欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2433-2445.doi: 10.3724/SP.J.1006.2023.23071

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米转录因子ZmEREB211对非生物逆境胁迫的应答

艾蓉1,2(), 张春2(), 悦曼芳2, 邹华文1,*(), 吴忠义2,*()   

  1. 1长江大学农学院, 湖北荆州434025
    2北京市农林科学院 / 生物技术研究所 / 农业基因资源与生物技术北京市重点实验室, 北京100097
  • 收稿日期:2022-10-21 接受日期:2023-02-21 出版日期:2023-09-12 网络出版日期:2023-03-01
  • 通讯作者: *邹华文, E-mail: zouhuawen@yangtzeu.edu.cn; 吴忠义, E-mail: zwu22@126.com
  • 作者简介:艾蓉, E-mail: airong202203@163.com
    张春, E-mail: spring2007318@163.com第一联系人:**同等贡献
  • 基金资助:
    国家自然科学基金项目(32001430);国家自然科学基金项目(32171952);国家自然科学基金项目(31971839);北京市农林科学院科技创新能力建设专项(KJCX20220402)

Response of maize transcriptional factor ZmEREB211 to abiotic stress

AI Rong1,2(), ZHANG Chun2(), YUE Man-Fang2, ZOU Hua-Wen1,*(), WU Zhong-Yi2,*()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, China
  • Received:2022-10-21 Accepted:2023-02-21 Published:2023-09-12 Published online:2023-03-01
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(32001430);National Natural Science Foundation of China(32171952);National Natural Science Foundation of China(31971839);Beijing Academy of Agricultural and Forestry Sciences(KJCX20220402)

摘要:

AP2/ERF (APETALA2/ethylene-responsive factor)转录因子是植物中最大的转录因子家族之一, 在调控植物生长发育和响应逆境胁迫等方面起重要作用。探究玉米(Zea mays L.) AP2/ERF家族基因功能将为玉米新种质创制提供重要的基因资源。本研究克隆获得了ZmEREB211 (Gene ID: 103647485)基因, 利用生物信息学分析、实时荧光定量PCR等技术对该基因的基本特性、组织表达特性及响应逆境胁迫表达模式等进行了分析; 对转基因拟南芥株系进行了相应逆境胁迫处理和表型鉴定。结果显示: 该基因只包含1个外显子, cDNA全长为792 bp, 编码263个氨基酸; ZmEREB211蛋白分子量为27.9 kD, 理论等电点为6.01, 具有AP2家族所特有的保守结构域; ZmEREB211基因在玉米根系中的表达量最高, 且在幼根中的表达量高于成熟根中的表达量; 同时该基因在脱水、高盐、干旱和低温等处理条件下均有不同程度的诱导表达。在分别含有不同浓度梯度的NaCl、甘露醇(mannitol)和茉莉酸(jasmonic acid, JA)的1/2 MS培养基上, 转ZmEREB211基因拟南芥株系的根长显著长于野生型。在干旱和高盐处理下, 盆栽转基因拟南芥株系较野生型株系表现出更强的耐受性, 且苗期的绿叶数显著多于野生型, 过氧化物酶(POD)活性和叶绿素含量均显著高于野生型。研究表明ZmEREB211可能参与调控玉米根系生长发育, 对高盐、干旱、渗透等逆境胁迫及JA激素处理均能起到正向的调控作用。本研究为进一步解析ZmEREB211在玉米中的生物学功能提供了重要的参考依据。

关键词: 玉米, ZmEREB211, 转录因子, 异源表达, 根系, 逆境胁迫

Abstract:

AP2/ERF (APETALA2/ethylene-responsive factor) transcription factor is one of the largest transcription factor families in plants, which plays an important role in regulating plant growth and development and responding to various stresses. Exploring the function of AP2/ERF family genes in maize (Zea mays L.) will provide the important genetic resources for the creation of new maize germplasm. In this study, ZmEREB211 (Gene ID: 103647485) gene was cloned and its basic characteristics, tissue expression characteristics, and the relative expression patterns in response to stress were analyzed by bioinformatics and qRT-PCR. The transgenic Arabidopsis lines were subjected to corresponding stress treatment and phenotypic identification. The results showed that the gene contained only one exon and the full-length cDNA was 792 bp which encoding 263 amino acids. The ZmEREB211 protein had a molecular weight of 27.9 kD and a theoretical isoelectric point of 6.01. It had a conserved domain unique to the AP2/ERF family. The relative expression level of ZmEREB211 gene was the highest in maize root system and the relative expression level in young roots was higher than mature roots. At the same time, the gene had different degrees of induced expression under dehydration, high salt, drought, and low temperature treatment conditions. On 1/2 MS medium containing different concentrations of NaCl, mannitol, and jasmonic acid (JA), root length of ZmEREB211 transgenic Arabidopsis lines was significantly longer than wild type. Under drought and high salt treatments, transgenic Arabidopsis lines had stronger tolerance than wild type, and the number of green leaves at seedling stage was significantly higher than wild type and the peroxidase (POD) activity and chlorophyll content were significantly higher than wild type. ZmEREB211 may be involved in the regulation of root growth and development in maize, and can play a positive regulatory role in high salt, drought, osmotic stress, and JA hormone treatments. This study provides an important reference for further analysis of the biological function of ZmEREB211 in maize.

Key words: maize, ZmEREB211, transcription factor, heterologous expression, root system, adversity stress

表1

本实验中所用的引物"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
pZmEREB211-F CTGAAATCACCAGTCGGTACCATGACCAAGAAGCTCATCT (Kpn I)
pZmEREB211-R GCCCTTGCTCACCATGGTACCTCAAAAACTAGACGCGGCG (Kpn I)
pZmEREB211RT-F AGGAGGACGCCATCATCGT
pZmEREB211RT-R GGTACATGTTCCTGTTCCTACG
Actin-F
Actin-R
TACGAGATGCCTGATGGTCAGGTCA
TGGAGTTGTACGTGGCCTCATGGAC
pGAPDHRT-F
pGAPDHRT-R
CCCTTCATCACCACGGACTAC
AACCTTCTTGGCACCACCCT

图1

ZmEREB211生物信息学分析 A: 保守结构域分析; B: 跨膜结构预测; C: 蛋白空间结构预测; D: 启动子区顺式作用元件分析。"

图2

ZmEREB211在玉米不同组织中的相对表达量 不同小写字母表示差异显著(P < 0.05)。"

图3

ZmEREB211在不同非生物胁迫下的相对表达量 A~D: ZmEREB211分别在脱水、高盐、渗透、低温处理后的表达量。"

图4

ZmEREB211在玉米不同激素处理中的相对表达量"

图5

T4代拟南芥PCR检测和qPCR检测 A: T4代转基因拟南芥PCR检测; B: T4代转基因拟南芥qPCR检测。M: DL2000 marker; N: 阴性对照; W: 水对照; WT: 野生型拟南芥; L-1~L-6: T4代转基因拟南芥株系; *: P < 0.05; **: P < 0.01。"

图6

不同盐浓度下转基因拟南芥株系根长比较 A~D 分别为0、0.1、0.15和0.18 mol L-1盐处理的生长情况; E: 不同盐浓度下拟南芥株系平均主根长度; WT: 野生型拟南芥; L-3、L-4、L-5: 转ZmEREB211拟南芥株系; 标尺为1.5 cm; *: P < 0.05; **: P < 0.01。"

图7

不同甘露醇浓度下转基因拟南芥株系根长比较 A~D 分别为0、0.15、0.2和0.3 mol L-1甘露醇处理的生长情况; E: 不同甘露醇浓度下拟南芥株系平均主根长度。缩写同图6; 标尺为1.5 cm; *: P < 0.05; **: P < 0.01。"

图8

不同JA和ABA浓度下转基因拟南芥株系根长比较 A: 0、50、75和100 μmol L-1 JA处理下的生长情况; B: 不同JA浓度下拟南芥株系平均主根长度; C: 0、10、25和50 μmol L-1 ABA处理下的生长情况; D: 不同ABA浓度下拟南芥株系平均主根长度。缩写同图6; 标尺为1.5 cm; *: P < 0.05; **: P < 0.01。"

图9

土壤中干旱处理下拟南芥株系表型分析 A: 拟南芥表型; B: 干旱处理后绿叶率; C: 复水处理后绿叶率; D: POD活性的测定; E: 叶绿素含量测定。缩写同图6; *: P < 0.05; **: P < 0.01。"

图10

土壤中高盐处理下拟南芥株系表型分析 A: 拟南芥表型; B: 高盐处理后绿叶率; C: POD活性的测定; D: 叶绿素含量的测定。缩写同图6; *: P < 0.05; **: P < 0.01。"

[1] 仇焕广, 李新海, 余嘉玲. 中国玉米产业: 发展趋势与政策建议. 农业经济问题, 2021, (7): 4-16.
Qiu H G, Li X H, Yu J L. China’s corn industry development trends and policy recommendations. Iss Agric Econ 2021, (7): 4-16. (in Chinese)
[2] Osmond C B, Austin M P, Berry J A, Billings W D, Boyer J, Dacey J W H, Nobel P S, Smith S D, Winner W E. Stress physiology and the distribution of plants: the survival of plants in any ecosystem depends on their physiological reactions to various stresses of the environment. BioScience, 1987, 37: 38-48.
doi: 10.2307/1310176
[3] 张雪莹, 刘欣. 转录因子与叶片发育的研究进展. 植物生理学报, 2022, 58(1): 91-100.
Zhang X Y, Liu X. Research progress of transcription factors and leaf development. Plant Phys J, 2022, 58(1): 91-100. (in Chinese with English abstract)
[4] 葛宝宇, 林轶, 侯和胜. ERF类转录因子的结构与功能. 安徽农学通报, 2007, (20): 32-35.
Ge B Y, Lin Y, Hou H S. Structure and function of ERF transcription factors. AnHui Agric Sci Bull, 2007, (20): 32-35. (in Chinese with English abstract)
[5] 刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用. 科学通报, 2000, 45: 1465-1474.
Liu Q, Zhang G Y, Chen S Y. Structure and regulation of plant transcription factors. Chin Sci Bull, 2000, 45: 1465-1474. (in Chinese)
doi: 10.1360/csb2000-45-14-1465
[6] 张艳馥, 沙伟. 转录因子概述. 生物学教学, 2009, 34(10): 7-8.
Zhang Y F, Sha W. Overview of transcription factors. Biol Teach, 2009, 34(10): 7-8. (in Chinese)
[7] 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展. 生物技术通报, 2022, 38(12): 11-26.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0432
Yue M F, Zhang C, Wu Z Y. Advances in the structure and function of plant transcription factor AP2/ERF family proteins. Biotechnol Bull, 2022, 38(12): 11-26 (in Chinese with English abstract).
[8] Ng D W K, Abeysinghe J K, Kamali M. Regulating the regulators: the control of transcription factors in plant defense signaling. Int J Mol Sci, 2018, 19: 3737.
doi: 10.3390/ijms19123737
[9] Allen M D, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J, 1998, 17: 5484-5496.
doi: 10.1093/emboj/17.18.5484 pmid: 9736626
[10] Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol, 2013, 199: 639-649.
doi: 10.1111/nph.12291 pmid: 24010138
[11] Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998-1009.
doi: 10.1006/bbrc.2001.6299
[12] Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 1995, 7: 173-182.
doi: 10.1105/tpc.7.2.173 pmid: 7756828
[13] Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol, 1996, 30: 679-684.
doi: 10.1007/BF00049344 pmid: 8605318
[14] Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6: 251-264.
doi: 10.1105/tpc.6.2.251 pmid: 8148648
[15] Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411-432.
doi: 10.1104/pp.105.073783
[16] Lu L L, Qanmber G, Li J, Pu M L, Chen G Q, Li S D, Liu L, Qin W Q, Ma S Y, Wang Y, Chen Q J, Liu Z. Identification and characterization of the ERF subfamily B3 group revealed GhERF13.12 improves salt tolerance in upland cotton. Front Plant Sci, 2021, 12: 705883.
doi: 10.3389/fpls.2021.705883
[17] Tang M J, Sun J W, Liu Y, Chen F, Shen S H. Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas. Plant Mol Biol, 2007, 63: 419-428.
doi: 10.1007/s11103-006-9098-7
[18] Xie Z L, Nolan T, Jiang H, Tang B Y, Zhang M C, Li Z H, Yin Y H. The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis. Plant Cell, 2019, 31: 1788-1806.
doi: 10.1105/tpc.18.00918
[19] Zhang G Y, Chen M, Chen X P, Xu Z S, Li L C, Guo J M, Ma Y Z. Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L.). Mol Biol Rep, 2010, 37: 809-818.
doi: 10.1007/s11033-009-9616-1
[20] Zhai Y, Wang Y, Li Y J, Lei T T, Yan F, Su L T, Li X W, Zhao Y, Sun X, Li J W, Wang Q Y. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene, 2013, 513: 174-183.
doi: 10.1016/j.gene.2012.10.018
[21] Tang Y H, Qin S S, Guo Y L, Chen Y B, Wu P Z, Chen Y P, Li M R, Jiang H W, Wu G J. Genome-wide analysis of the AP2/ERF gene family in physic nut and overexpression of the JcERF011 gene in rice increased its sensitivity to salinity stress. PLoS One, 2016, 11: e0150879.
doi: 10.1371/journal.pone.0150879
[22] Jung S E, Bang S W, Kim S H, Seo J S, Yoon H B, Kim Y S, Kim J K. Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice. Int J Mol Sci, 2021, 22: 7656.
doi: 10.3390/ijms22147656
[23] Şahin-Çevik M, Moore G A. Two AP2 domain containing genes isolated from the cold-hardy citrus relative Poncirus trifoliata are induced in response to cold. Funct Plant Biol, 2006, 33: 863-875.
doi: 10.1071/FP06005 pmid: 32689297
[24] Zhang J, Liao J Y, Ling Q Q, Xi Y, Qian Y X. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance. BMC Genomics, 2022, 23: 125.
doi: 10.1186/s12864-022-08345-7 pmid: 35151253
[25] Hao L D, Shi S B, Guo H B, Li M, Hu P, Wei Y D, Feng Y F. Genome-wide identification and expression profiles of ERF subfamily transcription factors in Zea mays. PeerJ, 2020, 8: e9551.
doi: 10.7717/peerj.9551
[26] Wang Z Y, Zhao X, Ren Z Z, Abou-Elwafa SF, Pu X Y, Zhu Y F, Dou D D, Su H H, Cheng H Y, Liu Z X, Chen Y H, Wang E, Shao R X, Ku L X. ZmERF21directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant Cell Environ, 2022, 45: 312-328.
doi: 10.1111/pce.v45.2
[27] Zhang C, Li X L, Wang Z P, Zhang Z B, Wu Z Y. Identifying key regulatory genes of maize root growth and development by RNA sequencing. Genomics, 2020, 112: 5157-5169.
doi: 10.1016/j.ygeno.2020.09.030 pmid: 32961281
[28] 王莉, 王作平, 张中保, 白玲, 吴忠义. 玉米早期籽粒中强表达启动子的筛选. 作物杂志, 2020, (4): 114-120.
Wang L, Wang Z P, Zhang Z B, Bai L, Wu Z Y. Screening of strong expression promoters in early kernels of maize. Crops, 2020, (4): 114-120. (in Chinese with English abstract)
[29] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[30] 杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究. 作物学报, 2020, 46: 2008-2016.
doi: 10.3724/SP.J.1006.2020.03022
Yang M T, Zhang C, Wang Z P, Zou H W, Wu Z Y. Cloning and functional analysis of ZmbHLH161 gene in maize. Acta Agron Sin, 2020, 46: 2008-2016. (in Chinese with English abstract)
[31] 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答. 作物学报, 2022, 48: 3004-3017.
doi: 10.3724/SP.J.1006.2022.13060
Yue M F, Zhang C, Zheng D Y, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmbHLH91 to abiotic stress. Acta Agron Sin, 2022, 48: 3004-3017 (in Chinese with English abstract).
[32] Wang Y Q, Xia D N, Li W Q, Cao X Y, Ma F, Wang Q Q, Zhan X Q, Hu T X. Overexpression of a tomato AP2/ERF transcription factor SlERF.B1 increases sensitivity to salt and drought stresses. Sci Hortic, 2022, 304: 111332.
doi: 10.1016/j.scienta.2022.111332
[33] Peng X J, Ma X Y, Fan W H, Su M, Cheng L Q, Alam I, Lee B H, Qi D M, Shen S H, Liu G S. Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep, 2011, 30: 1493-1502.
doi: 10.1007/s00299-011-1058-2
[34] Qu Y J, Nong Q D, Jian S G, Lu H F, Zhang M Y, Xia K F. An AP2/ERF gene, HuERF1, from pitaya (Hylocereus undatus) positively regulates salt tolerance. Int J Mol Sci, 2020, 21: 4586.
doi: 10.3390/ijms21134586
[35] Cai X T, Xu P, Zhao P X, Liu R, Yu L H, Xiang C B. Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat Commun, 2014, 5: 5833.
doi: 10.1038/ncomms6833
[1] 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497.
[2] 刘洁, 蔡诚诚, 刘石锋, 邓孟胜, 王雪枫, 温和, 李罗品, 严奉君, 王西瑶. 马铃薯StCYP85A3促进萌芽及根系伸长的功能解析[J]. 作物学报, 2023, 49(9): 2462-2471.
[3] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[4] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[5] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[6] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[7] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[8] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
[9] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[10] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[11] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[12] 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757.
[13] 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828.
[14] 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制[J]. 作物学报, 2023, 49(6): 1630-1642.
[15] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[10] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .