欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2088-2096.doi: 10.3724/SP.J.1006.2023.23059

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析

王娟(), 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明(), 何春梅()   

  1. 山东省农业科学院玉米研究所 / 小麦玉米国家工程研究中心 / 农业农村部黄淮海北部玉米生物学与遗传育种重点实验室, 山东济南250100
  • 收稿日期:2022-09-07 接受日期:2023-02-10 出版日期:2023-08-12 网络出版日期:2023-02-28
  • 通讯作者: 汪黎明,何春梅
  • 作者简介:E-mail: wqian456@163.com
  • 基金资助:
    国家自然科学基金项目(32101761);国家自然科学基金项目(31971964);山东省农业科学院农业科技创新工程项目(CXGC2022A02)

Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize

WANG Juan(), XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming(), HE Chun-Mei()   

  1. Maize Research Institute, Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize / Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture and Rural Affairs, Jinan 250100, Shandong, China
  • Received:2022-09-07 Accepted:2023-02-10 Published:2023-08-12 Published online:2023-02-28
  • Contact: WANG Li-Ming,HE Chun-Mei
  • Supported by:
    National Natural Science Foundation of China(32101761);National Natural Science Foundation of China(31971964);Agricultural Science and Technology Innovation Project of the Shandong Academy of Agricultural Sciences(CXGC2022A02)

摘要:

籽粒发育是决定玉米产量和品质的关键因素, 但目前对其遗传调控机制的研究还相当不完善。我们在田间筛选到一个玉米籽粒发育突变体, 表现为籽粒灌浆不充分, 胚和胚乳变小, 成熟籽粒干瘪或“空果皮”。该突变表型受单个隐性核基因控制。通过图位克隆的方式将候选突变基因定位到2号染色体1.1 Mb的区间内, 进一步研究发现, 该区间内Miniature1 (Mn1)基因在第1个外显子处发生hAT转座子插入, 导致Mn1基因表达下调和无义突变。此插入突变与突变体籽粒灌浆缺陷表型完全连锁, 该突变体被命名为mn1-m2。通过与mn1-89突变体进行等位测验, 确认mn1-m2即为Mn1基因的等位突变体。因此, 本研究鉴定了一个新的mn1等位突变体, 其突变位点及方式与已知mn1突变体均不相同, 完善了玉米籽粒突变体的种质资源信息, 也为Mn1调控籽粒发育机制的解析提供新的遗传材料。

关键词: 玉米, 籽粒灌浆, Mn1, 突变体

Abstract:

Grain development is a key determinant for maize grain yield and quality, but the regulatory mechanisms have not been fully revealed. A maize mutant deficient in kernel development was found and selected in our field. The mutant exhibited an incomplete grain filling, reduced embryo and endosperm size, and shriveled mature grains and empty pericarp. Genetic analysis suggested that the mutant phenotype was controlled by a single recessive nuclear gene. The candidate gene was preliminarily mapped to a 1.1 Mb interval on chromosome 2, and further a hAT transposon was inserted into the first exon of Miniature1 (Mn1) gene, which resulting in a frame-shift mutation and down-regulated expression of Mn1. The transposon insertion was fully linked to the defective kernel phenotype of the mutant, which was nominated as mn1-m2. Allelism test of mn1-m2 and mn1-89 suggested that mn1-m2 was a noval allelic mutant of Mn1 gene. In conclusion, we identified a new allelic mutant of Mn1 gene with different mutation site and type, which improved maize germplasm resources and provided new genetic materials for the analysis of the mechanism of Mn1 regulation on kernel development.

Key words: maize, grain filling, Mn1, mutant

表1

基因定位所用的分子标记"

引物名称
Primer name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
umc2249 AGAAGGTCGTCGTCCTGGAAC GCATAGACTCCCTGACAGCCAC
umc2030 CTTCAGCAACCGGAGACGAG GATGCAGTGTGCCAATAAAGATGA
umc2079 CGGCCTCGCTGTCTTCTAGC ATGATCACGTCGTGCTGGTAGTG
umc2125 CAAGGGTAAGGGCAAGATGGTAGT CTGAGGTCTACCTCGGCCATC
IDP1 TGCACATGTCTGGTACTCGC GTCATGCTGTCCAACACCG
IDP2 TGCGATATCTGTGTTTGCCTTG ACATCCATGCCATGAACTTTGC
IDP3 TGTAGCAGACACTCTCAAGCACAAC CCCTGGGAACCAAATCAGCCACA
IDP4 AGCAGGTCCGAGGAGTTTC CGGGAGACGGTTTGAATG
IDP5 GGAAACAGCAGTAGCAGAGAGA CTCCTAGTACGTGATTGCATCCA

表2

Mn1特异InDel标记及RT-PCR引物"

引物名称
Primer name
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
InDel (P1/P2) TGTGATATGGCAGCTAAGAG CGAGGTCCTTGTAGTTGTAG
Mn1 RT-PCR CTGGGCTAACGAGTCCGACT CCACACCGTCCTTGGAATCG
FPGS RT-PCR ATCTCGTTGGGGATGTCTTG AGCACCGTTCAAATGTCTCC

图1

野生型及突变体mn1-m2表型分析 A: 野生型、杂合(+/mn1-m2)及纯合mn1-m2突变体的成熟果穗, 图中箭头为杂合型植株自交后分离出的突变型籽粒; B: 生长3周幼苗; C: 成熟期籽粒; D: 授粉后25 d籽粒的胚乳(左)和幼胚(右)的表型; E: 百粒重统计。A图标尺为5 cm, C~D图标尺为1 cm。"

图2

野生型及mn1-m2授粉后20 d籽粒的石蜡切片观察 A: 授粉后20 d野生型籽粒顶部胚乳观察; B: 授粉后20 d mn1-m2籽粒顶部胚乳观察; C: 为(A)图中红色方框区域的放大图; D: 为(B)图中红色方框区域的放大图。A~B图标尺为500 μm; C~D图标尺为100 μm。"

图3

mn1-m2基因的图位克隆 利用mn1-m2与B73之间的多态SSR和In-Del (IDP)标记, 通过放大定位F2群体, 结合对目标区间内基因测序, 最终定位到突变基因为Mn1, 编码细胞壁蔗糖转化酶。该基因在第1个外显子的第18个核苷酸后发生hAT转座子(166 bp)的插入。图中标红基因为Mn1。黑框代表外显子, 黑线代表内含子。n: 群体大小; Recombinants: 重组单株数。"

图4

mn1-m2突变体中mn1基因表达水平及hAT转座子插入的鉴定 A: 野生型及mn1-m2授粉后15 d籽粒中Mn1基因表达水平, FPGS为内参基因; B: In-Del分子标记引物P1和P2位于hAT转座子两侧的示意图; C: In-Del分子标记与mn1-m2突变表型完全连锁。野生型扩增产物大小为495 bp, mn1-m2扩增产物大小为661 bp。"

图5

mn1-m2与mn1-89突变体等位测验 A: Mn1基因结构及2个突变体的突变位置; B: 突变体mn1-m2, mn1-89及其杂交后代果穗的表型; C: mn1-m2背景野生型的籽粒; D: mn1-m2籽粒; E: mn1-m2与mn1-89杂交F1代籽粒; F: mn1-89籽粒; G: mn1-89背景野生型W22的籽粒。B图标尺为5 cm, C~G图标尺为1 cm。"

图6

RT-PCR分析Mn1基因在玉米不同组织中的表达水平 A: 分别提取野生型玉米幼穗、苞片、花丝、雄穗和旗叶组织RNA, 检测Mn1表达水平; B: 分别提取授粉后13、15、19、23、25和29 d籽粒的胚和胚乳RNA, 检测Mn1表达水平。FPGS为内参基因。"

[1] Olsen O A. ENDOSPERM DEVELOPMENT: cellularization and cell fate specification. Annu Rev Plant Physiol Plant Mol Biol, 2001, 52: 233-267.
doi: 10.1146/arplant.2001.52.issue-1
[2] Bommert P, Werr W. Gene expression patterns in the maize caryopsis: clues to decisions in embryo and endosperm development. Gene, 2001, 271: 131-142.
pmid: 11418234
[3] Clark J K, Sheridan F. Mutations of maize. Plant Cell, 1991, 3: 935-951.
doi: 10.2307/3869156
[4] Sheridan W F, Clark J K. Mutational analysis of morphogenesis of the maize embryo. Plant J, 1993, 3: 347-358.
doi: 10.1111/j.1365-313X.1993.tb00186.x
[5] Kesavan M, Song J T, Seo H S. Seed size: a priority trait in cereal crops. Physiol Plant, 2013, 147: 113-120.
doi: 10.1111/j.1399-3054.2012.01664.x pmid: 22680622
[6] Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro M, Bethencourt L, Habash D Z, Lea P J, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards K J, Hirel B. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell, 2006, 18: 3252-3274.
doi: 10.1105/tpc.106.042689 pmid: 17138698
[7] Li Q, Li L, Yang X H, Warburton M L, Bai G H, Dai J R, Li J S, Yan J B. Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol, 2010, 10: 143.
doi: 10.1186/1471-2229-10-143
[8] Li Q, Yang X, Bai G H, Warburton M L, Mahuku G, Gore M, Dai J R, Li J S, Yan J B. Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet, 2010, 120: 753-763.
doi: 10.1007/s00122-009-1196-x
[9] Manavski N, Guyon V, Meurer J, Wienand U, Brettschneider R. An essential pentatricopeptide repeat protein facilitates 5’ maturation and translation initiation of rps3 mRNA in maize mitochondria. Plant Cell, 2012, 24: 3087-3105.
doi: 10.1105/tpc.112.099051
[10] Li X J, Zhang Y F, Hou M, Sun F, Shen Y, Xiu Z H, Wang X, Chen Z L, Sun S S, Small I, Tan B C. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J, 2014, 79: 797-809.
doi: 10.1111/tpj.2014.79.issue-5
[11] Sosso D, Luo D, Li Q B, Sasse J, Yang J, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M, Ross-Ibarra J, Yang B, Frommer W B. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet, 2015, 47: 1489-1493.
doi: 10.1038/ng.3422 pmid: 26523777
[12] Manoli A, Sturaro A, Trevisan S, Quaggiotti S, Nonis A. Evaluation of candidate reference genes for qPCR in maize. J Plant Physiol, 2012, 169: 807-815.
doi: 10.1016/j.jplph.2012.01.019
[13] Miller M E, Chourey P S. The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell, 1992, 4: 297-305.
doi: 10.2307/3869541
[14] Cheng W H, Taliercio E W, Chourey P S. The Míniature1 seed locus of maize encodes a cell walI invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell, 1996, 8: 971-983.
doi: 10.2307/3870209
[15] Carlson S J, Shanker S, Chourey P S. A point mutation at the miniature1 seed locus reduces levels of the encoded protein, but not its mRNA, in maize. Mol Gen Genet, 2000, 263: 367-373.
doi: 10.1007/s004380051180
[16] Dai D W, Ma Z Y, Song R T. Maize kernel development. Mol Breed, 2021, 41: 2.
doi: 10.1007/s11032-020-01195-9
[17] Gutiérrez-Marcos J F, Dal Prà M, Giulini A, Costa L M, Gavazzi G, Cordelier S, Sellam O, Tatout C, Paul W, Perez P, Dickinson H G, Consonni G. Empty pericarp4encodes a mitochondrion- targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize. Plant Cell, 2007, 19: 196-210.
doi: 10.1105/tpc.105.039594 pmid: 17259266
[18] Yang Y Z, Ding S, Wang H C, Sun F, Huang W L, Song S, Xu C, Tan B C. The pentatricopeptide repeat protein EMP9 is required for mitochondrial ccmB and rps4 transcript editing, mitochondrial complex biogenesis and seed development in maize. New Phytol, 2017, 214: 782-795.
doi: 10.1111/nph.14424 pmid: 28121385
[19] Ren X M, Pan Z Y, Zhao H L, Zhao J L, Cai M J, Li J, Zhang Z X, Qiu F Z. Empty pericarp 11 serves as a factor for splicing of mitochondrial nad1 intron and is required to ensure proper seed development in maize. J Exp Bot, 2017, 68: 4571-4581.
doi: 10.1093/jxb/erx212
[20] Xiu Z H, Sun F, Shen Y, Zhang X Y, Jiang R C, Bonnard G, Zhang J H, Tan B C. EMPTY PERICARP 16 is required for mitochondrial nad2 intron 4 cis-splicing, complex I assembly and seed development in maize. Plant J, 2016, 85: 507-519.
doi: 10.1111/tpj.13122
[21] Yi F, Gu W, Li J F, Chen J, Hu L, Cui Y, Zhao H M, Guo Y, Lai J S, Song W B. Miniature Seed6, encoding an endoplasmic reticulum signal peptidase, is critical in seed development. Plant Physiol, 2021, 185: 985-1001.
doi: 10.1093/plphys/kiaa060
[22] Li B, Liu H, Zhang Y, Kang T, Zhang L, Tong J H, Xiao L T, Zhang H X. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol J, 2013, 11: 1080-1091.
doi: 10.1111/pbi.12102 pmid: 23926950
[23] Fridman E, Carrari F, Liu Y S, Fernie A R, Zamir D. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science, 2004, 305: 1786-1789.
doi: 10.1126/science.1101666 pmid: 15375271
[24] Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370-1374.
doi: 10.1038/ng.220 pmid: 18820698
[25] Chourey P S, Jain M, Li Q B, Carlson S J. Genetic control of cell wall invertase in developing endosperm of maize. Planta, 2006, 223: 159-167.
doi: 10.1007/s00425-005-0039-5 pmid: 16025339
[26] Liu J, Huang J, Guo H, Lan L, Wang H Z, Xu Y C, Yang X H, Li W Q, Tong H, Xiao Y J, Pan Q C, Qiao F, Raihan M S, Liu H J, Zhang X H, Yang N, Wang X Q, Deng M, Jin M L, Zhao L J, Luo X, Zhou Y, Li X, Zhan W, Liu N N, Wang H, Chen G S, Li Q, Yan J B. The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiol, 2017, 175: 774-785.
doi: 10.1104/pp.17.00708 pmid: 28811335
[27] Vilhar B, Kladnik A, Blejec A, Chourey P S, Dermastia M. Cytometrical evidence that the loss of seed weight in the miniature1 seed mutant of maize is associated with reduced mitotic activity in the developing endosperm. Plant Physiol, 2002, 129: 23-30.
[1] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[2] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[3] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[4] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[5] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[6] 王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响[J]. 作物学报, 2023, 49(7): 1968-1978.
[7] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[8] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[9] 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757.
[10] 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828.
[11] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[12] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[13] 李璐璐, 明博, 高尚, 谢瑞芝, 王克如, 侯鹏, 薛军, 李少昆. 不同熟期玉米品种籽粒田间脱水特征差异性分析[J]. 作物学报, 2023, 49(6): 1643-1652.
[14] 王玉珑, 于爱忠, 吕汉强, 吕奕彤, 苏向向, 王鹏飞, 柴健. 绿洲灌区麦后复种绿肥并还田对翌年玉米根系性状及水分利用效率的影响[J]. 作物学报, 2023, 49(5): 1350-1362.
[15] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .