欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1758-1768.doi: 10.3724/SP.J.1006.2023.24197

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

谷子毛状根诱导方法的建立与优化

万夷曼(), 肖圣慧, 白依超, 范佳音, 王琰, 吴长艾*()   

  1. 山东农业大学生命科学学院, 山东泰安 271000
  • 收稿日期:2022-08-26 接受日期:2022-11-25 出版日期:2023-07-12 网络出版日期:2022-12-06
  • 通讯作者: *吴长艾, E-mail: cawu@sdau.edu.cn
  • 作者简介:E-mail: wanyiman123@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2018YFD1000704);本研究由国家重点研发计划项目(2018YFD100070);山东省重点研发计划(农业良种工程)项目(2021LZGC006)

Establishment and optimization of a high-efficient hairy-root system in foxtail millet (Setaria italica L.)

WAN Yi-Man(), XIAO Sheng-Hui, BAI Yi-Chao, FAN Jia-Yin, WANG Yan, WU Chang-Ai*()   

  1. School of Life Science, Shandong Agricultural University, Tai’an 271000, Shandong, China
  • Received:2022-08-26 Accepted:2022-11-25 Published:2023-07-12 Published online:2022-12-06
  • Contact: *E-mail: cawu@sdau.edu.cn
  • Supported by:
    The National Key Research and Development Program of China(2018YFD1000704);The National Key Research and Development Program of China(2018YFD100070);The Key Research and Development Program (Agricultural Fine Seed Project) of Shandong Province(2021LZGC006)

摘要:

为建立一种快速鉴定谷子基因功能的技术体系, 本研究通过比较谷子外植体、品种、乙酰丁香酮、菌液浓度和共培养时间对发根农杆菌K599介导的毛状根诱导效率的影响, 发现发根农杆菌浓度在OD600为0.5、以谷子芽尖为外植体、在含有100 μmol L-1乙酰丁香酮的毛状根诱导培养基上共培养3 d时, 可使毛状根诱导率高达80.24%。将GFP基因进行毛状根遗传转化, 通过GFP基因的PCR扩增和GFP荧光观察结果分析, 发现谷子毛状根的转基因效率大于70%。利用该体系对谷子SiDVL1和SiDVL3的亚细胞定位和SiNHX2SiCBL4SiCBL7基因功能进行了分析和鉴定。结果表明SiDVL1和SiDVL3在谷子毛状根中的亚细胞定位与在烟草叶片中的一致; SiNHX2SiCBL4SiCBL7转基因谷子的存活率显著高于空载体转化谷子。说明本研究建立了一种高效快速鉴定谷子基因定位和功能的方法。

关键词: 发根农杆菌, 毛状根, 谷子, 转基因效率, 基因功能鉴定

Abstract:

To establish a system for rapid identification of millet gene functions, in this study, we compared the effects of explants from different foxtail millet cultivars, the concentrations of acetyleugenone, bacterial solution, and co-culture time on the hairy root induction mediated by Agrobacteria rhizogenes strain K599. When the shoot tips were infected with bacterial solution 0.5 optical density (OD) and containing 100 μmol L-1 acetyleugenone, and co-cultured for three days, the induction efficiency of hairy roots reached to 80.24%. Using this system, we analyzed the transformation efficiency of the hairy roots, the subcellular localization of SiDVL1and SiDVL3, and gene functions of SiNHX2, SiCBL4, and SiCBL7. The PCR results of GFP gene and GFP fluorescence microscopic observation indicated that the transformation efficiency of the hairy roots was over 70%. The subcellular localization of SiDVL1 and SiDVL3 was similar in millet hairy-root and tobacco epidermal cells. Simultaneously, the survival rates of SiNHX2, SiCBL4, and SiCBL7 transgenic millet were significantly higher than that of empty vector transformed millet. Therefore, our study established an efficient and rapid method to analyze the subcellular location and to identify the function of genes from foxtail millet.

Key words: Agrobacterium rhizogenes, hairy roots, foxtail millet (Setaria italica), transformation efficiency, gene function identification

图1

不同外植体对诱导毛状根的影响 A和B分别为发根农杆菌K599侵染谷子胚性愈伤组织和芽尖外植体诱导10 d和5 d时毛状根发生情况; C: 培养14 d诱导产生毛状根的根长; D: 培养14 d诱导产生毛状根的诱导效率。3次生物学重复, n = 30。采用单因素方差分析, 不同字母表示差异显著(P < 0.05)。"

图2

不同谷子品种的芽尖外植体对毛状根诱导的影响 A~E: 分别为Ci846 (A)、xiaomi (B)、吨谷(C)、龙珠1号(D)和豫谷1号(E)芽尖外植体对毛状根诱导的影响; F: 不同品种来源的芽尖外植体诱导毛状根的根长; G: 不同品种来源的芽尖外植体诱导毛状根的诱导效率; H: 不同品种来源的芽尖外植体诱导毛状根的平均生根数。3次生物学重复, n = 30。采用单因素方差分析, ns表示在0.05概率水平无显著差异。"

图3

乙酰丁香酮对谷子毛状根诱导的影响 A~E: 分别为0、50、100、150和200 μmol L-1 AS对诱导毛状根的影响; F: 0、50、100、150和200 μmol L-1 AS诱导毛状根的根长; G: 0、50、100、150和200 μmol L-1 AS诱导毛状根的诱导效率; H: 0、50、100、150和200 μmol L-1 AS诱导毛状根的平均生根数。3次生物学重复, n = 30。采用单因素方差分析, 不同字母表示差异显著(P < 0.05)。"

图4

菌液浓度对谷子毛状根诱导的影响 A~F: OD600分别为0.1、0.2、0.3、0.5、0.8和1.0对诱导毛状根的影响; G: 不同菌液浓度诱导产生毛状根的根长; H: 不同菌液浓度诱导产生毛状根的诱导效率; I: 不同菌液浓度诱导产生毛状根的平均生根数。3次生物学重复, n = 30。采用单因素方差分析, 不同字母表示差异显著(P < 0.05)。"

图5

共培养时间对谷子毛状根诱导的影响 A~E: 分别为共培养1、2、3、4和5 d对诱导毛状根的影响; F: 共培养1、2、3、4和5 d诱导毛状根的根长; G: 共培养1、2、3、4和5 d诱导毛状根的效率; H: 共培养1、2、3、4和5 d诱导毛状根的平均生根数。3次生物学重复, n = 30。采用单因素方差分析, 不同字母表示差异显著(P < 0.05)。"

表1

芽尖外植体诱导毛状根的数据统计"

试验编号
Test ID
侵染的芽尖总数
Total number of
infected shoot tips
诱导发根的芽尖数
Number of bud tips to induce rooting
发根总数
Total bud tip rooting number
平均发根数
Average rooting number
发根率
Rooting rate
(%)
1 19 17 63 4 89.47
2 22 17 44 3 77.27
3 21 14 44 3 66.67
4 21 21 65 3 100.00
5 21 17 64 2 80.95
6 25 19 57 3 76.00
7 20 17 55 3 85.00
8 22 18 66 3 81.82
9 18 14 41 5 77.78
10 21 17 50 3 80.95
11 20 13 29 2 65.00
12 23 19 38 2 82.61
总计 Total 253 203 616 3 80.24

图6

部分转基因发根的PCR验证结果 M: DNA marker; 1: 基因表达载体质粒(阳性对照); 2~33: 基因表达载体转化毛状根的DNA; WT: 空载体转化毛状根DNA。"

图7

发根农杆菌介导的谷子DVL基因定位分析"

图8

SiNHX2、SiCBL4和SiCBL7转基因谷子幼苗对盐胁迫的响应 A: SiNHX2、SiCBL4和SiCBL7转发根谷子幼苗在含有175 mmol L-1 NaCl的MS培养基(MS培养基为对照)上生长7 d的表型; B: SiNHX2、SiCBL4和SiCBL7转基因谷子幼苗在含有175 mmol L-1 NaCl的MS培养基(MS培养基为对照)上生长7 d的存活率统计。3次生物学重复, n = 30。ns表示在0.05概率水平无显著差异, ***表示在0.01概率水平显著相关。"

[1] Hu H, Mauro-Herrera M, Doust A N. Domestication and improvement in the model C4 grass, Seteria. Front Plant Sci, 2018, 9: 719.
[2] Bandyopadhyay T, Muthamilarasan M, Prasad M. Millets for next generation climate-smart agriculture. Front Plant Sci, 2017, 8: 1266.
doi: 10.3389/fpls.2017.01266 pmid: 28769966
[3] Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167.
doi: 10.1038/s41477-020-0747-7
[4] Zhao M C, Tang S, Zhang H S, He M M, Liu J H, Zhi H, Sui Y, Liu X T, Jia G Q, Zhao Z Y, Yan J J, Zhang B C, Zhou Y H, Chu J F, Wang X C, Zhao B H, Tang W Q, Li J Y, Wu C Y, Liu X G, Diao X M. DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proc Natl Acad Sci USA, 2020, 117: 21766-21774.
doi: 10.1073/pnas.2002278117 pmid: 32817516
[5] Singh R K, Prasad M. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. Protoplasma, 2016, 253: 691-707.
doi: 10.1007/s00709-015-0905-3
[6] Song G Q, Walworth A, Hancock J F. Factors influencing Agrobacterium-mediated transformation of switchgrass cultivars. Plant Cell Tissue Organ Cult, 2012, 108: 445-453.
doi: 10.1007/s11240-011-0056-y
[7] Santos C M, Romeiro D, Silva J P, Basso M F, Molinari H B C, Centeno D C. An improved protocol for efficient transformation and regeneration of Setaria italica. Plant Cell Rep, 2020, 39: 501-510.
doi: 10.1007/s00299-019-02505-y pmid: 31915913
[8] 陈倩楠, 王轲, 汤沙, 杜丽璞, 智慧, 贾冠清, 赵宝华, 叶兴国, 刁现民. 以抗除草剂Bar基因稳定转化谷子技术研究. 作物学报, 2018, 44: 1423-1432.
doi: 10.3724/SP.J.1006.2018.01423
Chen Q N, Wang K, Tang S, Du L P, Zhi H, Jia G Q, Zhao B H, Ye X G, Diao X M. Use of Bar gene for the stable transformation of herbicide-resistant foxtail millet plants. Acta Agron Sin, 2018, 44: 1423-1432. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01423
[9] 李颜方, 杜艳伟, 张正, 王高鸿, 赵根有, 赵晋锋, 余爱丽. 农杆菌介导谷子成熟胚遗传转化体系的建立与优化. 作物杂志, 2019, (3): 73-79.
Li Y F, Du Y W, Zhang Z, Wang G H, Zhao G Y, Zhao J F, Yu A L. Establishment and optimization of Agrobacterium mediated transformation system for mature embryo of foxtail millet. Crops, 2019, (3): 73-79. (in Chinese with English abstract)
[10] Mehrotra S, Srivastava V, Ur Rahman L, Kukreja A K. Hairy root biotechnology-indicative timeline to understand missing links and future outlook. Protoplasma, 2015, 252: 1189-1201.
doi: 10.1007/s00709-015-0761-1 pmid: 25626898
[11] Roy A. Hairy root culture an alternative for bioactive compound production from medicinal plants. Curr Pharm Biotechnol, 2021, 22: 136-149.
[12] Lystvan K, Listvan V, Shcherbak N, Kuchuk M. Rhizoextraction potential of convolvulus tricolor hairy roots for Cr6+, Ni2+, and Pb2+removal from aqueous solutions. Appl Biochem Biotechnol, 2020, 10: 1007.
[13] Garagounis C, Beritza K, Georgopoulou M E, Sonawane P, Haralampidis K, Goossens A, Aharoni A, Papadopoulou K. A hairy-root transformation protocol for Trigonella foenum-graecum L. as a tool for metabolic engineering and specialized metabolite pathway elucidation. Plant Physiol Biochem, 2020, 154: 451-462.
doi: 10.1016/j.plaphy.2020.06.011
[14] Naeini M S, Naghavi M R, Bihamta M R, Sabokdast M, Salehi M. Production of some benzylisoquinoline alkaloids in Papaver armeniacum L. hairy root cultures elicited with salicylic acid and methyl jasmonate. Plant J Tissue Cult Assoc, 2021, 2: 57.
[15] Pedreno M A, Almagro L. Carrot hairy roots: factories for secondary metabolite production. J Exp Bot, 2020, 71: 6861-6864.
doi: 10.1093/jxb/eraa435 pmid: 33382895
[16] 未晓巍, 陈志鹏, 郭丽, 刘凡语, 谈韫, 周晓馥. 玉米毛状根再生植株根系的植物内源激素动态变化研究. 吉林师范大学学报(自然科学版), 2020, 41(2): 116-121.
Wei X W, Chen Z P, Guo L, Liu F Y, Tan W, Zhou X F. Dynamic research of endogenous hormone in the roots of hairy root regeneration plant of maize. J Jilin Norm Univ (Nat Sci Edn), 2020, 41(2): 116-121. (in Chinese with English abstract)
[17] Chen Z Y, Fang X K, Yuan X S, Zhang Y Y, Li H Y, Zhou Y, Cui X Y. Overexpression of transcription factor GmTGA15 enhances drought tolerance in transgenic soybean hairy roots and Arabidopsis plants. Agronomy, 2021, 11: 170.
doi: 10.3390/agronomy11010170
[18] Cui M L, Liu C, Piao C L, Liu C L. A stable Agrobacterium rhizogenes-mediated transformation of cotton (Gossypium hirsutum L.) and plant regeneration from transformed hairy root via embryogenesis. Front Plant Sci, 2020, 11: 604255.
doi: 10.3389/fpls.2020.604255
[19] 徐悦, 曹英萍, 王玉, 付春祥, 戴绍军. 发根农杆菌介导的菠菜毛状根遗传转化体系的建立. 植物学报, 2019, 54: 515-521.
doi: 10.11983/CBB18257
Xu Y, Cao Y P, Wang Y, Fu C X, Dai S J. Agrobacterium rhizogenes-mediated transformation system of Spinacia oleracea. Chin Bull Bot, 2019, 54: 515-521 (in Chinese with English abstract).
[20] 陶均, 谭汝芳, 李玲. 发根农杆菌介导的向日葵遗传转化. 作物学报, 2006, 32: 743-748.
Tao J, Tan R F, Li L. Genetic transformation of sunflower (Helianthus annuus L.) mediated by Agrobacterium rhizogenes. Acta Agron Sin, 2006, 32: 743-748.
[21] 郑传进, 吴小勇, 王志江. 南药巴戟天毛状根诱导条件优化研究. 现代农业科技, 2014, (10): 77-78.
Zheng C J, Wu X Y, Wang Z J. Optimization of inducement conditions for hairy roots of Morinda officinalis How. Modern Agric Sci Technol, 2014, (10): 77-78. (in Chinese with English abstract)
[22] 吴顺, 孙建春, 周凯, 王华英, 李婷, 刘姣. 钩藤毛状根的诱导及其钩藤碱含量的测定. 北方园艺, 2019, (15): 49-54.
Wu S, Sun J C, Zhou K, Wang H Y, Li T, Liu J. Induction of hairy root of Uncaria rhynchophylla and content determination of rhynchophylline. Nor Hortic, 2019, (15): 49-54. (in Chinese with English abstract)
[23] 郝紫微, 戴雨沁, 张绍铃, 王鹏. 发根农杆菌介导的杜梨毛状根遗传转化方法. 湖北农业科学, 2021, 60(1): 151-154.
Hao Z W, Dai Y X, Zhang S L, Wang P. Genetic transformation method of hairy roots mediated by Agrobacterium rhizogenes for Pyrus betulaefolia. Hubei Agric Sci, 2021, 60(1): 151-154. (in Chinese with English abstract)
[24] 段梦灵, 李鲁汉, 廖辉, 陈新月, 马钰玺, 林艳丽, 柳忠玉, 吴晓倩, 潘佑找, 伍翔. 发根农杆菌介导的虎杖转基因体系优化. 现代农业科技, 2021, (4): 46-50.
Duan M L, Li L H, Liao H, Chen X Y, Ma Y X, Lin Y L, Liu Z Y, Wu X Q, Pan Y Z, Wu X. Optimization of Agrobacterium rhizogenes-mediated Polygonum cuspidatum transgenic system. Modern Agric Sci Technol, 2021, (4): 46-50. (in Chinese with English abstract)
[25] 王宏伟, 梁业红, 史振声, 张世煌. 共培养环境对玉米遗传转化的影响. 西北农业学报, 2011, 20(9): 40-42.
Wang H W, Liang Y H, Shi Z S, Zhang S H. Study on co-culture system to genetic transformation of maize. Acta Agric Boreali-Occident Sin, 2011, 20(9): 40-42. (in Chinese with English abstract)
[26] Batistič O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta, 2009, 1793: 985-992.
doi: 10.1016/j.bbamcr.2008.10.006 pmid: 19022300
[27] Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys, 2005, 444: 139-158.
doi: 10.1016/j.abb.2005.10.018 pmid: 16309626
[28] 赵晋锋, 余爱丽, 田岗, 杜艳伟, 郭二虎, 刁现民. 谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析. 作物学报, 2013, 39: 360-367.
doi: 10.3724/SP.J.1006.2013.00360
Zhao J F, Yu A L, Tian G, Du Y W, Guo E H, Diao X M. Identification of CBL genes from foxtail millet (Setaria italica [L.] Beauv.) and its expression under drought and salt stresses. Acta Agron Sin, 2013, 39: 360-367. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00360
[29] Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Takabe T. Halotolerant cyanobacterium Aphanothece halophytica contains an Na+/H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J Biol Chem, 2001, 276: 36931-36938.
doi: 10.1074/jbc.M103650200 pmid: 11479290
[30] Cao D, Hou W S, Liu W, Yao W W, Wu C X, Liu X B, Han T F. Overexpression of TaNHX2 enhances salt tolerance of ‘composite’ and whole transgenic soybean plants. Plant Cell Tissue Organ Cult, 2011, 107: 541-552.
doi: 10.1007/s11240-011-0005-9
[31] Ariño-Estrada G, Mitchell G S, Saha P, Arzani A, Cherry S R, Blumwald E, Kyme A Z. Imaging salt uptake dynamics in plants using PET. Sci Rep, 2019, 9: 18626.
doi: 10.1038/s41598-019-54781-z pmid: 31819118
[32] Wen J Q, Lease K A, Walker J C. DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. Plant J, 2004, 37: 668-677.
doi: 10.1111/tpj.2004.37.issue-5
[33] Combier J P, Küster H, Journet E P, Hohnjec N, Gamas P, Niebel A. Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. Mol Plant Microbe Interact, 2008, 21: 1118-1127.
doi: 10.1094/MPMI-21-8-1118
[34] 邵明成, 王大鹏. 发根农杆菌诱导产生发状根及其在植物科学领域中的应用. 黑龙江农业科学, 2015, (3): 146-150.
Shao M C, Wang D P. Hairy root induced by Agrobacterium rhizogenes and the application in plant science. Heilongjiang Agric Sci, 2015, (3): 146-150. (in Chinese with English abstract)
[35] 贺榆婷, 卫云丰, 张洁, 郭永正, 叶玲, 韩渊怀, 王兴春, 杨致. 谷子高效离体再生基因型和培养基的筛选. 核农学报, 2019, 33: 1265-1272.
doi: 10.11869/j.issn.100-8551.2019.07.1265
He Y T, Wei Y F, Zhang J, Guo Y Z, Ye L, Han Y H, Wang X C, Yang Z. Screening of high efficient genotypes and medium for in vitro regeneration in foxtail millet. Acta Agric Nucl Sin, 2019, 33: 1265-1272. (in Chinese with English abstract)
[1] 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121.
[2] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[3] 王蓉, 陈小红, 王倩, 刘少雄, 陆平, 刁现民, 刘敏轩, 王瑞云. 中国谷子名米品种遗传多样性与亲缘关系研究[J]. 作物学报, 2022, 48(8): 1914-1925.
[4] 韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因[J]. 作物学报, 2022, 48(7): 1645-1657.
[5] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[6] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[7] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[8] 王琦, 许艳丽, 闫鹏, 董好胜, 张薇, 卢霖, 董志强. 聚天门冬氨酸和壳聚糖复配剂对东北春谷光合生产特征及产量的调控效应[J]. 作物学报, 2022, 48(11): 2840-2852.
[9] 马鑫磊, 许瑞琪, 索晓曼, 李婧实, 顾鹏鹏, 姚锐, 林小虎, 高慧. 谷子III型PRX基因家族全基因组鉴定及干旱胁迫下表达分析[J]. 作物学报, 2022, 48(10): 2517-2532.
[10] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[11] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[12] 高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜BjuB.KAN4基因调控类黄酮的途径[J]. 作物学报, 2020, 46(9): 1322-1331.
[13] 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062.
[14] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[15] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .