作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2088-2096.doi: 10.3724/SP.J.1006.2023.23059
王娟(), 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明(), 何春梅()
WANG Juan(), XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming(), HE Chun-Mei()
摘要:
籽粒发育是决定玉米产量和品质的关键因素, 但目前对其遗传调控机制的研究还相当不完善。我们在田间筛选到一个玉米籽粒发育突变体, 表现为籽粒灌浆不充分, 胚和胚乳变小, 成熟籽粒干瘪或“空果皮”。该突变表型受单个隐性核基因控制。通过图位克隆的方式将候选突变基因定位到2号染色体1.1 Mb的区间内, 进一步研究发现, 该区间内Miniature1 (Mn1)基因在第1个外显子处发生hAT转座子插入, 导致Mn1基因表达下调和无义突变。此插入突变与突变体籽粒灌浆缺陷表型完全连锁, 该突变体被命名为mn1-m2。通过与mn1-89突变体进行等位测验, 确认mn1-m2即为Mn1基因的等位突变体。因此, 本研究鉴定了一个新的mn1等位突变体, 其突变位点及方式与已知mn1突变体均不相同, 完善了玉米籽粒突变体的种质资源信息, 也为Mn1调控籽粒发育机制的解析提供新的遗传材料。
[1] |
Olsen O A. ENDOSPERM DEVELOPMENT: cellularization and cell fate specification. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 233-267.
doi: 10.1146/arplant.2001.52.issue-1 |
[2] |
Bommert P, Werr W. Gene expression patterns in the maize caryopsis: clues to decisions in embryo and endosperm development. Gene, 2001, 271: 131-142.
pmid: 11418234 |
[3] |
Clark J K, Sheridan F. Mutations of maize. Plant Cell, 1991, 3: 935-951.
doi: 10.2307/3869156 |
[4] |
Sheridan W F, Clark J K. Mutational analysis of morphogenesis of the maize embryo. Plant J, 1993, 3: 347-358.
doi: 10.1111/j.1365-313X.1993.tb00186.x |
[5] |
Kesavan M, Song J T, Seo H S. Seed size: a priority trait in cereal crops. Physiol Plant, 2013, 147: 113-120.
doi: 10.1111/j.1399-3054.2012.01664.x pmid: 22680622 |
[6] |
Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro M, Bethencourt L, Habash D Z, Lea P J, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K J, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell, 2006, 18: 3252-3274.
doi: 10.1105/tpc.106.042689 pmid: 17138698 |
[7] |
Li Q, Li L, Yang X H, Warburton M L, Bai G H, Dai J R, Li J S, Yan J B. Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol, 2010, 10: 143.
doi: 10.1186/1471-2229-10-143 |
[8] |
Li Q, Yang X, Bai G H, Warburton M L, Mahuku G, Gore M, Dai J R, Li J S, Yan J B. Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet, 2010, 120: 753-763.
doi: 10.1007/s00122-009-1196-x |
[9] |
Manavski N, Guyon V, Meurer J, Wienand U, Brettschneider R. An essential pentatricopeptide repeat protein facilitates 5’ maturation and translation initiation of rps3 mRNA in maize mitochondria. Plant Cell, 2012, 24: 3087-3105.
doi: 10.1105/tpc.112.099051 |
[10] |
Li X J, Zhang Y F, Hou M, Sun F, Shen Y, Xiu Z H, Wang X, Chen Z L, Sun S S, Small I, Tan B C. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J, 2014, 79: 797-809.
doi: 10.1111/tpj.2014.79.issue-5 |
[11] |
Sosso D, Luo D, Li Q B, Sasse J, Yang J, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M, Ross-Ibarra J, Yang B, Frommer W B. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet, 2015, 47: 1489-1493.
doi: 10.1038/ng.3422 pmid: 26523777 |
[12] |
Manoli A, Sturaro A, Trevisan S, Quaggiotti S, Nonis A. Evaluation of candidate reference genes for qPCR in maize. J Plant Physiol, 2012, 169: 807-815.
doi: 10.1016/j.jplph.2012.01.019 |
[13] |
Miller M E, Chourey P S. The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell, 1992, 4: 297-305.
doi: 10.2307/3869541 |
[14] |
Cheng W H, Taliercio E W, Chourey P S. The Míniature1 seed locus of maize encodes a cell walI invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell, 1996, 8: 971-983.
doi: 10.2307/3870209 |
[15] |
Carlson S J, Shanker S, Chourey P S. A point mutation at the miniature1 seed locus reduces levels of the encoded protein, but not its mRNA, in maize. Mol Gen Genet, 2000, 263: 367-373.
doi: 10.1007/s004380051180 |
[16] |
Dai D W, Ma Z Y, Song R T. Maize kernel development. Mol Breed, 2021, 41: 2.
doi: 10.1007/s11032-020-01195-9 |
[17] |
Gutiérrez-Marcos J F, Dal Prà M, Giulini A, Costa L M, Gavazzi G, Cordelier S, Sellam O, Tatout C, Paul W, Perez P, Dickinson H G, Consonni G. Empty pericarp4encodes a mitochondrion- targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize. Plant Cell, 2007, 19: 196-210.
doi: 10.1105/tpc.105.039594 pmid: 17259266 |
[18] |
Yang Y Z, Ding S, Wang H C, Sun F, Huang W L, Song S, Xu C, Tan B C. The pentatricopeptide repeat protein EMP9 is required for mitochondrial ccmB and rps4 transcript editing, mitochondrial complex biogenesis and seed development in maize. New Phytol, 2017, 214: 782-795.
doi: 10.1111/nph.14424 pmid: 28121385 |
[19] |
Ren X M, Pan Z Y, Zhao H L, Zhao J L, Cai M J, Li J, Zhang Z X, Qiu F Z. Empty pericarp 11 serves as a factor for splicing of mitochondrial nad1 intron and is required to ensure proper seed development in maize. J Exp Bot, 2017, 68: 4571-4581.
doi: 10.1093/jxb/erx212 |
[20] |
Xiu Z H, Sun F, Shen Y, Zhang X Y, Jiang R C, Bonnard G, Zhang J H, Tan B C. EMPTY PERICARP 16 is required for mitochondrial nad2 intron 4 cis-splicing, complex I assembly and seed development in maize. Plant J, 2016, 85: 507-519.
doi: 10.1111/tpj.13122 |
[21] |
Yi F, Gu W, Li J F, Chen J, Hu L, Cui Y, Zhao H M, Guo Y, Lai J S, Song W B. Miniature Seed6, encoding an endoplasmic reticulum signal peptidase, is critical in seed development. Plant Physiol, 2021, 185: 985-1001.
doi: 10.1093/plphys/kiaa060 |
[22] |
Li B, Liu H, Zhang Y, Kang T, Zhang L, Tong J H, Xiao L T, Zhang H X. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol J, 2013, 11: 1080-1091.
doi: 10.1111/pbi.12102 pmid: 23926950 |
[23] |
Fridman E, Carrari F, Liu Y S, Fernie A R, Zamir D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science, 2004, 305: 1786-1789.
doi: 10.1126/science.1101666 pmid: 15375271 |
[24] |
Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370-1374.
doi: 10.1038/ng.220 pmid: 18820698 |
[25] |
Chourey P S, Jain M, Li Q B, Carlson S J. Genetic control of cell wall invertase in developing endosperm of maize. Planta, 2006, 223: 159-167.
doi: 10.1007/s00425-005-0039-5 pmid: 16025339 |
[26] |
Liu J, Huang J, Guo H, Lan L, Wang H Z, Xu Y C, Yang X H, Li W Q, Tong H, Xiao Y J, Pan Q C, Qiao F, Raihan M S, Liu H J, Zhang X H, Yang N, Wang X Q, Deng M, Jin M L, Zhao L J, Luo X, Zhou Y, Li X, Zhan W, Liu N N, Wang H, Chen G S, Li Q, Yan J B. The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiol, 2017, 175: 774-785.
doi: 10.1104/pp.17.00708 pmid: 28811335 |
[27] | Vilhar B, Kladnik A, Blejec A, Chourey P S, Dermastia M. Cytometrical evidence that the loss of seed weight in the miniature1 seed mutant of maize is associated with reduced mitotic activity in the developing endosperm. Plant Physiol, 2002, 129: 23-30. |
[1] | 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445. |
[2] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[3] | 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330. |
[4] | 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076. |
[5] | 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087. |
[6] | 王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响[J]. 作物学报, 2023, 49(7): 1968-1978. |
[7] | 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929. |
[8] | 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022. |
[9] | 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757. |
[10] | 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828. |
[11] | 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629. |
[12] | 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495. |
[13] | 李璐璐, 明博, 高尚, 谢瑞芝, 王克如, 侯鹏, 薛军, 李少昆. 不同熟期玉米品种籽粒田间脱水特征差异性分析[J]. 作物学报, 2023, 49(6): 1643-1652. |
[14] | 王玉珑, 于爱忠, 吕汉强, 吕奕彤, 苏向向, 王鹏飞, 柴健. 绿洲灌区麦后复种绿肥并还田对翌年玉米根系性状及水分利用效率的影响[J]. 作物学报, 2023, 49(5): 1350-1362. |
[15] | 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304. |
|