作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2412-2432.doi: 10.3724/SP.J.1006.2023.24228
胡鑫(), 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙()
HU Xin(), LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long()
摘要:
黑穗病是甘蔗生产中的主要病害, 严重影响甘蔗产量。解析甘蔗重要亲本与黑穗病菌相互作用的分子机制及筛选抗病基因对抗黑穗病优良品种的培育具有重要意义。本研究选用我国甘蔗育种中的重要亲本新台糖ROC25 (抗黑穗病)及其姊妹系ROC22 (感黑穗病)为研究对象, 采用单分子实时测序技术(三代测序)和二代转录组测序技术分析和鉴定2个亲本感染黑穗病菌后的转录组谱及差异转录本。三代转录组测序分析共获得79,885条转录本序列, 其中含60,115条完整开放阅读框、3692个可变剪接事件、1799个LncRNA、29,139个SSR和7794个转录因子, 共有74,066个转录本得到注释, 占总数的92.72%。通过对二代测序数据分析, 在抗病亲本中筛选出9716个差异转录本, 在感病亲本中筛选出2033个差异转录本。差异转录本的GO和KEGG富集分析结果表明抗病亲本中共富集到的GO条目和KEGG通路均要多于感病亲本, 且植物MAPK信号通路、苯丙素生物合成、植物-病原互作、亚油酸代谢和蔗糖和淀粉代谢等代谢通路在抗感亲本中均被显著富集, 为抗感亲本对黑穗病的共同抗病途径。进一步, 对植物MAPK信号通路的分析表明, MAPK超家族基因成员在抗感亲本中呈现不同的表达方式, 在抗病亲本中具有更多差异表达的MEKK1和MKK4的转录本, 且MKK5、MPK10和MPK12基因仅在抗病品种中发生显著表达变化, 推测其可能与亲本的抗病表型关联。此外, 抗感亲本中众多WRKY、MYB、NAC和AP2/ERF-ERF等抗病相关转录因子响应了黑穗病菌胁迫, 且主要表现为上调表达。与感病亲本相比, 抗病亲本显示出更多的差异表达转录因子, 推测这些抗病亲本特有的转录因子可能对防御黑穗病菌具有积极作用。本研究完善了新台糖亲本基因组注释信息, 为解析新台糖优异亲本与黑穗病菌互作机制以及抗黑穗病基因资源的挖掘利用提供指导。
[1] | Magarey R C, Bull J I, Sheahan T, Denney D, Bruce R C. Yield losses caused by sugarcane smut in several crops in Queensland. Proc Aust Soc Sugar Cane Technol, 2010, 32: 347-354. |
[2] | Sundar A R, Barnabas E L, Malathi P, Viswanathan R, Sundar A R, Barnabas E L. A mini-review on smut disease of sugarcane caused by Sporisorium scitamineum. Botany, 2012, 2014: 226. |
[3] | Magarey R C, Bull J I, Lonie K J, Piperidis G. The effect of smut resistance on disease incidence and severity under natural spread conditions. Proc Aust Soc Sugar Cane Technol, 2012, 34: 8. |
[4] | 王长秘, 李婕, 张荣跃, 王晓燕, 单红丽, 仓晓燕, 尹炯, 罗志明, 黄应昆. 甘蔗黑穗病研究进展. 中国糖料, 2021, 43(2): 65-70. |
Wang C M, Li J, Zhang R Y, Wang X Y, Shan H L, Cang X Y, Ying J, Luo Z M, Huang Y K. Research progress of sugarcane smut disease. Sugar Crops Chin, 2021, 43(2): 65-70. (in Chinese with English abstract) | |
[5] |
Chao C, Hoy J, Saxton A, Martin F A. Heritability of resistance and repeatability of clone reactions to sugarcane smut in Louisiana. Phytopathology, 1990, 80: 622-626.
doi: 10.1094/Phyto-80-622 |
[6] | 许莉萍, 陈如凯. 甘蔗黑穗病及其抗病育种的现状与展望. 福建农业学报, 2000, 15(2): 26-31. |
Xu L P, Chen R K. Current status and prospects of smut and smut resistance breeding in sugarcane. Fujian J Agric Sci, 2000, 15(2): 26-31. (in Chinese with English abstract) | |
[7] | Alexander K C, Ramakrishnan K. Infection of the bud, establishment in the host and production of whips in sugarcane smut (Ustilago scitaminea) of sugarcane. Proc Int Soc Sug Cane Technol, 1980, 17: 1452-1455. |
[8] | Aitken K S, Bhuiyan S, Berkman P J, Croft B, McNeil M. Investigation of the genetic mechanisms of resistance to smut in sugarcane. Proc Int Soc Sugar Cane Technol, 2013, 28: 968-977. |
[9] | Marques J P R, Appezzato-da-Glória B, Piepenbring M, Massola Jr N S, Monteiro-Vitorello C B, Vieira M L C. Sugarcane smut: shedding light on the development of the whip-shaped sorus. Annals Bot, 2017, 119: 815-827. |
[10] |
Rajput M A, Rajput N A, Syed R N, Lodhi A M, Que Y X. Sugarcane smut: current knowledge and the way forward for management. J Fungi, 2021, 7: 1095.
doi: 10.3390/jof7121095 |
[11] |
Dean L J. The effect of wounding and high-pressure spray inoculation on the smut reaction of sugarcane clones. Phytopathology, 1982, 72: 1023-1025.
doi: 10.1094/Phyto-72-1023 |
[12] | Vitorello C B, Schaker P D C, Benevenuto J, Teixeira-Silva N S, Almeida S S. Progress in understanding fungal diseases affecting sugarcane:smut. In: Rott P, ed. Achieving Sustainable Cultivation of Sugarcane. Cambridge, UK: Burleigh Dodds Science Publishing, 2018. pp 221-243. |
[13] |
Lloyd H L, Naidoo M. Chemical assay potentially suitable for determination of smut resistance of sugarcane cultivars. Plant Dis, 1983, 67: 1103-1105.
doi: 10.1094/PD-67-1103 |
[14] |
Fontaniella B, Marquez A, Rodriguez C W, Pinon D, Solas M T, Vicente C, Legaz M E. A role for sugarcane glycoproteins in the resistance of sugarcane to Ustilago scitaminea. Plant Physiol Biochem, 2002, 40: 881-889.
doi: 10.1016/S0981-9428(02)01443-2 |
[15] |
Millanes A M, Vicente C, Legaz M E. Sugarcane glycoproteins bind to surface, specific ligands and modify cytoskeleton arrangement of Ustilago scitaminea teliospores. J Plant Interact, 2008, 3: 95-110.
doi: 10.1080/17429140701861727 |
[16] |
Que Y, Su Y, Guo J, Wu Q, Xu L. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-seq. PLoS ONE, 2014, 9: e106476.
doi: 10.1371/journal.pone.0106476 |
[17] |
Peters L P, Carvalho G, Vilhena M B, Creste S, Azevedo R A, Monteiro-Vitorello C B. Functional analysis of oxidative burst in sugarcane smut-resistant and-susceptible genotypes. Planta, 2017, 245: 749-764.
doi: 10.1007/s00425-016-2642-z pmid: 28004180 |
[18] |
Peters L P, Teixeira-Silva N S, Bini A P, Silva M M L, Moraes N, Crestana G S, Monteiro-Vitorello C B. Differential responses of genes and enzymes associated with ROS protective responses in the sugarcane smut fungus. Fungal Biol, 2020, 124: 1039-1051.
doi: 10.1016/j.funbio.2020.09.009 |
[19] |
Schaker P D, Palhares A C, Taniguti L M, Peters L P, Creste S, Aitken K S, Van Sluys M A, Kitajima J P, Vieira M L, Monteiro-Vitorello C B. RNAseq transcriptional profiling following whip development in sugarcane smut disease. PLoS One, 2016, 11: e0162237.
doi: 10.1371/journal.pone.0162237 |
[20] |
Schaker P D, Peters L P, Cataldi T R, Labate C A, Caldana C, Monteiro-Vitorello C B. Metabolome dynamics of smutted sugarcane reveals mechanisms involved in disease progression and whip emission. Front Plant Sci, 2017, 8: 882.
doi: 10.3389/fpls.2017.00882 pmid: 28620397 |
[21] |
Su Y, Xu L, Wang Z, Peng Q, Yang Y, Chen Y, Que Y. Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane. BMC Genomics, 2016, 17: 800.
doi: 10.1186/s12864-016-3146-8 |
[22] |
Bhuiyan S A, Magarey R C, McNeil M D, Aitken K S. Sugarcane smut, caused by Sporisorium scitamineum, a major disease of sugarcane: a contemporary review. Phytopathology, 2021, 111: 1905-1917.
doi: 10.1094/PHYTO-05-21-0221-RVW |
[23] |
Wang D, Wang L, Su W, Ren Y, You C, Zhang C, Que Y, Su Y. A class III WRKY transcription factor in sugarcane was involved in biotic and abiotic stress responses. Sci Rep, 2020, 10: 20964.
doi: 10.1038/s41598-020-78007-9 pmid: 33262418 |
[24] |
Huang N, Ling H, Zhang X, Mao H, Su Y, Su W, Liu F, Xu L, Chen R, Que Y. A small GTP-binding gene scran from sugarcane is involved in responses to various hormone stresses and Sporisirium scitamineum challenge. Sugar Technol, 2018, 20: 669-680.
doi: 10.1007/s12355-018-0598-y |
[25] |
Sun T, Cen G, You C, Lou W, Wang Z, Su W, Wang W, Li D, Que Y, Su Y. ScAOC1, an allene oxide cyclase gene, confers defense response to biotic and abiotic stresses in sugarcane. Plant Cell Rep, 2020, 39: 1785-1801.
doi: 10.1007/s00299-020-02606-z |
[26] |
Sun T, Liu F, Wang W, Wang L, Wang Z, Li J, Que Y, Xu L, Su Y. The role of sugarcane catalase gene ScCAT2 in the defense response to pathogen challenge and adversity stress. Int J Mol Sci, 2018, 19: 2686.
doi: 10.3390/ijms19092686 |
[27] |
Ren Y, Zou W, Feng J, Zhang C, Su W, Zhao Z, Wang D, Sun T, Wang W, Cen G, Que Y, Su Y. Characterization of the sugarcane MYC gene family and the negative regulatory role of ShMYC4 in response to pathogen stress. Ind Crop Prod, 2022, 176: 114292.
doi: 10.1016/j.indcrop.2021.114292 |
[28] | 吴才文, 赵俊, 赵培方, 刘家勇, 杨昆, 夏红明, 昝逢刚. 几个新台糖甘蔗品种杂交育种潜力研究. 西南农业学报, 2010, 23: 1413-1417. |
Wu C W, Zhao J, Zhao P F, Liu J Y, Yang K, Xia H M, Zan F G. Research on breeding potential of several ROC varieties in sugarcane. Southwest China J Agric Sci, 2010, 23: 1413-1417. (in Chinese with English abstract) | |
[29] | 赵理贤, 肖雪, 陈悦佳, 刘丹丹, 黄有总, 邹承武, 陈保善. 33 份甘蔗种质资源的 ISSR 标记和遗传多样性. 分子植物育种, 2022, https://kns.cnki.net/kcms/detail/46.1068.S.20220728.1128.006.html. |
Zhao L, Xiao X, Chen Y, Liu D, Huang Y, Zou C, Chen B. ISSR marker polymorphism and genetic diversity of 33 sugarcane germplasm resources. Mol Plant Breed, 2022, https://kns.cnki.net/kcms/detail/46.1068.S.20220728.1128.006.html. (in Chinese with English abstract) | |
[30] | 邓海华, 张琼. 我国大陆近年育成甘蔗品种的亲本分析. 广东农业科学, 2006, 12(2): 7-10. |
Deng H H, Zhang Q. Analysis on the parents of commercial varieties released in Mainland China in recent years. Guangdong Agric Sci, 2006, 12(2): 7-10. (in Chinese with English abstract) | |
[31] | 刘新龙, 李旭娟, 刘洪博, 马丽, 徐超华, 范源洪. 云南甘蔗常用亲本资源遗传多样性的SSR分析. 植物遗传资源学报, 2015, 16: 1212-1222. |
Liu X L, Li X J, Liu H B, Ma L, Xu C H, Fan Y H. Genetic diversity analysis of Yunnan commonly-used parents by using SSR marker. J Plant Genet Resour, 2015, 16: 1212-1222. (in Chinese with English abstract) | |
[32] | 沈万宽, 姜子德, 杨湛端, 刘睿, 陈健文, 邓海华. 甘蔗抗黑穗病的鉴定新方法及其品种抗性评价. 华中农业大学学报, 2014, 33(2): 51-56. |
Shen W K, Jiang Z D, Yang Z D, Liu R, Chen J W, Deng H H. New resistance identification method and resistance evaluation of sugarcane varieties to smut disease. J China Agric Univ, 2014, 33(2): 51-56. (in Chinese with English abstract) | |
[33] | 阙友雄, 许莉萍, 林剑伟, 陈天生, 陈如凯, 李依龙. 甘蔗品种黑穗病抗性评价体系的建立(英文). 植物遗传资源学报, 2006, 7: 18-23. |
Que Y X, Xu L P, Lin J W, Chen T S, Chen R K, Li Y L. Establishment of evaluation system of smut resistance for sugarcane varieties. J Plant Genet Resour, 2006, 7: 18-23. | |
[34] | 苏亚春. 甘蔗应答黑穗病菌侵染的转录组与蛋白组研究及抗性相关基因挖掘. 福建农林大学博士学位论文,福建福州, 2014. |
Su Y C. Transcriptomics and Proteomics of Sugarcane Response to Sporisorium scitamineum Infection and Mining of Resistance-related Genes. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2014. (in Chinese with English abstract) | |
[35] |
Thomas S, Underwood J G, Tseng E, Holloway A K. Long-read sequencing of chicken transcripts and identification of new transcript isoforms. PLoS ONE, 2014, 9: e94650.
doi: 10.1371/journal.pone.0094650 |
[36] |
Hackl T, Hedrich R, Schultz J, Förster F. Proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics, 2014, 30: 3004-3011.
doi: 10.1093/bioinformatics/btu392 pmid: 25015988 |
[37] |
Li W Z, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006, 22: 1658-1659.
doi: 10.1093/bioinformatics/btl158 pmid: 16731699 |
[38] |
Simão F A, Waterhouse R M, Ioannidis P, Kriventseva E V, Zdobnov E M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 2015, 31: 3210-3212.
doi: 10.1093/bioinformatics/btv351 pmid: 26059717 |
[39] |
Liu X, Mei W, Soltis P S, Soltis D E, Barbazuk W B. Detecting alternatively spliced transcript isoforms from single-molecule long-read sequences without a reference genome. Mol Ecol Resour, 2017, 17: 1243-1256.
doi: 10.1111/1755-0998.12670 pmid: 28316149 |
[40] |
Kong L, Zhang Y, Ye Z Q, Liu X Q, Zhao S Q, Wei L, Gao G. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res, 2007, 35: 345-349.
pmid: 17631615 |
[41] |
Wang L, Park H J, Dasari S, Wang S, Kocher J P, Li W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res, 2013, 41: e74.
doi: 10.1093/nar/gkt006 |
[42] |
Zheng Y, Jiao C, Sun H, Rosli H G, Pombo M A, Zhang P, Banf M, Dai X, Martin G B, Giovannoni J J, Zhao P X, Rhee S Y, Fei Z. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant, 2016, 9: 1667-1670.
doi: S1674-2052(16)30223-4 pmid: 27717919 |
[43] |
Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras, T R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013, 29: 15-21.
doi: 10.1093/bioinformatics/bts635 pmid: 23104886 |
[44] |
Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf, 2011, 12: 323.
doi: 10.1186/1471-2105-12-323 |
[45] |
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol, 2010, 11: R106.
doi: 10.1186/gb-2010-11-10-r106 |
[46] | 阙友雄, 许莉萍, 徐景升, 张积森, 张木清, 陈如凯. 甘蔗基因表达定量PCR分析中内参基因的选择. 热带作物学报, 2009, 30(3): 274-278. |
Que Y X, Xu L P, Xu J S, Zhang J S, Zhang M Q, Chen R K. Selection of control genes in real-time qPCR analysis of gene expression in sugarcane. Chin J Trop Crops, 2009, 30(3): 274-278. (in Chinese with English abstract) | |
[47] |
Galletti R, Ferrari S, De Lorenzo G. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol, 2011, 157: 804-814.
doi: 10.1104/pp.111.174003 pmid: 21803860 |
[48] | 杨洪强, 接玉玲. 植物MAPK及其在病原信号传递中的作用. 植物病理学报, 2003, 33: 8-13. |
Yang H Q, Jie Y L. The plant MAPK and its function in pathogen signaling cascades. Acta Phytopathol Sin, 2003, 33: 8-13. (in Chinese with English abstract) | |
[49] |
Gordon S P, Tseng E, Salamov A, Zhang J, Meng X, Zhao Z, Kang D, Underwood J, Grigoriev I V, Figueroa M, Schilling J S, Chen F, Wang Z. Widespread polycistronic transcripts in fungi revealed by Single-Molecule mRNA Sequencing. PLoS ONE, 2015, 10: e0132628.
doi: 10.1371/journal.pone.0132628 |
[50] |
Abdel-Ghany S E, Hamilton M, Jacobi J L, Ngam P, Devitt N, Schilkey F, Ben-Hur A, Reddy A S. A survey of the sorghum transcriptome using single-molecule long reads. Nat Commun, 2016, 7: 11706.
doi: 10.1038/ncomms11706 pmid: 27339290 |
[51] |
Vicente C, Legaz M E, Sánchez-Elordi E. Physiological basis of smut infectivity in the early stages of sugar cane colonization. J Fungi, 2021, 7: 44.
doi: 10.3390/jof7010044 |
[52] |
Peters L P, Teixeira-Silva N S, Bini A P, Silva M M L, Moraes N, Crestana G S, Creste S, Azevedo R A, Carvalho G, Monteiro-Vitorello C B. Differential responses of genes and enzymes associated with ROS protective responses in the sugarcane smut fungus. Fungal Biol, 2020, 124: 1039-1051.
doi: 10.1016/j.funbio.2020.09.009 |
[53] | Ferreira S A, Comstock J C, Wu K K. Evaluating sugarcane for smut resistance. Proc Int Soc Sugarcane Technol, 1980, 17: 1463-1476. |
[54] |
Marques J P R, Hoy J W, Appezzato-da-Glória B, Viveros A F G, Vieira M L C, Baisakh N. Sugarcane cell wall-associated defense responses to infection by Sporisorium scitamineum. Front Plant Sci, 2018, 9: 698.
doi: 10.3389/fpls.2018.00698 pmid: 29875793 |
[55] | Dhar M K, Mishra S, Bhat A, Chib S, Kaul S. Plant carotenoid cleavage oxygenases: structure-function relationships and role in development and metabolism. Brie Funct Genomics, 2020, 19: 37. |
[56] |
Widmann C, Gibson S, Jarpe M B, Johnson G L. Mitogen- activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev, 1999, 79: 143-180.
doi: 10.1152/physrev.1999.79.1.143 pmid: 9922370 |
[57] |
Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell, 2011, 23: 1639-1653.
doi: 10.1105/tpc.111.084996 |
[58] |
Fu S F, Chou W C, Huang D D, Huang H J. Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol, 2002, 43: 958-963.
doi: 10.1093/pcp/pcf111 |
[59] |
Agrawal G K, Agrawal S K, Shibato J, Iwahashi H, Rakwal R. Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Biophys Res Commun, 2003, 300: 775-783.
doi: 10.1016/S0006-291X(02)02868-1 |
[60] |
Zhang H, Liu Y, Wen F, Yao D, Wang L, Guo J, Ni L, Zhang A, Tan M, Jiang M. A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. J Exp Bot, 2014, 65: 5795-5809.
doi: 10.1093/jxb/eru313 pmid: 25071223 |
[61] |
Kishi-Kaboshi M, Okada K, Kurimoto L, Murakami S, Umezawa T, Shibuya N, Yamane H, Miyao A, Takatsuji H, Takahashi A, Hirochika H. A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J, 2010, 63: 599-612.
doi: 10.1111/j.1365-313X.2010.04264.x |
[62] |
Song F, Goodman R M. OsBIMK1, a rice MAP kinase gene involved in disease resistance responses. Planta, 2002, 215: 997-1005.
pmid: 12355160 |
[63] |
Wang Q, Li J, Hu L, Zhang T, Zhang G, Lou Y. OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Rep, 2013, 32: 1075-1084.
doi: 10.1007/s00299-013-1389-2 pmid: 23344857 |
[64] |
Reyna N S, Yang Y. Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol Plant Microbe Interact, 2006, 19: 530-540.
doi: 10.1094/MPMI-19-0530 |
[65] | Wu Q, Xu L, Guo J, Su Y, Que Y. Transcriptome profile analysis of sugarcane responses to Sporisorium scitaminea infection using Solexa sequencing technology. BioMed Res Int, 2013, 2013: 9. |
[66] |
Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci, 2005, 10: 339-346.
doi: 10.1016/j.tplants.2005.05.009 pmid: 15953753 |
[67] |
Cheong Y H, Moon B C, Kim J K, Kim C Y, Kim M C, Kim I H, Park C Y, Kim J C, Park B O, Koo S C, Yoon H W, Chung W S, Lim C O, Lee S Y, Cho M J. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol, 2003, 132: 1961-1972.
pmid: 12913152 |
[68] |
Koo S C, Moon B C, Kim J K, Kim C Y, Sung S J, Kim M C, Cho M J, Cheong Y H. OsBWMK1 mediates SA-dependent defense responses by activating the transcription factor OsWRKY33. Biochem Biophys Res Commun, 2009, 387: 365-370.
doi: 10.1016/j.bbrc.2009.07.026 |
[69] |
Ning J, Yuan B, Xie K B, Hu H H, Wu C Q, Xiong L Z. Isolation and identification of SA and JA inducible protein kinase gene OsSJMK1 in rice. Acta Genet Sin, 2006, 33: 625-633.
doi: 10.1016/S0379-4172(06)60092-9 |
[70] |
Javed T, Shabbir R, Ali A, Afzal I, Zaheer U, Gao S J. Transcription factors in plant stress responses: challenges and potential for sugarcane improvement. Plants, 2020, 9: 491.
doi: 10.3390/plants9040491 |
[71] |
Chen F, Hu Y, Vannozzi A, Wu K, Cai H, Qin Y, Mullis A, Lin Z, Zhang L. The WRKY transcription factor family in model plants and crops. Crit Rev Plant Sci, 2017, 36: 311-335.
doi: 10.1080/07352689.2018.1441103 |
[72] |
Yuan X, Wang H, Cai J, Li D, Song F. NAC transcription factors in plant immunity. Phytopath Res, 2019, 1: 3.
doi: 10.1186/s42483-018-0008-0 |
[73] |
Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol, 2020, 40: 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044 |
[74] |
Zang Z, Lyu Y, Liu S, Yang W, Ci J, Ren X, Wang Z, Wu H, Ma W, Jiang L, Yang W. A novel ERF transcription factor, ZmERF105, positively regulates maize resistance to Exserohilum turcicum. Front Plant Sci, 2020, 11: 850.
doi: 10.3389/fpls.2020.00850 |
[75] | Zhao Y, Chang X, Qi D, Dong L, Wang G, Fan S, Jiang L, Cheng Q, Chen X, Han D, Xu P, Zhang S. A novel soybean ERF transcription factor, GmERF113, increases resistance to Phytophthora sojae infection in soybean. Front Plant Sci, 2017, 8: 299. |
[76] | Hawku M D, Goher F, Islam M A, Guo J, He F, Bai X, Yuan P, Kang Z, Guo J. TaAP2-15, an AP2/ERF transcription factor, is positively involved in wheat resistance to Puccinia striiformis f. sp. tritici. Int J Mol Sci, 2021, 22: 2080. |
[77] |
Ji S, Liu Z, Wang Y. Trichoderma-induced ethylene responsive factor MsERF105 mediates defense responses in Malus sieversii. Front Plant Sci, 2021, 12: 708010.
doi: 10.3389/fpls.2021.708010 |
[78] |
He J, Liu Y, Yuan D, Duan M, Liu Y, Shen Z, Yang C, Qiu Z, Liu D, Wen P, Huang J, Fan D, Xiao S, Xin Y, Chen X, Jiang L, Wang H, Yuan L, Wan J. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proc Natl Acad Sci USA, 2020, 117: 271-277.
doi: 10.1073/pnas.1902771116 pmid: 31848246 |
[79] |
Zhu X, Li X, He Q, Guo D, Liu C, Cao J, Wu Z, Kang Z, Wang X. TaMYB29: a novel R2R3-MYB transcription factor involved in wheat defense against stripe rust. Front Plant Sci, 2021, 12: 783388.
doi: 10.3389/fpls.2021.783388 |
[80] |
Gu K D, Zhang Q Y, Yu J Q, Wang J H, Zhang F J, Wang C K, Zhao Y W, Sun C H, You C X, Hu D G, Hao Y J. R2R3-MYB transcription factor MdMYB73 confers increased resistance to the fungal pathogen Botryosphaeria dothidea in apples via the salicylic acid pathway. J Agric Food Chem, 2021, 69: 447-458.
doi: 10.1021/acs.jafc.0c06740 |
[81] |
Shan T, Rong W, Xu H, Du L, Liu X, Zhang Z. The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Sci Rep, 2016, 6: 28777.
doi: 10.1038/srep28777 |
[82] |
Jin J P, Tian F, Yang D C, Meng Y Q, Kong L, Luo J C, Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res, 2017, 45: D1040-D1045.
doi: 10.1093/nar/gkw982 |
[83] |
Agisha V N, Ashwin N M R, Vinodhini R T, Nalayeni K, Ramesh S A, Malathi P, Viswanathan R. Transcriptome analysis of sugarcane reveals differential switching of major defense signaling pathways in response to Sporisorium scitamineum isolates with varying virulent attributes. Front Plant Sci, 2022, 13: 969826.
doi: 10.3389/fpls.2022.969826 |
[84] |
Wang L, Liu F, Zhang X, Wang W, Sun T, Chen Y, Dai M, Yu S, Xu L, Su Y, Que Y. Expression characteristics and functional analysis of the ScWRKY3 gene from sugarcane. Int J Mol Sci, 2018, 19: 4059.
doi: 10.3390/ijms19124059 |
[1] | 杜翠翠, 吴明星, 张雅婷, 谢婉婕, 张积森, 王恒波. 甘蔗割手密种糖转运蛋白基因SsSWEET11的克隆与功能分析[J]. 作物学报, 2023, 49(9): 2385-2397. |
[2] | 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497. |
[3] | 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484. |
[4] | 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425. |
[5] | 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538. |
[6] | 杨宗桃, 焦文迪, 张海, 张克闽, 程光远, 罗廷绪, 曾康, 周营栓, 徐景升. 甘蔗谷胱甘肽硫转移酶ScGSTF1与P3N-PIPO互作应答甘蔗花叶病毒侵染的研究[J]. 作物学报, 2023, 49(10): 2665-2676. |
[7] | 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定[J]. 作物学报, 2023, 49(10): 2654-2664. |
[8] | 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61. |
[9] | 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104. |
[10] | 郭楠楠, 刘天策, 史硕, 胡心亭, 牛亚丹, 李亮. 长链非编码RNA (LncRNA)在印度梨形孢促进大麦根部生长发育中的调控作用[J]. 作物学报, 2022, 48(7): 1625-1634. |
[11] | 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600. |
[12] | 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613. |
[13] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[14] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[15] | 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234. |
|