作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1747-1757.doi: 10.3724/SP.J.1006.2023.23054
梅秀鹏1,2(), 赵子堃1,2(), 贾欣瑶1,2, 白洋1,2, 李梅3, 甘宇玲1,2, 杨秋悦1,2, 蔡一林1,2,*()
MEI Xiu-Peng1,2(), ZHAO Zi-Kun1,2(), JIA Xin-Yao1,2, BAI Yang1,2, LI Mei3, GAN Yu-Ling1,2, YANG Qiu-Yue1,2, CAI Yi-Lin1,2,*()
摘要:
热胁迫是影响玉米生长发育和产量形成的重要因素, 相关抗性基因的挖掘和机制解析是进行玉米耐热品种培育的重要分子基础, 而目前这方面的研究仍是缺乏。本研究鉴定到一个与热胁迫应答相关的核因子ZmNF-YC13, 该基因受高温和渗透胁迫快速诱导表达。用拟南芥热胁迫诱导表达基因AtHSP70的启动子驱动ZmNF-YC13基因, 转化玉米筛选出了热诱导表达的转基因材料HSP21Pro:ZmNF-YC13-myc。高温处理后的表型鉴定表明, 叶长、叶宽、地上部粗、地上部分和地下部分的鲜重和干重均显著高于野生型。表达分析表明, ZmNF-YC13能增强下游热胁迫应答基因响应热胁迫的程度。荧光素酶报告基因实验和ChIP-qPCR实验表明, ZmNF-YC13可调控热应激转录因子ZmHsfA2c的表达。这些结果初步证实了ZmNF-YC13可通过调控下游热胁迫应答基因来提高玉米的耐热能力, 可为利用该位点的多态性进行分子标记辅助选择和种质资源鉴定提供理论依据。
[1] |
Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature, 2016, 529: 84-87.
doi: 10.1038/nature16467 |
[2] |
Lobell D B, Wolfram S, Justin C R.Climate trends and global crop production since 1980. Science, 2011, 333: 616-620.
doi: 10.1126/science.1204531 |
[3] |
Fahad S, Bajwa A A, Nazir U, Anjum S A, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z, Alharby H, Wu C, Wang D P, Huang J L. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci, 2017, 8: 1147.
doi: 10.3389/fpls.2017.01147 pmid: 28706531 |
[4] |
Weaich K, Bristow K L, Cass A. Modeling preemergent maize shoot growth: I. Physiological temperature conditions. Agron J, 1996, 88: 391-397.
doi: 10.2134/agronj1996.00021962008800030006x |
[5] |
闫振华, 刘东尧, 贾绪存, 杨琴, 陈艺博, 董朋飞, 王群. 花期高温干旱对玉米雄穗发育、生理特性和产量影响. 中国农业科学, 2021, 54: 3592-3608.
doi: 10.3864/j.issn.0578-1752.2021.17.004 |
Yan Z H, Liu D Y, Jia X C, Yang Q, Chen Y B, Dong P F, Wang Q. Maize tassel development, physiological traits and yield under heat and drought stress during flowering stage. Sci Agric Sin, 2021, 54: 3592-3608. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.17.004 |
|
[6] |
高英波, 张慧, 单晶, 薛艳芳, 钱欣, 代红翠, 刘开昌, 李宗新. 吐丝前高温胁迫对不同耐热型夏玉米产量及穗发育特征的影响. 中国农业科学, 2020, 53: 3954-3963.
doi: 10.3864/j.issn.0578-1752.2020.19.009 |
Gao Y B, Zhang H, Shan J, Xue Y F, Qian X, Dai H C, Liu K C, Li Z X. Effects of pre-silking high temperature stress on yield and ear development characteristics of different heat-resistant summer maize cultivars. Sci Agric Sin, 2020, 53: 3954-3963. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.19.009 |
|
[7] |
Maestri E, Klueva N, Perrotta C, Gulli M, Nguyen H T, Marmiroli N. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol Biol, 2002, 48: 667-681.
pmid: 11999842 |
[8] |
Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci, 2017, 22: 53-65.
doi: S1360-1385(16)30126-1 pmid: 27666516 |
[9] |
Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim J M, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schö Z F, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genom, 2011, 286: 321-332.
doi: 10.1007/s00438-011-0647-7 |
[10] |
Liu H C, Liao H T, Charng Y Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ, 2011, 34: 738-751.
doi: 10.1111/pce.2011.34.issue-5 |
[11] |
Mishra S K, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf K D. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Gene Dev, 2002, 16: 1555-1567.
doi: 10.1101/gad.228802 pmid: 12080093 |
[12] |
Qu A L, Ding Y F, Jiang Q, Zhu C. Molecular mechanisms of the plant heat stress response. Biochem Bioph Res Commun, 2013, 432: 203-207.
doi: 10.1016/j.bbrc.2013.01.104 |
[13] |
Kotak S, Larkindale J, Lee U, Koskull-Döring P, Vierling E, Scharf K D. Complexity of the heat stress response in plants. Curr Opin Plant Biol, 2007, 10: 310-316.
doi: 10.1016/j.pbi.2007.04.011 pmid: 17482504 |
[14] |
Zhong L L, Zhou W, Wang H J, Ding S H, Lu Q T, Wen X G, Peng L W, Zhang L X, Lua C M. Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Plant Cell, 2013, 25: 2925-2943.
doi: 10.1105/tpc.113.111229 |
[15] |
Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta, 2008, 227: 957-967.
doi: 10.1007/s00425-007-0670-4 pmid: 18064488 |
[16] |
Ayako N, Yukinori Y, Eriko Y, Takanori M, Kazuya Y, Shigeru S. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J, 2010, 48: 535-547.
doi: 10.1111/tpj.2006.48.issue-4 |
[17] |
Charng Y Y, Liu H C, Liu N Y, Chi W T, Wang C N, Chang S H, Wang T T. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol, 2007, 143: 251-262.
doi: 10.1104/pp.106.091322 |
[18] |
Petroni K, Kumimoto R W, Gnesutta N, Calvenzani V, Fornari M, Tonelli C, Holt B F, Mantovani R. The promiscuous life of plant NUCLEAR FACTOR Y transcription factors. Plant Cell, 2012, 24: 4777-4792.
doi: 10.1105/tpc.112.105734 |
[19] | 许婧, 牛百晓, 陈忱. NF-Y转录因子调控植物生长发育的功能研究进展. 植物生理学报, 2022, 58: 1191-1200. |
Xu J, Niu B X, Chen C. Advances on the function of NF-Y transcription factors in regulation of plant growth and development. Plant Physiol J, 2022, 58: 1191-1200. (in Chinese with English abstract) | |
[20] | 李世贵, 马瑞, 王芳芳, 刘维刚, 杨江伟, 唐勋, 张宁, 司怀军. 植物NF-Y转录因子研究进展. 植物生理学报, 2021, 57: 248-256. |
Li S G, Ma R, Wang F F, Liu W G, Yang J W, Tang X, Zhang N, Si H J. Research progresses on plant NF-Y transcription factors. Plant Physiol J, 2021, 57: 248-256. (in Chinese with English abstract) | |
[21] | 李娟, 高凯, 安新民. 转录因子NF-Y在植物生长发育和逆境胁迫响应中的作用. 中国细胞生物学学报, 2021, 41: 2434-2442. |
Li J, Gao K, An X M. Roles of transcription factor NF-Y in plant growth, development and response to stress. Chin J Cell Biol, 2019, 41: 2434-2442. (in Chinese with English abstract) | |
[22] | 黄俊文, 南建宗, 阳成伟. NF-Y转录因子调控植物生长发育及胁迫响应的研究进展. 植物生理学报, 2020, 56: 2595-2605. |
Huang J W, Nan J Z, Yang C W. Research progress of NF-Y transcription factors in plant growth and development and stress response. Plant Physiol J, 2020, 56: 2595-2605. (in Chinese with English abstract) | |
[23] |
Nelson D E, Repetti P P, Adams T R, Creelman R A, Wu J R, Warner D C, Anstrom D C, Bensen R J, Castiglioni P P, Donnarummo M G, Hinchey B S, Kumimoto R W, Maszle D R, Canales R D, Krolikowski K A, Dotson S B, Gutterson N, Ratcliffe O J, Heard J E. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA, 2007, 104: 16450-16455.
doi: 10.1073/pnas.0707193104 pmid: 17923671 |
[24] |
Wang B M, Li Z X, Ran Q J, Li P, Peng Z H, Zhang J R. ZmNF-YB16 overexpression improves drought resistance and yield by enhancing photosynthesis and the antioxidant capacity of maize plants. Front Plant Sci, 2018, 9: 709.
doi: 10.3389/fpls.2018.00709 pmid: 29896208 |
[25] |
Yadav D, Shavrukov Y, Bazanova N, Chirkova L, Borisjuk N, Kovalchuk N, Ismagul A, Parent B, Langridge P, Hrmova M, Lopato S. Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield. J Exp Bot, 2015, 66: 6635-6650.
doi: 10.1093/jxb/erv370 pmid: 26220082 |
[26] | Najafabadi M S. Improving rice (Oryza sativa L.) drought tolerance by suppressing a NF-YA transcription factor. Iran J Biotechnol, 2012, 10: 40-48. |
[27] |
Lee D K, Kim H I, Jang G, Chung P J, Jeong J S, Kim Y S, Bang S W, Jung H, Choi Y D, Kim J K. The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner. Plant Sci, 2015, 241: 199-210.
doi: 10.1016/j.plantsci.2015.10.006 |
[28] |
Sato H, Suzuki T, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K. NF-YB2 and NF-YB3 have functionally diverged and differentially induce drought and heat stress-specific genes. Plant Physiol, 2019, 180: 1677-1690.
doi: 10.1104/pp.19.00391 pmid: 31123093 |
[29] | 唐伶俐. OsNF-YC4调控水稻高温干旱胁迫响应的分子机理研究. 中国科学院大学硕士学位论文, 北京, 2017. |
Tang L L. Molecular Mechanism of OsNF-YC4 Regulating Response to High Temperature and Drought Stress in Rice. MS Thesis of University of Chinese Academy of Sciences, Beijing, China, 2017. (in Chinese with English abstract) | |
[30] |
Shi H, Ye T T, Zhong B, Liu X, Jin R, Chan Z L. AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21. New Phytol, 2014, 203: 554-567.
doi: 10.1111/nph.2014.203.issue-2 |
[31] |
Sato H, Mizoi J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Morimoto K, Ohori T, Kusakabe K, Nagata M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell, 2014, 26: 4954-4973.
doi: 10.1105/tpc.114.132928 |
[32] |
Sato H, Todaka D, Kudo M, Mizoi J, Kidokoro S, Zhao Y, Shinozaki K, Yamaguchi-Shinozaki K. The Arabidopsis transcriptional regulator DPB3-1 enhances heat stress tolerance without growth retardation in rice. Plant Biotech J, 2016, 14: 1756-1767.
doi: 10.1111/pbi.2016.14.issue-8 |
[33] |
Mei X P, Liu C X, Nan J, Zhao Z Z, Bai Y, Dong E F, Cai Y L. Overexpression of ZmNF-YC13 confers ER stress tolerance in maize. J Plant Biol, 2021, 64: 337-348.
doi: 10.1007/s12374-021-09307-4 |
[34] |
Mei X P, Nan J, Zhao Z Z, Yao S, Wang W W, Yang Y, Bai Y, Dong E F, Liu C X, Cai Y L. Maize transcription factor ZmNF-YC13 regulates plant architecture. J Exp Bot, 2021, 72: 4757-7472.
doi: 10.1093/jxb/erab157 |
[35] | Sidorov V, Duncan D. Agrobacterium-mediated maize transformation:immature embryos versus callus. In: Scott M P ed.ed. Transgenic Maize. Methods in Molecular Biolog. Totowa, NJ: Humana Press, 2009, 526: 47-58. https://doi.org/10.1007/978-1-59745-494-0_4. |
[36] | Fiil B K, Qiu J, Petersen K, Petersen M, Mundy J. Coimmunoprecipitation (co-IP) of Nuclear Proteins and Chromatin Immunoprecipitation (ChIP) from Arabidopsis. New York: Cold Spring Harbor Protocols, 2008. pp 1-19. |
[37] |
Li Y J, Humbert S, Howell S H. ZmbZIP60 mRNA is spliced in maize in response to ER stress. BMC Res Notes, 2012, 5: 144.
doi: 10.1186/1756-0500-5-144 pmid: 22417282 |
[38] | 梅秀鹏. 玉米内质网胁迫应答转录因子NF-YC13功能分析. 西南大学博士学位论文, 重庆, 2018. |
Mei X P. Functional Characterization of a Transcription Factor NF-YC13 in the Endoplasmic Reticulum Stress Response in Maize (Zea mays L.). PhD Dissertation of Southwest University, Chongqing, China, 2018. (in Chinese with English abstract) | |
[39] |
Gu L, Jiang T, Zhang C X, Li X D, Wang C M, Zhang Y M, Li T, Dirk L M A, Downie A B, Zhao T Y. Maize HSFA2 and HSBP2 antagonistically modulate raffinose biosynthesis and heat tolerance in Arabidopsis. Plant J, 2019, 100: 128-142.
doi: 10.1111/tpj.v100.1 |
[40] |
赵福成, 景立权, 闫发宝, 陆大雷, 王桂跃, 陆卫平. 灌浆期高温胁迫对甜玉米籽粒糖分积累和蔗糖代谢相关酶活性的影响. 作物学报, 2013, 39: 1644-1651.
doi: 10.3724/SP.J.1006.2013.01644 |
Zhao F C, Jing L Q, Yan F B, Lu D L, Wang G Y, Lu W P. Effects of heat stress during grain filling on sugar accumulation and enzyme activity associated with sucrose metabolism in sweet corn. Acta Agron Sin, 2013, 39: 1644-1651. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01644 |
|
[41] | 王改妮, 白万鹏, 王锁民. 植物响应高温胁迫的信号转导和转录调控机制研究进展. 分子植物育种, 2020, 18: 8109-8118. |
Wang G N, Bai W P, Wang S M. Advances in research of signal transduction and transcriptional regulatory mechanism of plants in response to heat stress. Mol Plant Breed, 2020, 18: 8109-8118. (in Chinese with English abstract) | |
[42] |
Röth S, Mirus O, Bublak D, Scharf K D, Schleiff E. DNA-binding and repressor function are prerequisites for the turnover of the tomato heat stress transcription factor HsfB1. Plant J, 2017, 89: 31-44.
doi: 10.1111/tpj.2017.89.issue-1 |
[43] |
Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant heat stress response. Trends Plant Sci, 2017, 22: 53-65.
doi: S1360-1385(16)30126-1 pmid: 27666516 |
[44] | 祁茂冬, 谢鑫, 魏凤菊. 禾本科植物HSP70研究进展. 植物生理学报, 2019, 55: 1054-1062. |
Qi M D, Xie X, Wei F J. Research progress of HSP70s in Poaceae. Plant Physiol J, 2019, 55: 1054-1062. (in Chinese with English abstract)
doi: 10.1104/pp.55.6.1054 |
|
[45] | 樊芳菲, 杨暹, 康云艳, 柴喜荣, 蒙林平. 植物 DnaJ蛋白的研究进展. 分子植物育种, 2018, 16: 2028-2034. |
Fan F F, Yang X, Kang Y Y, Chai X R, Meng L P. Research progress on DnaJ proteins in plants. Mol Plant Breed, 2018, 16: 2028-2034. (in Chinese with English abstract) | |
[46] | 张驰, 刘丹丹, 刘建中. 植物 J 蛋白的生物学功能及其作用机制. 浙江大学学报(农业与生命科学版), 2018, 44: 275-282. |
Zhang C, Liu D D, Liu J Z. Biological functions and action mechanisms of J-domain proteins in plants. J Zhejiang Univ (Agric Life Sci Edn), 2018, 44: 275-282. (in Chinese with English abstract) | |
[47] | 王国栋.番茄叶绿体DnaJ蛋白SICDJ2的功能分析. 山东农业大学博士学位论文, 山东泰安, 2016. |
Wang G D.Functional Analysis of a Tomato Chloroplast DnaJ Protein SlCDJ2. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2016. (in Chinese with English abstract) | |
[48] | 马朝霞.拟南芥热激蛋白TMS1的功能研究. 中国农业大学博士学位论文, 北京, 2015. |
Ma Z X.Functional Study of the Heat Shock Protein TMS1. PhD Dissertation of China Agricultural University, Beijing, China, 2015. (in Chinese with English abstract) | |
[49] |
Lohmann C, Eggers-Schumacher G, Wunderlich M, Schöffl F. Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol Genet Genomic, 2004, 271: 11-21.
doi: 10.1007/s00438-003-0954-8 |
[50] |
Scharf K D, Heider H, Höhfeld I, Lyck R, Schmidt E, Nover L. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cellular Biol, 1998, 18: 2240-2251.
doi: 10.1128/MCB.18.4.2240 |
[51] |
Busch W, Wunderlich M, Schöffl F. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J, 2010, 41: 1-14.
doi: 10.1111/tpj.2005.41.issue-1 |
[52] |
Baniwal S K, Bharti K, Chan K Y, Fauth M, Ganguli A, Kotak S, Mishra S K, Nover L, Port M, Scharf K D, Tripp J, Weber C, Zielinski D, Koskull-Döring P. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci, 2004, 29: 471-487.
doi: 10.1007/BF02712120 |
[1] | 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076. |
[2] | 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087. |
[3] | 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096. |
[4] | 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929. |
[5] | 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022. |
[6] | 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828. |
[7] | 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629. |
[8] | 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495. |
[9] | 李璐璐, 明博, 高尚, 谢瑞芝, 王克如, 侯鹏, 薛军, 李少昆. 不同熟期玉米品种籽粒田间脱水特征差异性分析[J]. 作物学报, 2023, 49(6): 1643-1652. |
[10] | 王玉珑, 于爱忠, 吕汉强, 吕奕彤, 苏向向, 王鹏飞, 柴健. 绿洲灌区麦后复种绿肥并还田对翌年玉米根系性状及水分利用效率的影响[J]. 作物学报, 2023, 49(5): 1350-1362. |
[11] | 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304. |
[12] | 张俊杰, 陈金平, 汤钰镂, 张锐, 曹红章, 王丽娟, 马梦金, 王浩, 王泳超, 郭家萌, KRISHNA SV Jagadish, 杨青华, 邵瑞鑫. 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响[J]. 作物学报, 2023, 49(5): 1397-1409. |
[13] | 岳海旺, 韩轩, 魏建伟, 郑书宏, 谢俊良, 陈淑萍, 彭海成, 卜俊周. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价[J]. 作物学报, 2023, 49(5): 1231-1248. |
[14] | 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371. |
[15] | 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892. |
|