软质裸燕麦小淀粉粒的数量和体积百分比高于硬质, 中、大淀粉粒的数量和体积百分比低于硬质; 软质裸燕麦小和中淀粉粒的表面积百分比高于硬质, 大淀粉粒表面积百分比低于硬质; 裸燕麦籽粒硬度与支链淀粉含量呈正相关。软质裸燕麦14 kD蛋白在淀粉颗粒表面的含量高于硬质裸燕麦, 该蛋白条带经HPLC/MS共鉴定到41种蛋白, 包括Vromindoline蛋白和燕麦α淀粉酶胰蛋白酶抑制剂等。综上所述, 裸燕麦籽粒淀粉含量、粒度分布和淀粉表面结合蛋白均与籽粒硬度相关, 支链淀粉含量越高, 小淀粉粒的数量、表面积和体积百分比越多, Vromindoline等蛋白含量越高, 裸燕麦籽粒越软, 为揭示裸燕麦籽粒硬度形成机制奠定了基础。

关键词: 裸燕麦, 籽粒硬度, 淀粉粒度, Vromindoline, HPLC/MS

Abstract:

Kernel hardness can reflect the texture of wheat kernels and it is closely related to its milling performance and edible quality. The objective of this study is to explore the relationship between naked oat (Avena nuda L.) grain starch properties and its surface-bound proteins with grain hardness. In this experiment, to determine the content of total starch, amylopectin and amylose, observe the characteristics and particle size of starch granules, and identify the surface-bound proteins of starch granules by mass spectrometry, five soft and five hard naked oat germplasms were used as the materials. The results showed that the shapes of starch granules in mature grains were round, oval and irregular, and the number, volume and surface area of starch granules showed a unimodal distribution. The size of starch granules could be divided into small (particle size < 6 μm), medium (6-40 μm), and large starch granules (particle size > 40 μm). Naked oat grains were mainly composed of small and medium starch granules. The grain size distribution of starch in naked oat grains with different hardness was different. The number and volume percentage of small starch granules in soft naked oat were higher than those in hard, and the number and volume percentage of medium and large starch grains were lower than those in hard. The percentage of surface area of soft naked oat small and medium starch granules was higher than that of hard, and the percentage of surface area of large starch granules was lower than that of hard. There was a significant positive correlation between the grain hardness of naked oat and the amylopectin content. The results showed that the protein content of the starch granule surface with a size of 14 kD was higher in soft oats than in hard ones. A total of 41 proteins were identified by HPLC/MS for starch granule surface-binding proteins at 14 kD, including Vromindoline protein and oat alpha amylase trypsin inhibitor. The above results showed that the starch content, particle size distribution and starch surface-bound protein in naked oat grains were all related to grain hardness. The higher the amylopectin content, the greater the number, surface area and volume distribution of small starch granules. The higher the protein content such as Vromindoline, and the softer the naked oat kernel. This study laid the foundation for revealing the formation mechanism of grain hardness in Avena nuda L.

Key words: Avena nuda L., grain hardness, starch particle size, Vromindoline, HPLC/MS

表1

10份裸燕麦材料信息"

组别
Group
材料编号
Material code
材料名称
Material name
硬度均值
Average hardness (N)
样品类型
Variety type
来源
Source
软质组
Soft group
HX317 73014-336 18.62 选育 Breeding 山西 Shanxi
HX88 燕麦 Oat 20.08 地方品种 Landrace 陕西 Shaanxi
HX106 丽江燕麦 Lijiang oat 21.62 地方品种 Landrace 云南 Yunnan
HX54 小莜麦 Little oat 21.70 地方品种 Landrace 山西 Shanxi
HX344 8399-3-4 21.89 选育 Breeding 山西 Shanxi
硬质组
Hard group
HX310 晋8713-1 Jin 8713-1 34.69 选育 Breeding 山西 Shanxi
HX268 蒙燕8202 Mengyan 8202 35.03 地方品种 Landrace 内蒙古 Inner Mongolia
HX21 冀杂2号 Jiza 2 35.47 选育 Cultivar 河北 Hebei
HX265 蒙燕7805 Mengyan 7805 36.05 地方品种 Landrace 内蒙古 Inner Mongolia
HX320 7929-1-6 37.26 选育 Breeding 山西 Shanxi

图1

10份裸燕麦成熟籽粒中总淀粉、直链淀粉和支链淀粉的含量 不同小写字母表示在0.05概率水平差异显著。缩写同表1。"

图2

软质HX317和硬质HX320籽粒淀粉颗粒的显微结构 a~e: HX317的淀粉颗粒; f~j: HX320的淀粉颗粒; 从左向右的5列图片比例尺分别为20、10、3、1和5 μm。"

图3

HX317和HX320淀粉粒的数量、表面积和体积分布"

表2

HX317和HX320淀粉粒的数量、表面积和体积分布百分比"

淀粉粒度分布
Starch particle size distribution
材料名称
Material name
硬度值
Hardness value
小淀粉粒
Small starch granules
( < 6 μm)
中淀粉粒
Medium starch granules (6-40 μm)
大淀粉粒
Large starch granules
( > 40 μm)
数量
Number
HX317 18.62 N 62.86 37.14 0.006
HX320 37.26 N 48.98 50.98 0.038
表面积
Surface area
HX317 18.62 N 0.027 99.79 0.016
HX320 37.26 N 0.009 98.26 1.730
体积
Volume
HX317 18.62 N 14.37 84.82 0.80
HX320 37.26 N 7.59 88.89 3.52

图4

不同硬度裸燕麦中TritonX-114可溶性蛋白的SDS-PAGE a和b为全粉中和淀粉颗粒表面结合的蛋白; M为80 kD的蛋白marker; 1~10分别代表HX317、HX88、HX106、HX54、HX344、HX310、HX268、HX21、HX265和HX320, 越向右硬度值越大。"

表3

14 kD处蛋白的部分质谱分析结果"

蛋白编号
Protein number
蛋白名称
Protein name
分子量
Molecular weight
蛋白打分值
Protein score
序列覆盖率
Sequence coverage
来源
Source
I2E102 Vromindoline 17.0 1027 48 A. barbata
U5ZZB2 Vromindoline 2 17.0 738 48 A. insularis
I2E103 Vromindoline 14.1 604 57 A. eriantha
R4I506 Vromindoline 1.3 16.8 602 33 A. sativa
I2E0Z8 Vromindoline 16.8 527 29 A. strigosa
R4I3J6 Vromindoline 3.1 15.9 527 48 A. sativa
R4I3J4 Vromindoline 1.2 16.8 462 29 A. sativa
I2E108 Vromindoline 15.8 406 48 A. marcoccana
R4I508 Vromindoline 3.2 15.9 333 46 A. sativa
A0A1B2LQE3 Avena alpha amylase trypsin inhibitor 17.2 351 41 A. insularis
A0A1B2LQE9 Avena alpha amylase trypsin inhibitor 17.1 321 41 A. insularis
A0A1B2LQE6 Avena alpha amylase trypsin inhibitor 16.9 179 35 A. magna
A0A1B2LQB5 Avena alpha amylase trypsin inhibitor 16.1 161 33 A. marcoccana
A0A1B2LQF0 Avena alpha amylase trypsin inhibitor 17.1 146 32 A. barbata
A0A1B2LQD6 Avena alpha amylase trypsin inhibitor-2 16.5 101 30 A. sativa
A0A1B2LQB9 Avena alpha amylase trypsin inhibitor 15.9 99 27 A. murphyi
A0A1B2LQD2 Avena alpha amylase trypsin inhibitor-2 16.3 89 30 A. barbata
I4EP66 Avenin 28.6 318 24 A. insularis
I4EP56 Avenin 29.2 300 22 A. longiglumis
G8ZCT8 Avenin (fragment) 28.2 240 14 A. canariensis
G8ZCU6 Avenin (fragment) 24.3 213 19 A. prostrata
L0L4J7 Gliadin-like 24.5 262 19 A. sativa
L0L833 Gliadin-like 21.4 65 8 A. sativa
O49258 12S globulin 58.2 579 20 A. sativa
O49257 12S globulin 53.4 562 26 A. sativa
P14812 12S seed storage globulin 2 58.6 749 31 A. sativa
Q38780 11S globulin 59.4 604 23 A. sativa

图5

I2E102和A0A1B2LQE3特异肽段的质谱图"

图6

9个Vromindoline蛋白和8个AATI蛋白的序列比对 A: 9个VIN蛋白和8个AATI蛋白的进化树; B: VIN蛋白的序列比对, 红框为色氨酸丰富区。"

[1] 陈锋, 李根英, 耿洪伟, 夏兰芹, 夏先春, 何中虎. 小麦籽粒硬度及其分子遗传基础研究回顾与展望. 中国农业科学, 2005, 38: 1088-1094.
Chen F, Li G Y, Geng H W, Xia L Q, Xia X C, He Z H. Review and prospect of wheat grain hardness and its molecular genetic basis. Sci Agric Sin, 2005, 38: 1088-1094. (in Chinese with English abstract)
[2] 安江红, 张文静, 赵瑛琳, 韩冰, 南金生. 麦类作物籽粒硬度的研究进展. 北方农业学报, 2020, 48(4): 40-47.
doi: 10.12190/j.issn.2096-1197.2020.04.06
An J H, Zhang W J, Zhao Y L, Han B, Nan J S. Research progress on the grain hardness of Triticeae crops. J Northern Agric, 2020, 48(4): 40-47. (in Chinese with English abstract)
[3] Peltonen-sainio, Muurinen S, Vilppu M, Rajala A, Gates F, Kirkkari A. Germination and grain vigor of naked oat in response to grain moisture at harvest. J Agric Sci, 2001, 127: 147-156.
[4] Stenvert N L, Kingswood K. The influence of the physical structure of the protein matrix on wheat hardness. J Sci Food Agric, 1977, 28: 11-19.
doi: 10.1002/(ISSN)1097-0010
[5] Barlow K K, Buttrose M S, Simmonds D H, Vesk M. The nature of the starch-protein interface in wheat endosperm. Cereal Chem, 1973, 50: 443-454.
[6] Greenwell P, Schofield J D. A Starch granule protein associated with endosperm softness in wheat. Cereal Chem, 1986, 63: 379-380.
[7] 郭世华. 中国小麦籽粒硬度的生化和分子标记研究. 山东农业大学博士学位论文, 山东泰安, 2003. pp 6-7.
Guo S H. Biochemical and Molecular Markers of Chinese Wheat Grain Hardness. PhD Dissertation of Graduate School of Shandong Agricultural University, Tai’an, Shandong, China, 2003. pp 6-7. (in Chinese with English abstract)
[8] Blochet J E, Chevalier C, Forest E, Pebay-Peyroula E, Gautier M F, Joudrier P, Pézolet M, Marion D. Complete amino acid sequence of puroindoline, a new basic and cystine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by Triton X-114 phase partitioning. FEBS Lett, 1993, 329: 336-340.
doi: 10.1016/0014-5793(93)80249-t pmid: 8365477
[9] Marion D, Clark D C. Wheat lipids and lipid-binding proteins: structure and function. Wheat Struct, 1995: 245-260.
[10] Bhave M, Morris C F. Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Mol Biol, 2008, 66: 221-231.
doi: 10.1007/s11103-007-9264-6 pmid: 18049797
[11] Gazza L, Taddei F, Conti S, Gazzelloni G, Muccilli V, Janni M, D’Ovidio R, Alfieri M, Redaelli R, Pogna N E. Biochemical and molecular characterization of Avena indolines and their role in kernel texture. Mol Genet Genom, 2015, 290: 39-54.
doi: 10.1007/s00438-014-0894-5
[12] 安江红, 张文静, 杨晓虹, 南金生, 杨燕, 闫明霞, 韩冰. 2种裸燕麦籽粒硬度测定方法比较. 作物杂志, 2021, (6): 28-35.
An J H, Zhang W J, Yang X H, Nan J S, Yang Y, Yan M X, Han B. Comparison of two methods for measuring grain hardness of naked oats. Crops, 2021, (6): 28-35. (in Chinese with English abstract)
[13] 刘刚. 燕麦淀粉和蛋白的提取及理化性质研究. 武汉工业学院硕士学位论文, 湖北武汉, 2008. pp 9-12.
Liu G. Extraction and Physicochemical Properties of Oat Starch and Protein. MS Thesis of Graduate School of Wuhan Institute of Technology, Wuhan, Hubei, China, 2008. pp 9-12. (in Chinese with English abstract)
[14] 霍华蕾, 郭坚, 罗杰, 何光源. 种子中Puroindoline蛋白的SDS-PAGE分析. 生物技术通讯, 2005, (2): 153-155.
Huo H L, Guo J, Luo J, He G Y. SDS-PAGE analysis of Puroindoline protein in seed. Lett Biotechnol, 2005, (2): 153-155. (in Chinese with English abstract)
[15] 王子宁, 郭北海. 小麦地方品种SDS-PAGE分析. 华北农学报, 1992, (2): 35-39.
doi: 10.3321/j.issn:1000-7091.1992.02.006
Wang Z N, Guo B H. SDS-PAGE Analysis of Wheat Landraces. North China Agric J, 1992, (2): 35-39. (in Chinese with English abstract)
[16] 王霞霞, 柴守玺, 常磊, 柴继宽, 徐智明. 燕麦种子蛋白质组的GeLC-MS/MS分析. 草地学报, 2012, 20(1): 108-115.
doi: 10.11733/j.issn.1007-0435.2012.01.018
Wang X X, Chai S X, Chang L, Chai J K, Xu Z M. GeLC-MS/MS analysis of oat seed proteome. Acta Agrest Sin, 2012, 20(1): 108-115. (in Chinese with English abstract)
[17] 徐云姬, 李银银, 钱希旸, 王志琴, 杨建昌. 三种禾谷类作物强、弱势粒淀粉粒形态与粒度分布的比较. 作物学报, 2016, 42: 70-81.
Xu Y J, Li Y Y, Qian X Y, Wang Z Q, Yang J C. Comparison of starch grain morphology and size distribution in superior and inferior grains of three cereal crops. Acta Agron Sin, 2016, 42: 70-81. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00070
[18] Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem, 1981, 256: 1604-1607.
pmid: 6257680
[19] Gautier M F, Aleman M E, Guirao A, Marion D, Joudrier P. Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol, 1994, 25: 43-57.
pmid: 7516201
[20] 常成, 张海萍, 李保云, 刘广田. 小麦籽粒发育时期Puroindolines蛋白与硬度的关系. 麦类作物学报, 2007, 27: 630-633.
Chang C, Zhang H P, Li B Y, Liu G T. The relationship between Puroindoline protein during grain development and kernel hardness of common wheat. J Triticeae Crops, 2007, 27: 630-633. (in Chinese with English abstract)
[21] 赵法茂, 蔡瑞国, 毕建杰, 肖军, 王宪泽. 小麦籽粒淀粉分支酶同种型SBE IIb的亚细胞定位及遗传多样性. 作物学报, 2009, 35: 952-957.
Zhao F M, Cai R G, Bi J J, Xiao J, Wang X Z. Subcellular localization and genetic polymorphism of isoform of starch branching enzyme (SBE IIb) in wheat grain. Acta Agron Sin, 2009, 35: 952-957. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.00952
[22] Lillemo M, Morris C. A leucine to proline mutation in Puroindoline b is frequently present in hard wheats from northern Europe. Theor Appl Genet, 2000, 100: 1100-1107.
doi: 10.1007/s001220051392
[23] 秦海霞. 小麦淀粉表面极性脂对籽粒硬度的影响及其生理机制. 河南农业大学硕士学位论文, 河南郑州, 2017. pp 2-3.
Qin H X. Effects of Surface Polar Lipids on Wheat Starch on Grain Hardness and Its Physiological Mechanism. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2017. pp 2-3. (in Chinese with English abstract)
[24] Ma D Y, Qin H X, Ding H N, Zhang J, Wang C Y, Guo T C. Surface lipids play a role in the interaction of puroindolines with wheat starch and kernel hardness. Cereal Chem J, 2016, 93: 523-528.
doi: 10.1094/CCHEM-11-15-0224-R
[25] Zhang G, Hamaker B R. A three component interaction among starch, protein, and free fatty acids revealed by pasting profiles. J Agric Food Chem, 2003, 51: 2797-2800.
doi: 10.1021/jf0300341
[26] Zhang G, Hamaker B R. Sorghum (Sorghum bicolor L.Moench) flour pasting properties influenced by free fatty acids and protein. Cereal Chem, 2005, 82: 534-540.
doi: 10.1094/CC-82-0534
[27] Finnie S, Jeannotte R, Morris C, Faubion J M. Variation in polar lipid composition among near-isogenic wheat lines possessing different puroindoline haplotypes. J Cereal Sci, 2010, 51: 66-72.
doi: 10.1016/j.jcs.2009.09.006
[28] Wang H H, Huagn Y C, Xiao Q, Huang X, Li C S, Gao X Y, Wang Q, Xiang X L, Zhu Y D, Wang J C, Wang W Q, Larkins B A, Wu Y R. Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity. Nat Commun, 2020, 11: 5346.
doi: 10.1038/s41467-020-19196-9 pmid: 33093471
[29] Ohm J, Chung O. Relationships of free lipids with quality factors in hard winter wheat flours. Cereal Chem, 2002, 79: 274-278.
doi: 10.1094/CCHEM.2002.79.2.274
[1] 高欣, 郭雷, 单宝雪, 肖延军, 刘秀坤, 李豪圣, 刘建军, 赵振东, 曹新有. 淀粉颗粒类型及其比例在小麦品质特性形成与改良中的作用[J]. 作物学报, 2023, 49(6): 1447-1454.
[2] 刘培勋,马小飞,万洪深,郑建敏,罗江陶,蒲宗君. 两个不同籽粒硬度小麦的比较蛋白组学分析[J]. 作物学报, 2020, 46(8): 1275-1282.
[3] 林叶春,曾昭海,任长忠,李志坚,郭来春,杨学超,王春龙,钱欣,胡跃高. 局部根区灌溉对裸燕麦光合特征曲线及叶绿素荧光特性的影响[J]. 作物学报, 2012, 38(06): 1062-1070.
[4] 陈锋,李欢欢,张福彦,尚晓丽,许海霞,崔党群. 小麦籽粒硬度基因型鉴定及其与吹泡仪和混合仪参数关系分析[J]. 作物学报, 2012, 38(05): 928-933.
[5] 任祎,平华,任贵兴. 裸燕麦核心种质的抗氧化特性[J]. 作物学报, 2010, 36(06): 988-994.
[6] 吴娜,赵宝平,曾昭海,任长忠,郭来春,陈昌龙,赵国军,胡跃高. 两种灌溉方式下保水剂用量对裸燕麦产量和品质的影响[J]. 作物学报, 2009, 35(8): 1552-1557.
[7] 师桂英,尚勋武,王化俊,马小乐,胡秉芬,李昌盛. 麦长管蚜(Sitobion avenae F.)危害对春小麦面粉品质性状及面团流变学特性的影响[J]. 作物学报, 2009, 35(12): 2273-2279.
[8] 徐微,张宗文,吴斌,崔林. 裸燕麦品质资源AFLP标记遗传多样性分析[J]. 作物学报, 2009, 35(12): 2205-2212.
[9] 李根英;夏先春;何中虎;孙其信;黄承彦. 山东小麦籽粒硬度演变规律研究[J]. 作物学报, 2007, 33(08): 1372-1374.
[10] 李桂荣;赵宝平;胡跃高;程方民;曾昭海;赵宁春. 灌溉制度对不同基因型燕麦籽粒植酸、蛋白质和矿质元素含量的影响[J]. 作物学报, 2007, 33(05): 866-870.
[11] 李根英;夏先春;张明;张勇;何中虎;孙其信. CIMMYT新型人工合成小麦Pina和Pinb基因等位变异[J]. 作物学报, 2007, 33(02): 242-249.
[12] 陈锋;何中虎;Morten Lillemo;夏先春. CIMMYT普通小麦籽粒硬度等位变异的检测[J]. 作物学报, 2005, 31(10): 1277-1283.
[13] 夏兰芹;何中虎;陈新民;张庆祝;周阳. 小麦硬度主效基因Pina和Pinb的克隆和序列分析[J]. 作物学报, 2003, 29(01): 25-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[6] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[7] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[8] 王立新;李云伏;常利芳;黄 岚;李宏博;葛玲玲;刘丽华;姚 骥;赵昌平;姚 骥;赵昌平. 建立小麦品种DNA指纹的方法研究[J]. 作物学报, 2007, 33(10): 1738 -1740 .
[9] 杨燕;赵献林;张勇;陈新民;何中虎;于卓;夏兰琴. 四个小麦抗穗发芽分子抗性标记有效性的验证与评价[J]. 作物学报, 2008, 34(01): 17 -24 .
[10] 夏仲炎. 粳稻叶型的遗传与选择的研究[J]. 作物学报, 1983, 9(04): 275 -282 .