欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2133-2143.doi: 10.3724/SP.J.1006.2023.21056

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦矮秆突变体Xu1801的鉴定及其矮化效应分析

苏在兴(), 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛()   

  1. 江苏徐淮地区徐州农业科学研究所, 江苏 徐州 221131
  • 收稿日期:2022-08-21 接受日期:2023-02-10 出版日期:2023-08-12 网络出版日期:2023-03-13
  • 通讯作者: 易媛
  • 作者简介:E-mail: szaixing@163.com
  • 基金资助:
    徐州市重点研发(现代农业)计划项目(CARS-03);财政部和农业农村部国家现代农业产业技术体系建设专项(KC21131)

Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect

SU Zai-Xing(), HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan()   

  1. Jiangsu Xuhuai Regional Institute of Agricultural Science, Xuzhou 221131, Jiangsu, China
  • Received:2022-08-21 Accepted:2023-02-10 Published:2023-08-12 Published online:2023-03-13
  • Contact: YI Yuan
  • Supported by:
    Key Research and Development Program (Modern Agriculture) of Xuzhou(CARS-03);Key Research and Development Program (Modern Agriculture) of Xuzhou(KC21131)

摘要:

在徐麦35原种繁育过程中发现1株天然矮秆突变体, 经连续多代单株选择, 该突变体株高性状稳定遗传, 将其命名为Xu1801 (徐1801)。为研究Xu1801矮化原因, 进行了农艺性状调查、倒伏指数分析、苗期赤霉素处理和矮秆相关基因检测。调查发现, Xu1801平均株高68.16 cm, 较野生型徐麦35株高降低24.05%, 其矮化效应表现为节间减少和各节间极显著缩短; 其中, 第5节间效应值最大, 达44.16%。Xu1801的旗叶宽度、叶绿素含量、小穗密度极显著高于徐麦35, 其他农艺性状与徐麦35差异较小。Xu1801产量达8604.17 kg hm-2, 低于徐麦35; 而蛋白质含量、湿面筋、沉降值等品质指标均显著优于徐麦35。Xu1801茎秆粗壮, 各节间充实度较好, 倒伏指数47.73, 极显著低于徐麦35。GA3处理可知, Xu1801和徐麦35同属于赤霉素反应不敏感型种质。分子标记检测发现, Xu1801可能含有Rht-D1bRht4Rht8Rht9Rht12等矮秆相关基因; WMC317 (Rht4)和BARC102 (Rht5)在Xu1801和徐麦35之间呈现出不同条带, 其他标记扩增条带在两者之间较为一致。综上, Xu1801株高偏矮、抗倒伏能力强, 产量和品质性状协调, 具有一定的生产应用潜力, 同时携带多个矮秆基因, 可作为小麦株高遗传分析的种质资源。

关键词: 小麦, 矮秆突变, 倒伏指数, 赤霉素, 分子标记

Abstract:

A natural dwarf mutant was discovered in the purification and rejuvenation of Xumai35 (XM35) foundation seeds. After multiple generations of individual selection, the dwarf trait of the mutant named Xu1801 temporarily could be stably inherited. To explore the cause of dwarfing phenotype, agronomic traits, lodging index analysis, gibberellin treatment at seedling stage, and dwarf-related genes detection were carried out. The results showed that the average plant height was 68.16 cm in Xu1801, shorter by24.05% than the wild-type XM35. The dwarfing effect of Xu1801 was manifested in the reduction of internode number and the extremely significant shortening of internode length. Among all internodes, the 5th internode had the largest dwarfing effect (44.16%). Flag leaf width, chlorophyll content, and spikelet density were extremely significantly higher in Xu1801 compared with XM35, and there was no difference in other agronomic traits. Compared with XM35, the grain yield of Xu1801 was lower by 8604.17 kg hm-2, while protein content, wet gluten content, and sedimentation volume of Xu1801 were significantly improved. The stem of Xu1801 was thick, and the internode fullness was extremely significantly higher than that of XM35. The lodging index was 47.73, extremely significantly lower than that of XM35, indicating its outstanding lodging-resistance ability. The detection of dwarfing gene-linked molecular markers revealed that Xu1801 might contain Rht-D1b, Rht4, Rht8, Rht9, and Rht12. Except for WMC317 (Rht4) and BARC102 (Rht5) revealed different amplification bands between Xu1801 and XM35, the amplification bands of other markers were relatively consistent. In conclusion, Xu1801 not only had short plant height and excellent lodging resistance, but also coordinated grain yield and quality characteristics properly, demonstrating the outstanding potential for cultivation. Meanwhile, Xu1801 carried several dwarfing genes and could be utilized as germplasm resources for genetic analysis of wheat plant height.

Key words: wheat, dwarf mutant, lodging index, gibberellin, molecular markers

表1

小麦矮秆基因分子标记及引物序列"

基因
Gene
引物
Primer name
引物序列
Primer sequence (5'−3')
片段长度
Fragment length (bp)
退火温度
Annealing
temperature (℃)
染色体
Chromosome
参考文献
Reference
Rht-B1b
(Rht1)
BF GGTAGGGAGGCGAGAGGCGAG 237 65 4BS [27]
MR1 CATCCCCATGGCCATCTCGAGCTA
Rht-B1a BF GGTAGGGAGGCGAGAGGCGAG
WR1 CATCCCCATGGCCATCTCGAGCTG
Rht-D1b
(Rht2)
DF CGCGCAATTATTGGCCAGAGATAG 254 63 4DS
MR2 CCCCATGGCCATCTCGAGCTGCTA
Rht-D1a DF2 GGCAAGCAAAAGCTTCGCG 264
WR2 GGCCATCTCGAGCTGCAC
Rht4 WMC317 F TGCTAGCAATGCTCCGGGTAAC 170 58 2BL [28],[29]
WMC317 R TCACGAAACCTTTTCCTCCTCC
Rht5 BARC102 F GGAGAGGACCTGCTAAAATCGAAGACA 200 58 3BS
BARC102 R GCGTTTACGGATCAGTGTTGGAGA
Rht8 WMC503 F GCAATAGTTCCCGCAAGAAAAG 275 55 2DS
WMC503 R ATCAACTACCTCCAGATCCCGT
Xgwm261 F CTCCCTGTACGCCTAAGGC 192 55
Xgwm261 R CTCGCGCTACTAGCCATTG
Rht9 BARC151 F TGAGGAAAATGTCTCTATAGCATCC 220 55 5AL
BARC151 R CGCATAAACACCTTCGCTCTTCCACTC
Rht12 WMC410 F GGACTTGAAAAGGAAGCTTGTGA 114 61 5AL
WMC410 R CATGGATGGCATGCAGTGT
Rht13 WMS577 F ATGGCATAATTTGGTGAAATTG 130 55 7BS
WMS577 R TGTTTCAAGCCCAACTTCTATT

表2

徐麦35和矮秆突变体Xu1801株高、节间数、节间长度比较"

性状
Trait
徐麦35
XM35 (cm)
Xu1801
(cm)
矮化值
Shorten value (cm)
矮化效应
Dwarfing effect (%)
株高Plant height 89.74±2.57 68.16±1.60** 21.58 24.05
第1节间长度 1st internode length 27.85±2.26 21.61±1.89** 6.24 22.41
第2节间长度 2nd internode length 16.29±0.77 14.04±0.54** 2.25 13.81
第3节间长度 3rd internode length 12.46±0.78 9.24±0.35** 3.22 25.84
第4节间长度 4th internode length 11.83±0.56 8.10±0.29** 3.74 31.57
第5节间长度 5th internode length 8.90±1.83 4.97±1.96** 3.93 44.16
第6节间长度 6th internode length 3.17±1.51 0.00±0.00

表3

徐麦35和矮秆突变体Xu1801不同农艺性状的比较"

性状Trait 徐麦35 XM35 Xu1801
旗叶长度Flag leaf length (cm) 18.96±1.53 19.48±2.18
旗叶宽度Flag leaf width (cm) 2.28±0.10 2.48±0.13**
旗叶叶面积Flag leaf area (cm2) 32.59±3.64 36.41±5.37
叶绿素含量Leaf chlorophyll content (SPAD) 53.82±0.35 56.82±0.22**
穗长Spike length (cm) 11.04±0.56 10.58±0.41
每穗小穗数Spikelets number per spike 24.40±1.51 24.90±0.57
不育小穗数Empty spikelet number per spike 1.10±0.32 0.90±0.57
小穗密度Spikelet density 2.21±0.08 2.36±0.07**
芒长Awn length (cm) 3.40±0.35 3.19±0.30
籽粒长度Grain length (mm) 5.73±0.09 5.64±0.03
籽粒宽度Grain width (mm) 3.00±0.07 3.12±0.02

图1

徐麦35和Xu1801的主要表型特征 B中I为第1节间(穗下节)、II~VI依次为第2节间至第6节间。"

表4

徐麦35和矮秆突变体Xu1801产量和品质性状的比较"

性状 Trait 徐麦35 XM35 Xu1801
穗数 Spike number (×104 hm-2) 601.45±27.35 523.19±11.16**
穗粒数 Grain number per spike 46.82±0.33 49.61±0.71*
千粒重 1000-grain weight (g) 37.16±0.44 38.60±0.30
产量 Yield (kg hm-2) 9175.60±343.18 8604.17±369.25
容重Volume weight (g L-1) 831.67±4.04 823.33±2.31
蛋白质含量Protein content (%) 9.96±0.33 11.43±0.24*
蛋白质产量Protein yield (kg hm-2) 913.58±30.40 983.17±20.33
湿面筋含量Wet gluten content (%) 21.88±0.53 25.04±0.04*
沉降值Sedimentation volume (mL) 20.67±0.97 24.60±0.44*

表5

徐麦35和矮秆突变体Xu1801各节间充实度"

各节间充实度
The filling degree of internode
徐麦35茎秆
Stem of XM35 (mg cm-1)
Xu1801茎秆
Stem of Xu1801 (mg cm-1)
第1节间 1st internode 11.34±0.61 14.62±1.06**
第2节间 2nd internode 20.82±0.74 28.01±1.09**
第3节间 3rd internode 23.92±1.94 31.71±2.63**
第4节间 4th internode 26.88±0.90 33.70±4.52**
第5节间 5th internode 27.99±1.00 35.35±3.25**

图2

Xu1801和徐麦35茎秆倒伏指数分析 **表示在0.01概率水平差异显著。"

图3

外源赤霉素(GA3)对小麦矮秆突变体Xu1801等3个品种(系)苗期胚芽鞘伸长的影响 *和**分别表示10 μmol L-1和100 μmol L-1 GA3条件下在0.05和0.01概率水平与CK存在差异显著。XM35: 徐麦35; SM3: 苏麦3号。"

图4

Rht1和Rht2电泳检测结果 A: Rht-B1a、Rht-B1b (Rht1)基因检测结果; B: Rht-D1a、Rht-D1b (Rht2)基因检测结果。CS: 中国春; XY6: 小偃6号(CK); SN33: 陕农33 (CK); XM35: 徐麦35; SM3: 苏麦3号; HM20: 淮麦20。M: marker, B500331-0250 250 Preps 100~600 bp (Sangon Biotech)。a为Rht1和Rht2野生型; b为Rht1和Rht2突变型。"

图5

小麦矮秆相关基因分子标记检测 M: marker, B500331-0250 250 Preps 100~600 bp (Sangon Biotech)。泳道1~5依次为: Xu1801、徐麦35、苏麦3号、淮麦20、矮抗58。Rht8 (503)、Rht8 (261)分别对应WMC503和Xgwm261标记。"

[1] Weibel R O, Pendleton J W. Effect of artificial lodging on winter wheat grain yield and quality. Agron J, 1964: 487-488.
[2] Peake A S, Bell K L, Fischer R A, Gardner M, Das B T, Poole N, Mumford M. Cultivar × management interaction to reduce lodging and improve grain yield of irrigated spring wheat: optimising plant growth regulator use, N application timing, row spacing and sowing date. Front Plant Sci, 2020, 11: 401.
doi: 10.3389/fpls.2020.00401 pmid: 32411154
[3] Lyu D Y, Zhang C L, Yv R, Yao J X, Wu J H, Song X P, Jian J T, Song P B, Zhang Z Y, Han D J, Sun D J. Utilization of a Wheat50K SNP microarray-derived high-density genetic map for QTL mapping of plant height and grain traits in wheat. Plants, 2021, 10: 1167.
doi: 10.3390/plants10061167
[4] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价. 作物学报, 2021, 47: 1188-1196.
doi: 10.3724/SP.J.1006.2021.01053
Han Y Z, Zhang Y, Yang Y, Gu Z Z, Wu K, Xie Q, Kong Z X, Jia H Y, Ma Z Q. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat. Acta Agron Sin, 2021, 47: 1188-1196. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01053
[5] Velde K V D, Thomas S G, Heyse F, Kaspar R, Straeten D V D, Rohde A. N-terminal truncated RHT-1 proteins generated by translational reinitiation cause semi-dwarfing of wheat green revolution alleles. Mol Plant, 2021, 14: 679-687.
doi: 10.1016/j.molp.2021.01.002 pmid: 33422695
[6] Guo B J, Jin X M, Chen J C, Xu H Y, Zhang M X, Lu X, Wu R G, Zhao Y, Guo Y, An Y R, Li S S. ATP-dependent DNA helicase (TaDHL), a novel reduced-height (Rht) gene in wheat. Genes, 2022, 13: 979.
doi: 10.3390/genes13060979
[7] Mo Y, Vanzetti L S, Hale I, Spagnolo E J, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor Appl Genet, 2018, 131: 2021-2035.
doi: 10.1007/s00122-018-3130-6
[8] Zhao K, Xiao J, Liu Y, Chen S, Yuan C, Cao A, You F M, Yang D, An S, Wang H, Wang X. 5Dq′) likely encodes a Q homeologue with pleiotropic effects on plant height and spike compactness. Theor Appl Genet, 2018, 131: 1825-1834.
doi: 10.1007/s00122-018-3115-5
[9] Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
doi: 10.1038/22307
[10] 吕广德, 靳雪梅, 郭营, 赵岩, 钱兆国, 吴科, 李斯深. 小麦株高分子遗传学研究进展. 植物遗传资源学报, 2021, 22: 571-582.
doi: 10.13430/j.cnki.jpgr.20200927001
Lyu G D, Jin X M, Guo Y, Zhao Y, Qian Z G, Wu K, Li S S. Advances in molecular genetics of wheat plant height. J Plant Genet Resour, 2021, 22: 571-582. (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.20200927001
[11] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析. 作物学报, 2021, 47: 974-982.
doi: 10.3724/SP.J.1006.2021.01066
He J Y, Yin S Q, Chen Y Q, Xiong J L, Wang W B, Zhou H B, Chen M, Wang M Y, Chen S W. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants. Acta Agron Sin, 2021, 47: 974-982. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01066
[12] 卢媛.普通小麦矮秆突变体NM9的鉴定及突变基因Rht_NM9的定位和效应分析. 南京农业大学博士学位论文, 江苏南京, 2015.
Lu Y.Characterization of a Dwarf Mutant, NM9, and Mapping and Effect Analysis of the Dwarfing Gene, Rht_NM9, in Triticum aestivum. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015. (in Chinese with English abstract)
[13] 刘娟, 张凯, 范胜男, 韩洋, 冯玉梅, 李星岩, 韩冰, 杨燕. 小麦矮秆基因Rht-B1bRht-D1b的检测及其验证. 麦类作物学报, 2021, 41: 816-826.
Liu J, Zhang K, Fan S N, Han Y, Feng Y M, Li X Y, Han B, Yang Y. Molecular detection and verification of dwarfing gene Rht-B1b and Rht-D1b in wheat. J Triticeae Crops, 2021, 41: 816-826. (in Chinese with English abstract)
[14] 唐娜, 李博, 闵红, 胡银岗. 分子标记检测矮秆基因Rht-B1bRht-D1bRht8在我国小麦中的分布. 中国农业大学学报, 2012, 17: 21-26.
Tang N, Li B, Min H, Hu Y G. Distribution of dwarfing genes Rht-B1b, Rht-D1b and Rht8 in Chinese bread wheat cultivars detected by molecular markers. J China Agric Univ, 2012, 17: 21-26. (in Chinese with English abstract)
[15] Worland A J, Sayers E J, Korzun V. Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes. Euphytica, 2001, 119: 157-161.
doi: 10.1023/A:1017582122775
[16] Xiong H C, Zhou C Y, Fu M Y, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Li Y T, Zhang J Z, Wang K, Li X J, Liu L X. Cloning and functional characterization of Rht8, a “green revolution” replacement gene in wheat. Mol Plant, 2022, 15: 373-376.
doi: 10.1016/j.molp.2022.01.014
[17] Chai L L, Xin M M, Dong C Q, Chen Z Y, Zhai H J, Zhuang J H, Cheng X J, Wang N J, Geng J, Wang X B, Bian R L, Yao Y Y, Guo W L, Hu Z R, Peng H R, Bai G H, Sun Q X, Su Z Q, Liu J, Ni Z F. A natural variation in ribonuclease H-like gene underlies Rht8 to confer “green revolution” trait in wheat. Mol Plant, 2022, 15: 377-380.
doi: 10.1016/j.molp.2022.01.013
[18] 陈向东, 吴晓军, 胡喜贵, 李淦, 姜小苓, 李笑慧, 李小利, 胡铁柱, 茹振钢. 117份小麦种质中5个矮秆基因的分子检测. 新疆农业科学, 2019, 56: 1373-1381.
doi: 10.6048/j.issn.1001-4330.2019.08.001
Chen X D, Wu X J, Hu X G, Li G, Jiang X L, Li X H, Li X L, Hu T Z, Ru Z G. Molecular detection of five dwarf genes in 117 wheat germplasm resources. Xinjiang Agric Sci, 2019, 56: 1373-1381. (in Chinese with English abstract)
[19] Tian X L, Xia X C, Xu D G, Liu Y Q, Xie L, Hassan M A, Song J, Li F J, Wang D S, Zhang Y, Hao Y F, Li G Y, Chu C C, He Z H, Cao S H. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytol, 2022, 233: 738-750.
doi: 10.1111/nph.v233.2
[20] Buss W, Ford B A, Foo E, Schnippenkoetter W, Borrill P, Brooks B, Ashton A R, Chandler P M, Spielmeyer W. Overgrowth mutants determine the causal role of gibberellin GA2 oxidase A13 in Rht12 dwarfism of wheat. J Exp Bot, 2020, 71: 7171-7178.
doi: 10.1093/jxb/eraa443
[21] Sun L H, Yang W L, Li Y F, Shan Q Q, Ye X B, Wang D Z, Yu K, Lu W W, Xin P Y, Pei Z, Guo X L, Liu D C, Sun J Z, Zhan K H, Chu J F, Zhang A M. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. Plant J, 2019, 97: 887-900.
doi: 10.1111/tpj.2019.97.issue-5
[22] 赵秋实, 李倩倩, 王超杰, 蒋宏宝, 耿皆飞, 杨媛, 刘录祥, 张小燕, 谢彦周, 王成社. 普通小麦品种陕农33矮秆突变体的矮化效应分析. 麦类作物学报, 2018, 38: 1053-1064.
Zhao Q S, Li Q Q, Wang C J, Jiang H B, Geng J F, Yang Y, Liu L X, Zhang X Y, Xie Y Z, Wang C S.Analysis of the dwarfing mutagenic effect on dwarf mutants of common wheat variety Shaannong 33. J Triticeae Crops, 2018, 38: 1053-1064. (in Chinese with English abstract)
[23] Lu Y, Xing L, Xing S, Hu P, Cui C, Zhang M, Xiao J, Wang H, Zhang R, Wang X, Chen P, Cao A. Characterization of a putative new semi-dominant reduced height gene, Rht_NM9, in wheat (Triticum aestivum L.). J Genet Genom, 2015, 42: 685-698.
doi: 10.1016/j.jgg.2015.08.007
[24] 陈晓光, 史春余, 尹燕枰, 王振林, 石玉华, 彭佃亮, 倪英丽, 蔡铁. 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011, 37: 1616-1622.
doi: 10.3724/SP.J.1006.2011.01616
Chen X G, Shi C Y, Yin Y P, Wang Z L, Shi Y H, Peng D L, Ni Y L, Cai T. Relationship between lignin metabolism and lodging resistance in wheat. Acta Agron Sin, 2011, 37: 1616-1622. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.01616
[25] 刘慧婷, 李瑞奇, 王红光, 李东晓, 李浩然. 密度和施氮量对强筋小麦藁优2018产量和抗倒性的影响. 麦类作物学报, 2017, 37: 1619-1626.
Liu H T, Li R Q, Wang H G, Li D X, Li H R. Effect of planting density and nitrogen fertilization rate on lodging resistance and grain yield of strong gluten wheat Gaoyou 2018. J Triticeae Crops, 2017, 37: 1619-1626. (in Chinese with English abstract)
[26] 柴建芳, 刘旭, 贾继增. 一种适于PCR扩增的小麦基因组DNA快速提取法. 植物遗传资源学报, 2006, 7: 246-248.
Chai J F, Liu X, Jia J Z. A rapid isolation method of wheat DNA suitable for PCR analysis. J Plant Genet Resour, 2006, 7: 246-248. (in Chinese with English abstract)
[27] Ellis M H, Spielmeyer W, Gale K R, Rebetzke G J, Richards R A. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet, 2002, 105: 1038-1042.
doi: 10.1007/s00122-002-1048-4 pmid: 12582931
[28] Ellis M H, Rebetzke G J, Azanza F, Richards R A, Spielmeyer W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet, 2005, 111: 423-430.
doi: 10.1007/s00122-005-2008-6 pmid: 15968526
[29] Ellis M H, Bonnett D G, Rebetzke G J. A 192 bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica, 2007, 157: 209-214.
doi: 10.1007/s10681-007-9413-7
[30] 苏在兴, 高闰飞, 易媛, 王波, 常勇, 黄忠勤, 周兴根. 小麦穗发芽抗性分析及相关分子标记检测. 麦类作物学报, 2019, 39: 1173-1179.
Su Z X, Gao R F, Yi Y, Wang B, Chang Y, Huang Z Q, Zhou X G. Analysis of pre-harvest sprouting (PHS) resistance and detection on PHS associated molecular markers in wheat (Triticum aestivum L.). J Triticeae Crops, 2019, 39: 1173-1179. (in Chinese with English abstract)
[31] Wen S Z, Zhang M H, Tu K L, Fan C F, Tian S, Bi C, Chen Z L, Zhao H H, Wei C X, Shi X T, Yu J Z, Sun Q X, You M S. A major quantitative trait loci cluster controlling three components of yield and plant height identified on chromosome 4B of common wheat. Front Plant Sci, 2022, 12: 799520.
doi: 10.3389/fpls.2021.799520
[32] Wu Q H, Chen Y X, Xie J Z, Dong L L, Wang Z Z, Lu P, Wang R G, Yuan C G, Zhang Y, Liu Z Y. A36 Mb terminal deletion of chromosome 2BL is responsible for a wheat semi-dwarf mutation. Crop J, 2021, 9: 873-881.
doi: 10.1016/j.cj.2020.06.015
[33] Agarwal P, Balyan H S, Gupta P K. Identification of modifiers of the plant height in wheat using an induced dwarf mutant controlled by RhtB4c allele. Physiol Mol Biol Plants, 2020, 26: 2283-2289.
doi: 10.1007/s12298-020-00904-0
[34] Dreccer M F, Macdonald B, Farnsworth C A, Paccapelo M V, Awasi M A, Condon A G, Forrest K, Lee Long I, McIntyre C L. Multi-donor × elite-based populations reveal QTL for low-lodging wheat. Theor Appl Genet, 2022, 135: 1685-1703.
doi: 10.1007/s00122-022-04063-6
[35] Zhang H J, Li T, Liu H W, Mai C Y, Yu G J, Li H L, Yu L Q, Meng L Z, Jian D W, Yang L, Li H J, Zhou Y. Genetic progress in stem lodging resistance of the dominant wheat cultivars adapted to Yellow-Huai River valleys winter wheat zone in China since 1964. J Integr Agric, 2020, 19: 438-448.
doi: 10.1016/S2095-3119(19)62627-4
[36] 卢媛, 崔超凡, 胡平, 陈佩度, 沈雪芳, 韩晴, 王义发, 邢莉萍, 曹爱忠. 矮秆基因Rht_NM9在小麦株高建成中对内源激素含量的影响. 作物学报, 2017, 43: 1272-1279.
doi: 10.3724/SP.J.1006.2017.01272
Lu Y, Cui C F, Hu P, Chen P D, Shen X F, Han Q, Wang Y F, Xing L P, Cao A Z. Effects of dwarf gene Rht_NM9 on contents of endogenous hormone regulating plant height of common wheat. Acta Agron Sin, 2017, 43: 1272-1279. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01272
[37] Si X M, Wang W X, Wang K, Liu Y C, Bai J P, Meng Y X, Zhang X Y, Liu H X. A sheathed spike gene, TaWUS-like inhibits stem elongation in common wheat by regulating hormone levels. Int J Mol Sci, 2021, 22: 11210.
doi: 10.3390/ijms222011210
[38] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位. 作物学报, 2022, 48: 580-589.
doi: 10.3724/SP.J.1006.2022.11015
Fu M Y, Xiong H C, Zhou C Y, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Xu Y H, Liu L X. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene. Acta Agron Sin, 2022, 48: 580-589. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11015
[39] 刘晴, 古佳玉, 赵紫伟, 赵林姝, 郭会君, 谢永盾, 宋希云, 刘录祥. 小麦矮秆突变体DC20的转录组分析. 核农学报, 2019, 33: 1451-1458.
doi: 10.11869/j.issn.100-8551.2019.08.1451
Liu Q, Gu J Y, Zhao Z W, Zhao L S, Guo H J, Xie Y D, Song X Y, Liu L X.RNA-Seq analysis of wheat dwarf mutant DC20. J Nucl Agric Sci, 2019, 33: 1451-1458. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2019.08.1451
[40] 曹丽, 钱鹏, 张紫晋, 粟永英, 陈杰明, 刘汉梅, 杜小刚, 陈洋尔, 张怀渝. 航天搭载小麦矮秆突变体DMR88-1矮化效应分析. 核农学报, 2015, 29: 2049-2057.
doi: 10.11869/j.issn.100-8551.2015.11.2049
Cao L, Qian P, Zhang Z J, Su Y Y, Chen J M, Liu H M, Du X G, Chen Y E, Zhang H Y. Analysis of the dwarfing mutagenic effect on a wheat mutant line DMR88-1 by space mutation. J Nucl Agric Sci, 2015, 29: 2049-2057. (in Chinese with English abstract)
[1] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[2] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[3] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[4] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[5] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[6] 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287.
[7] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[8] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[9] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[10] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[11] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[12] 王昊, 孙妮娜, 王矗, 肖露凝, 肖蓓, 李栋, 刘洁, 秦冉, 吴永振, 孙晗, 赵春华, 李林志, 崔法, 刘伟. 烟农系列小麦高产遗传基础解析[J]. 作物学报, 2023, 49(6): 1584-1600.
[13] 高欣, 郭雷, 单宝雪, 肖延军, 刘秀坤, 李豪圣, 刘建军, 赵振东, 曹新有. 淀粉颗粒类型及其比例在小麦品质特性形成与改良中的作用[J]. 作物学报, 2023, 49(6): 1447-1454.
[14] 卢茂昂, 彭小爱, 张玲, 汪建来, 何贤芳, 朱玉磊. 基于55K SNP芯片揭示小麦育种亲本遗传多样性[J]. 作物学报, 2023, 49(6): 1708-1714.
[15] 冯连杰, 于振文, 张永丽, 石玉. 灌溉对小麦分蘖发生和不同茎蘖光合同化物生产分配及成穗的影响[J]. 作物学报, 2023, 49(6): 1653-1667.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .