作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2433-2445.doi: 10.3724/SP.J.1006.2023.23071
艾蓉1,2(), 张春2(), 悦曼芳2, 邹华文1,*(), 吴忠义2,*()
AI Rong1,2(), ZHANG Chun2(), YUE Man-Fang2, ZOU Hua-Wen1,*(), WU Zhong-Yi2,*()
摘要:
AP2/ERF (APETALA2/ethylene-responsive factor)转录因子是植物中最大的转录因子家族之一, 在调控植物生长发育和响应逆境胁迫等方面起重要作用。探究玉米(Zea mays L.) AP2/ERF家族基因功能将为玉米新种质创制提供重要的基因资源。本研究克隆获得了ZmEREB211 (Gene ID: 103647485)基因, 利用生物信息学分析、实时荧光定量PCR等技术对该基因的基本特性、组织表达特性及响应逆境胁迫表达模式等进行了分析; 对转基因拟南芥株系进行了相应逆境胁迫处理和表型鉴定。结果显示: 该基因只包含1个外显子, cDNA全长为792 bp, 编码263个氨基酸; ZmEREB211蛋白分子量为27.9 kD, 理论等电点为6.01, 具有AP2家族所特有的保守结构域; ZmEREB211基因在玉米根系中的表达量最高, 且在幼根中的表达量高于成熟根中的表达量; 同时该基因在脱水、高盐、干旱和低温等处理条件下均有不同程度的诱导表达。在分别含有不同浓度梯度的NaCl、甘露醇(mannitol)和茉莉酸(jasmonic acid, JA)的1/2 MS培养基上, 转ZmEREB211基因拟南芥株系的根长显著长于野生型。在干旱和高盐处理下, 盆栽转基因拟南芥株系较野生型株系表现出更强的耐受性, 且苗期的绿叶数显著多于野生型, 过氧化物酶(POD)活性和叶绿素含量均显著高于野生型。研究表明ZmEREB211可能参与调控玉米根系生长发育, 对高盐、干旱、渗透等逆境胁迫及JA激素处理均能起到正向的调控作用。本研究为进一步解析ZmEREB211在玉米中的生物学功能提供了重要的参考依据。
[1] | 仇焕广, 李新海, 余嘉玲. 中国玉米产业: 发展趋势与政策建议. 农业经济问题, 2021, (7): 4-16. |
Qiu H G, Li X H, Yu J L. China’s corn industry development trends and policy recommendations. Iss Agric Econ 2021, (7): 4-16. (in Chinese) | |
[2] |
Osmond C B, Austin M P, Berry J A, Billings W D, Boyer J, Dacey J W H, Nobel P S, Smith S D, Winner W E. Stress physiology and the distribution of plants: the survival of plants in any ecosystem depends on their physiological reactions to various stresses of the environment. BioScience, 1987, 37: 38-48.
doi: 10.2307/1310176 |
[3] | 张雪莹, 刘欣. 转录因子与叶片发育的研究进展. 植物生理学报, 2022, 58(1): 91-100. |
Zhang X Y, Liu X. Research progress of transcription factors and leaf development. Plant Phys J, 2022, 58(1): 91-100. (in Chinese with English abstract) | |
[4] | 葛宝宇, 林轶, 侯和胜. ERF类转录因子的结构与功能. 安徽农学通报, 2007, (20): 32-35. |
Ge B Y, Lin Y, Hou H S. Structure and function of ERF transcription factors. AnHui Agric Sci Bull, 2007, (20): 32-35. (in Chinese with English abstract) | |
[5] | 刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用. 科学通报, 2000, 45: 1465-1474. |
Liu Q, Zhang G Y, Chen S Y. Structure and regulation of plant transcription factors. Chin Sci Bull, 2000, 45: 1465-1474. (in Chinese)
doi: 10.1360/csb2000-45-14-1465 |
|
[6] | 张艳馥, 沙伟. 转录因子概述. 生物学教学, 2009, 34(10): 7-8. |
Zhang Y F, Sha W. Overview of transcription factors. Biol Teach, 2009, 34(10): 7-8. (in Chinese) | |
[7] |
悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展. 生物技术通报, 2022, 38(12): 11-26.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0432 |
Yue M F, Zhang C, Wu Z Y. Advances in the structure and function of plant transcription factor AP2/ERF family proteins. Biotechnol Bull, 2022, 38(12): 11-26 (in Chinese with English abstract). | |
[8] |
Ng D W K, Abeysinghe J K, Kamali M. Regulating the regulators: the control of transcription factors in plant defense signaling. Int J Mol Sci, 2018, 19: 3737.
doi: 10.3390/ijms19123737 |
[9] |
Allen M D, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J, 1998, 17: 5484-5496.
doi: 10.1093/emboj/17.18.5484 pmid: 9736626 |
[10] |
Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol, 2013, 199: 639-649.
doi: 10.1111/nph.12291 pmid: 24010138 |
[11] |
Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998-1009.
doi: 10.1006/bbrc.2001.6299 |
[12] |
Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 1995, 7: 173-182.
doi: 10.1105/tpc.7.2.173 pmid: 7756828 |
[13] |
Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol, 1996, 30: 679-684.
doi: 10.1007/BF00049344 pmid: 8605318 |
[14] |
Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6: 251-264.
doi: 10.1105/tpc.6.2.251 pmid: 8148648 |
[15] |
Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411-432.
doi: 10.1104/pp.105.073783 |
[16] |
Lu L L, Qanmber G, Li J, Pu M L, Chen G Q, Li S D, Liu L, Qin W Q, Ma S Y, Wang Y, Chen Q J, Liu Z. Identification and characterization of the ERF subfamily B3 group revealed GhERF13.12 improves salt tolerance in upland cotton. Front Plant Sci, 2021, 12: 705883.
doi: 10.3389/fpls.2021.705883 |
[17] |
Tang M J, Sun J W, Liu Y, Chen F, Shen S H. Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas. Plant Mol Biol, 2007, 63: 419-428.
doi: 10.1007/s11103-006-9098-7 |
[18] |
Xie Z L, Nolan T, Jiang H, Tang B Y, Zhang M C, Li Z H, Yin Y H. The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis. Plant Cell, 2019, 31: 1788-1806.
doi: 10.1105/tpc.18.00918 |
[19] |
Zhang G Y, Chen M, Chen X P, Xu Z S, Li L C, Guo J M, Ma Y Z. Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L.). Mol Biol Rep, 2010, 37: 809-818.
doi: 10.1007/s11033-009-9616-1 |
[20] |
Zhai Y, Wang Y, Li Y J, Lei T T, Yan F, Su L T, Li X W, Zhao Y, Sun X, Li J W, Wang Q Y. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene, 2013, 513: 174-183.
doi: 10.1016/j.gene.2012.10.018 |
[21] |
Tang Y H, Qin S S, Guo Y L, Chen Y B, Wu P Z, Chen Y P, Li M R, Jiang H W, Wu G J. Genome-wide analysis of the AP2/ERF gene family in physic nut and overexpression of the JcERF011 gene in rice increased its sensitivity to salinity stress. PLoS One, 2016, 11: e0150879.
doi: 10.1371/journal.pone.0150879 |
[22] |
Jung S E, Bang S W, Kim S H, Seo J S, Yoon H B, Kim Y S, Kim J K. Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice. Int J Mol Sci, 2021, 22: 7656.
doi: 10.3390/ijms22147656 |
[23] |
Şahin-Çevik M, Moore G A. Two AP2 domain containing genes isolated from the cold-hardy citrus relative Poncirus trifoliata are induced in response to cold. Funct Plant Biol, 2006, 33: 863-875.
doi: 10.1071/FP06005 pmid: 32689297 |
[24] |
Zhang J, Liao J Y, Ling Q Q, Xi Y, Qian Y X. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance. BMC Genomics, 2022, 23: 125.
doi: 10.1186/s12864-022-08345-7 pmid: 35151253 |
[25] |
Hao L D, Shi S B, Guo H B, Li M, Hu P, Wei Y D, Feng Y F. Genome-wide identification and expression profiles of ERF subfamily transcription factors in Zea mays. PeerJ, 2020, 8: e9551.
doi: 10.7717/peerj.9551 |
[26] |
Wang Z Y, Zhao X, Ren Z Z, Abou-Elwafa SF, Pu X Y, Zhu Y F, Dou D D, Su H H, Cheng H Y, Liu Z X, Chen Y H, Wang E, Shao R X, Ku L X. ZmERF21directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant Cell Environ, 2022, 45: 312-328.
doi: 10.1111/pce.v45.2 |
[27] |
Zhang C, Li X L, Wang Z P, Zhang Z B, Wu Z Y. Identifying key regulatory genes of maize root growth and development by RNA sequencing. Genomics, 2020, 112: 5157-5169.
doi: 10.1016/j.ygeno.2020.09.030 pmid: 32961281 |
[28] | 王莉, 王作平, 张中保, 白玲, 吴忠义. 玉米早期籽粒中强表达启动子的筛选. 作物杂志, 2020, (4): 114-120. |
Wang L, Wang Z P, Zhang Z B, Bai L, Wu Z Y. Screening of strong expression promoters in early kernels of maize. Crops, 2020, (4): 114-120. (in Chinese with English abstract) | |
[29] |
Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079 |
[30] |
杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究. 作物学报, 2020, 46: 2008-2016.
doi: 10.3724/SP.J.1006.2020.03022 |
Yang M T, Zhang C, Wang Z P, Zou H W, Wu Z Y. Cloning and functional analysis of ZmbHLH161 gene in maize. Acta Agron Sin, 2020, 46: 2008-2016. (in Chinese with English abstract) | |
[31] |
悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答. 作物学报, 2022, 48: 3004-3017.
doi: 10.3724/SP.J.1006.2022.13060 |
Yue M F, Zhang C, Zheng D Y, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmbHLH91 to abiotic stress. Acta Agron Sin, 2022, 48: 3004-3017 (in Chinese with English abstract). | |
[32] |
Wang Y Q, Xia D N, Li W Q, Cao X Y, Ma F, Wang Q Q, Zhan X Q, Hu T X. Overexpression of a tomato AP2/ERF transcription factor SlERF.B1 increases sensitivity to salt and drought stresses. Sci Hortic, 2022, 304: 111332.
doi: 10.1016/j.scienta.2022.111332 |
[33] |
Peng X J, Ma X Y, Fan W H, Su M, Cheng L Q, Alam I, Lee B H, Qi D M, Shen S H, Liu G S. Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep, 2011, 30: 1493-1502.
doi: 10.1007/s00299-011-1058-2 |
[34] |
Qu Y J, Nong Q D, Jian S G, Lu H F, Zhang M Y, Xia K F. An AP2/ERF gene, HuERF1, from pitaya (Hylocereus undatus) positively regulates salt tolerance. Int J Mol Sci, 2020, 21: 4586.
doi: 10.3390/ijms21134586 |
[35] |
Cai X T, Xu P, Zhao P X, Liu R, Yu L H, Xiang C B. Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat Commun, 2014, 5: 5833.
doi: 10.1038/ncomms6833 |
[1] | 莫广玲, 余陈静, 梁艳兰, 周定港, 罗俊, 王莫, 阙友雄, 黄宁, 凌辉. 甘蔗ScbHLH13基因的RT-PCR克隆与功能分析[J]. 作物学报, 2023, 49(9): 2485-2497. |
[2] | 刘洁, 蔡诚诚, 刘石锋, 邓孟胜, 王雪枫, 温和, 李罗品, 严奉君, 王西瑶. 马铃薯StCYP85A3促进萌芽及根系伸长的功能解析[J]. 作物学报, 2023, 49(9): 2462-2471. |
[3] | 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330. |
[4] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[5] | 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538. |
[6] | 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076. |
[7] | 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087. |
[8] | 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096. |
[9] | 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307. |
[10] | 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929. |
[11] | 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022. |
[12] | 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757. |
[13] | 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828. |
[14] | 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制[J]. 作物学报, 2023, 49(6): 1630-1642. |
[15] | 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629. |
|