作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1758-1768.doi: 10.3724/SP.J.1006.2023.24197
万夷曼(), 肖圣慧, 白依超, 范佳音, 王琰, 吴长艾*()
WAN Yi-Man(), XIAO Sheng-Hui, BAI Yi-Chao, FAN Jia-Yin, WANG Yan, WU Chang-Ai*()
摘要:
为建立一种快速鉴定谷子基因功能的技术体系, 本研究通过比较谷子外植体、品种、乙酰丁香酮、菌液浓度和共培养时间对发根农杆菌K599介导的毛状根诱导效率的影响, 发现发根农杆菌浓度在OD600为0.5、以谷子芽尖为外植体、在含有100 μmol L-1乙酰丁香酮的毛状根诱导培养基上共培养3 d时, 可使毛状根诱导率高达80.24%。将GFP基因进行毛状根遗传转化, 通过GFP基因的PCR扩增和GFP荧光观察结果分析, 发现谷子毛状根的转基因效率大于70%。利用该体系对谷子SiDVL1和SiDVL3的亚细胞定位和SiNHX2、SiCBL4和SiCBL7基因功能进行了分析和鉴定。结果表明SiDVL1和SiDVL3在谷子毛状根中的亚细胞定位与在烟草叶片中的一致; SiNHX2、SiCBL4和SiCBL7转基因谷子的存活率显著高于空载体转化谷子。说明本研究建立了一种高效快速鉴定谷子基因定位和功能的方法。
[1] | Hu H, Mauro-Herrera M, Doust A N. Domestication and improvement in the model C4 grass, Seteria. Front Plant Sci, 2018, 9: 719. |
[2] |
Bandyopadhyay T, Muthamilarasan M, Prasad M. Millets for next generation climate-smart agriculture. Front Plant Sci, 2017, 8: 1266.
doi: 10.3389/fpls.2017.01266 pmid: 28769966 |
[3] |
Yang Z R, Zhang H S, Li X K, Shen H M, Gao J H, Hou S Y, Zhang B, Mayes S, Bennett M, Ma J X, Wu C Y, Sui Y, Han Y H, Wang X C. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants, 2020, 6: 1167.
doi: 10.1038/s41477-020-0747-7 |
[4] |
Zhao M C, Tang S, Zhang H S, He M M, Liu J H, Zhi H, Sui Y, Liu X T, Jia G Q, Zhao Z Y, Yan J J, Zhang B C, Zhou Y H, Chu J F, Wang X C, Zhao B H, Tang W Q, Li J Y, Wu C Y, Liu X G, Diao X M. DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proc Natl Acad Sci USA, 2020, 117: 21766-21774.
doi: 10.1073/pnas.2002278117 pmid: 32817516 |
[5] |
Singh R K, Prasad M. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops. Protoplasma, 2016, 253: 691-707.
doi: 10.1007/s00709-015-0905-3 |
[6] |
Song G Q, Walworth A, Hancock J F. Factors influencing Agrobacterium-mediated transformation of switchgrass cultivars. Plant Cell Tissue Organ Cult, 2012, 108: 445-453.
doi: 10.1007/s11240-011-0056-y |
[7] |
Santos C M, Romeiro D, Silva J P, Basso M F, Molinari H B C, Centeno D C. An improved protocol for efficient transformation and regeneration of Setaria italica. Plant Cell Rep, 2020, 39: 501-510.
doi: 10.1007/s00299-019-02505-y pmid: 31915913 |
[8] |
陈倩楠, 王轲, 汤沙, 杜丽璞, 智慧, 贾冠清, 赵宝华, 叶兴国, 刁现民. 以抗除草剂Bar基因稳定转化谷子技术研究. 作物学报, 2018, 44: 1423-1432.
doi: 10.3724/SP.J.1006.2018.01423 |
Chen Q N, Wang K, Tang S, Du L P, Zhi H, Jia G Q, Zhao B H, Ye X G, Diao X M. Use of Bar gene for the stable transformation of herbicide-resistant foxtail millet plants. Acta Agron Sin, 2018, 44: 1423-1432. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01423 |
|
[9] | 李颜方, 杜艳伟, 张正, 王高鸿, 赵根有, 赵晋锋, 余爱丽. 农杆菌介导谷子成熟胚遗传转化体系的建立与优化. 作物杂志, 2019, (3): 73-79. |
Li Y F, Du Y W, Zhang Z, Wang G H, Zhao G Y, Zhao J F, Yu A L. Establishment and optimization of Agrobacterium mediated transformation system for mature embryo of foxtail millet. Crops, 2019, (3): 73-79. (in Chinese with English abstract) | |
[10] |
Mehrotra S, Srivastava V, Ur Rahman L, Kukreja A K. Hairy root biotechnology-indicative timeline to understand missing links and future outlook. Protoplasma, 2015, 252: 1189-1201.
doi: 10.1007/s00709-015-0761-1 pmid: 25626898 |
[11] | Roy A. Hairy root culture an alternative for bioactive compound production from medicinal plants. Curr Pharm Biotechnol, 2021, 22: 136-149. |
[12] | Lystvan K, Listvan V, Shcherbak N, Kuchuk M. Rhizoextraction potential of convolvulus tricolor hairy roots for Cr6+, Ni2+, and Pb2+removal from aqueous solutions. Appl Biochem Biotechnol, 2020, 10: 1007. |
[13] |
Garagounis C, Beritza K, Georgopoulou M E, Sonawane P, Haralampidis K, Goossens A, Aharoni A, Papadopoulou K. A hairy-root transformation protocol for Trigonella foenum-graecum L. as a tool for metabolic engineering and specialized metabolite pathway elucidation. Plant Physiol Biochem, 2020, 154: 451-462.
doi: 10.1016/j.plaphy.2020.06.011 |
[14] | Naeini M S, Naghavi M R, Bihamta M R, Sabokdast M, Salehi M. Production of some benzylisoquinoline alkaloids in Papaver armeniacum L. hairy root cultures elicited with salicylic acid and methyl jasmonate. Plant J Tissue Cult Assoc, 2021, 2: 57. |
[15] |
Pedreno M A, Almagro L. Carrot hairy roots: factories for secondary metabolite production. J Exp Bot, 2020, 71: 6861-6864.
doi: 10.1093/jxb/eraa435 pmid: 33382895 |
[16] | 未晓巍, 陈志鹏, 郭丽, 刘凡语, 谈韫, 周晓馥. 玉米毛状根再生植株根系的植物内源激素动态变化研究. 吉林师范大学学报(自然科学版), 2020, 41(2): 116-121. |
Wei X W, Chen Z P, Guo L, Liu F Y, Tan W, Zhou X F. Dynamic research of endogenous hormone in the roots of hairy root regeneration plant of maize. J Jilin Norm Univ (Nat Sci Edn), 2020, 41(2): 116-121. (in Chinese with English abstract) | |
[17] |
Chen Z Y, Fang X K, Yuan X S, Zhang Y Y, Li H Y, Zhou Y, Cui X Y. Overexpression of transcription factor GmTGA15 enhances drought tolerance in transgenic soybean hairy roots and Arabidopsis plants. Agronomy, 2021, 11: 170.
doi: 10.3390/agronomy11010170 |
[18] |
Cui M L, Liu C, Piao C L, Liu C L. A stable Agrobacterium rhizogenes-mediated transformation of cotton (Gossypium hirsutum L.) and plant regeneration from transformed hairy root via embryogenesis. Front Plant Sci, 2020, 11: 604255.
doi: 10.3389/fpls.2020.604255 |
[19] |
徐悦, 曹英萍, 王玉, 付春祥, 戴绍军. 发根农杆菌介导的菠菜毛状根遗传转化体系的建立. 植物学报, 2019, 54: 515-521.
doi: 10.11983/CBB18257 |
Xu Y, Cao Y P, Wang Y, Fu C X, Dai S J. Agrobacterium rhizogenes-mediated transformation system of Spinacia oleracea. Chin Bull Bot, 2019, 54: 515-521 (in Chinese with English abstract). | |
[20] | 陶均, 谭汝芳, 李玲. 发根农杆菌介导的向日葵遗传转化. 作物学报, 2006, 32: 743-748. |
Tao J, Tan R F, Li L. Genetic transformation of sunflower (Helianthus annuus L.) mediated by Agrobacterium rhizogenes. Acta Agron Sin, 2006, 32: 743-748. | |
[21] | 郑传进, 吴小勇, 王志江. 南药巴戟天毛状根诱导条件优化研究. 现代农业科技, 2014, (10): 77-78. |
Zheng C J, Wu X Y, Wang Z J. Optimization of inducement conditions for hairy roots of Morinda officinalis How. Modern Agric Sci Technol, 2014, (10): 77-78. (in Chinese with English abstract) | |
[22] | 吴顺, 孙建春, 周凯, 王华英, 李婷, 刘姣. 钩藤毛状根的诱导及其钩藤碱含量的测定. 北方园艺, 2019, (15): 49-54. |
Wu S, Sun J C, Zhou K, Wang H Y, Li T, Liu J. Induction of hairy root of Uncaria rhynchophylla and content determination of rhynchophylline. Nor Hortic, 2019, (15): 49-54. (in Chinese with English abstract) | |
[23] | 郝紫微, 戴雨沁, 张绍铃, 王鹏. 发根农杆菌介导的杜梨毛状根遗传转化方法. 湖北农业科学, 2021, 60(1): 151-154. |
Hao Z W, Dai Y X, Zhang S L, Wang P. Genetic transformation method of hairy roots mediated by Agrobacterium rhizogenes for Pyrus betulaefolia. Hubei Agric Sci, 2021, 60(1): 151-154. (in Chinese with English abstract) | |
[24] | 段梦灵, 李鲁汉, 廖辉, 陈新月, 马钰玺, 林艳丽, 柳忠玉, 吴晓倩, 潘佑找, 伍翔. 发根农杆菌介导的虎杖转基因体系优化. 现代农业科技, 2021, (4): 46-50. |
Duan M L, Li L H, Liao H, Chen X Y, Ma Y X, Lin Y L, Liu Z Y, Wu X Q, Pan Y Z, Wu X. Optimization of Agrobacterium rhizogenes-mediated Polygonum cuspidatum transgenic system. Modern Agric Sci Technol, 2021, (4): 46-50. (in Chinese with English abstract) | |
[25] | 王宏伟, 梁业红, 史振声, 张世煌. 共培养环境对玉米遗传转化的影响. 西北农业学报, 2011, 20(9): 40-42. |
Wang H W, Liang Y H, Shi Z S, Zhang S H. Study on co-culture system to genetic transformation of maize. Acta Agric Boreali-Occident Sin, 2011, 20(9): 40-42. (in Chinese with English abstract) | |
[26] |
Batistič O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta, 2009, 1793: 985-992.
doi: 10.1016/j.bbamcr.2008.10.006 pmid: 19022300 |
[27] |
Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys, 2005, 444: 139-158.
doi: 10.1016/j.abb.2005.10.018 pmid: 16309626 |
[28] |
赵晋锋, 余爱丽, 田岗, 杜艳伟, 郭二虎, 刁现民. 谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析. 作物学报, 2013, 39: 360-367.
doi: 10.3724/SP.J.1006.2013.00360 |
Zhao J F, Yu A L, Tian G, Du Y W, Guo E H, Diao X M. Identification of CBL genes from foxtail millet (Setaria italica [L.] Beauv.) and its expression under drought and salt stresses. Acta Agron Sin, 2013, 39: 360-367. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00360 |
|
[29] |
Waditee R, Hibino T, Tanaka Y, Nakamura T, Incharoensakdi A, Takabe T. Halotolerant cyanobacterium Aphanothece halophytica contains an Na+/H+ antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail. J Biol Chem, 2001, 276: 36931-36938.
doi: 10.1074/jbc.M103650200 pmid: 11479290 |
[30] |
Cao D, Hou W S, Liu W, Yao W W, Wu C X, Liu X B, Han T F. Overexpression of TaNHX2 enhances salt tolerance of ‘composite’ and whole transgenic soybean plants. Plant Cell Tissue Organ Cult, 2011, 107: 541-552.
doi: 10.1007/s11240-011-0005-9 |
[31] |
Ariño-Estrada G, Mitchell G S, Saha P, Arzani A, Cherry S R, Blumwald E, Kyme A Z. Imaging salt uptake dynamics in plants using PET. Sci Rep, 2019, 9: 18626.
doi: 10.1038/s41598-019-54781-z pmid: 31819118 |
[32] |
Wen J Q, Lease K A, Walker J C. DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. Plant J, 2004, 37: 668-677.
doi: 10.1111/tpj.2004.37.issue-5 |
[33] |
Combier J P, Küster H, Journet E P, Hohnjec N, Gamas P, Niebel A. Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. Mol Plant Microbe Interact, 2008, 21: 1118-1127.
doi: 10.1094/MPMI-21-8-1118 |
[34] | 邵明成, 王大鹏. 发根农杆菌诱导产生发状根及其在植物科学领域中的应用. 黑龙江农业科学, 2015, (3): 146-150. |
Shao M C, Wang D P. Hairy root induced by Agrobacterium rhizogenes and the application in plant science. Heilongjiang Agric Sci, 2015, (3): 146-150. (in Chinese with English abstract) | |
[35] |
贺榆婷, 卫云丰, 张洁, 郭永正, 叶玲, 韩渊怀, 王兴春, 杨致. 谷子高效离体再生基因型和培养基的筛选. 核农学报, 2019, 33: 1265-1272.
doi: 10.11869/j.issn.100-8551.2019.07.1265 |
He Y T, Wei Y F, Zhang J, Guo Y Z, Ye L, Han Y H, Wang X C, Yang Z. Screening of high efficient genotypes and medium for in vitro regeneration in foxtail millet. Acta Agric Nucl Sin, 2019, 33: 1265-1272. (in Chinese with English abstract) |
[1] | 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121. |
[2] | 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495. |
[3] | 王蓉, 陈小红, 王倩, 刘少雄, 陆平, 刁现民, 刘敏轩, 王瑞云. 中国谷子名米品种遗传多样性与亲缘关系研究[J]. 作物学报, 2022, 48(8): 1914-1925. |
[4] | 韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因[J]. 作物学报, 2022, 48(7): 1645-1657. |
[5] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[6] | 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885. |
[7] | 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279. |
[8] | 王琦, 许艳丽, 闫鹏, 董好胜, 张薇, 卢霖, 董志强. 聚天门冬氨酸和壳聚糖复配剂对东北春谷光合生产特征及产量的调控效应[J]. 作物学报, 2022, 48(11): 2840-2852. |
[9] | 马鑫磊, 许瑞琪, 索晓曼, 李婧实, 顾鹏鹏, 姚锐, 林小虎, 高慧. 谷子III型PRX基因家族全基因组鉴定及干旱胁迫下表达分析[J]. 作物学报, 2022, 48(10): 2517-2532. |
[10] | 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846. |
[11] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[12] | 高国应, 伍小方, 黄伟, 周定港, 张大为, 周美亮, 张凯旋, 严明理. 芥菜型油菜BjuB.KAN4基因调控类黄酮的途径[J]. 作物学报, 2020, 46(9): 1322-1331. |
[13] | 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062. |
[14] | 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711. |
[15] | 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604. |
|