欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1643-1652.doi: 10.3724/SP.J.1006.2023.23043

• 耕作栽培·生理生化 • 上一篇    下一篇

不同熟期玉米品种籽粒田间脱水特征差异性分析

李璐璐1,2,3(), 明博1,*(), 高尚1, 谢瑞芝1, 王克如1, 侯鹏1, 薛军1, 李少昆1,*()   

  1. 1中国农业科学院作物科学研究所/农业部作物生理生态重点实验室, 北京 100081
    2海南省农业科学院三亚研究院, 海南三亚 572025
    3海南省崖州湾种子实验室, 海南三亚 572025
  • 收稿日期:2022-05-19 接受日期:2022-10-10 出版日期:2023-06-12 网络出版日期:2022-10-18
  • 通讯作者: *李少昆, E-mail: lishaokun@caas.cn;明博, E-mail: mingbo@caas.cn, Tel: 010-82108891
  • 作者简介:E-mail: lilulu19910818@163.com
  • 基金资助:
    国家自然科学基金项目(31971849);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-02-25);中国农业科学院农业科技创新工程项目(CAAS-ZDRW202004)

Characteristic difference in grain in-field drydown between maize cultivars with various maturation

LI Lu-Lu1,2,3(), MING Bo1,*(), GAO Shang1, XIE Rui-Zhi1, WANG Ke-Ru1, HOU Peng1, XUE Jun1, LI Shao-Kun1,*()   

  1. 1Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572025, Hainan, China
    3Hainan Yazhou Bay Seed Laboratory, Sanya 572025, Hainan, China
  • Received:2022-05-19 Accepted:2022-10-10 Published:2023-06-12 Published online:2022-10-18
  • Contact: *E-mail: lishaokun@caas.cn;E-mail: mingbo@caas.cn, Tel: 010-82108891
  • Supported by:
    National Natural Science Foundation of China(31971849);China Agriculture Research System of MOF and MARA(CARS-02-25);Agricultural Science and Technology Innovation Program(CAAS-ZDRW202004)

摘要:

玉米收获期籽粒含水率是影响机械粒收质量和籽粒品质的重要因素, 不同熟期品种收获期籽粒含水率有差异, 同时品种间熟期的差异也使其田间脱水的环境不同, 造成其脱水特征难以精准比较。本研究于2018—2019年, 以不同熟期玉米品种为研究对象, 设置间隔约10 d的8个播期处理, 播期覆盖自早春播至晚夏播, 创制籽粒田间脱水的环境差异, 观测籽粒含水率动态过程, 分析品种之间籽粒田间脱水特征差异。结果表明, 收获期籽粒含水率与品种生育期长短呈显著正相关(r = 0.810*, 2018; r = 0.912**, 2019), 早熟品种收获时含水率低、晚熟品种高; 生理成熟期籽粒含水率与灌浆期长短呈显著负相关(r = -0.484**), 早熟品种生理成熟期籽粒含水率高、晚熟品种低; 籽粒生理成熟前脱水速率(r = -0.655**)和生理成熟后脱水速率(r = -0.492**)均与生育期长短呈显著负相关, 表现出早熟品种籽粒脱水速率快、晚熟品种脱水速率慢的特征; 籽粒生理成熟前脱水速率与生理成熟后脱水速率之间呈显著正相关(r = 0.466**), 一般而言生理成熟前籽粒脱水速率较快的品种, 生理成熟后脱水速率也较快, 但是存在生理成熟前脱水速率快、生理成熟后脱水速率慢的特例品种。本研究认为生育期影响籽粒脱水速率, 通常早熟品种生理成熟前、后籽粒脱水速率均较快, 收获期含水率较低; 晚熟品种生理成熟前、后籽粒脱水速率均较慢, 收获期含水率较高; 但是存在特例品种, 在进行籽粒快速脱水品种的选育和筛选时应引起关注。

关键词: 玉米, 生育期, 籽粒, 含水率, 脱水速率

Abstract:

The grain moisture concentration at harvest stage varies vastly among maize cultivars with various maturities, which is an important factor affecting mechanical grain harvesting and grain quality. Differences in maturation result in various environmental conditions for grain drying in the field, thus increasing the difficulty of comparing the characteristics of grain dehydration between cultivars. Maize cultivars with different maturities were seeded eight times at 10-day intervals from early spring to late summer in 2018 and 2019, supplying the different environmental conditions for grain in-field drying. The dynamics of grain moisture concentration were measured for all cultivars to analyze varietal differences in characterization of grain in-field drydown. Grain moisture concentration at harvest was positively correlated to growth period (r = 0.810*, 2018; r = 0.912**, 2019). Usually, the early-maturing cultivars had lower moisture concentration at harvest stage than the late-maturing cultivars. Grain moisture concentration at physiological maturity was negatively correlated to grain filling period (r = -0.484**). It was higher for early-maturing cultivars than late-maturing cultivars. Grain moisture loss rates of pre- (r = -0.655**) and post-maturity (r = -0.492**) were both inversely associated with the growth period, and were faster for early- than late-maturing cultivars. Furthermore, there was a significantly positive correlation between the grain moisture loss rate of pre-maturity and post-maturity (r = 0.466**). Overall, the cultivars with high moisture loss rate before maturity declined moisture quickly after maturity, while there was the particular cultivar with high moisture loss rate before maturity but low moisture loss rate after maturity. Duration of growth period affected grain dehydration rate. Generally, compared to late-maturing cultivar, grain of early-maturing cultivar had faster drying rates of pre- and post-maturity and lower moisture concentration at harvest stage. However, there was the noticeable case of particular cultivar when breeding and screening maize with rapid grain dehydration.

Key words: maize, growth period, grain, moisture concentration, moisture loss rate

表1

试验的播种日期"

年份
Year
第1播期
The first sowing
第2播期
The second sowing
第3播期
The third sowing
第4播期
The fourth sowing
第5播期
The fifth sowing
第6播期
The sixth sowing
第7播期
The seventh sowing
第8播期
The eighth sowing
2018 4/19 4/30 5/10 5/24 6/3 6/13 6/23 7/3
2019 4/24 5/4 5/14 5/24 6/3 6/13 6/23 7/3

图1

试验田气温、降水、风速和相对湿度 图A和图B上的实线表示平均气温, 阴影表示最低气温和最高气温。"

图2

粒重动态过程的双线性模型(A)和籽粒含水率动态过程的分阶段线性拟合(B)"

图3

不同玉米品种在第5播期的生育进程(左)、10月1日籽粒含水率(中)以及含水率与生育期的相关性(右) *和**分别表示在0.05和0.01概率水平差异显著。禾田1号(Hetian 1, HT1)、丰垦139 (Fengken 139, FK139)、泽玉8911 (Zeyu 8911, ZY8911)、京农科728 (Jingnongke 728, JNK728)、迪卡517 (Dika 517, DK517)、先玉335 (Xianyu 335, XY335)、郑单958 (Zhengdan 958, ZD958)、迪卡653 (Dika 653, DK653)。"

图4

生理成熟期籽粒含水率及其与灌浆期的关系 图中小写字母表示在0.05概率水平差异显著, **表示在0.01概率水平差异显著, × 为样本均值, 缩略词同图3。"

图5

不同玉米品种生理成熟前、后籽粒脱水速率 图中小写字母表示在0.05概率水平差异显著, ×为样本均值, 虚线为HT1样本值的下端线, 缩略词同图3。"

表2

脱水速率与生育期的相关分析"

性状
Trait
出苗-吐丝
Emergence-silking
吐丝-成熟
Silking-maturity
出苗-成熟
Emergence-maturity
生理成熟前脱水速率Moisture loss rate of pre-maturity stage -0.211* -0.641** -0.655**
生理成熟后脱水速率Moisture loss rate of post-maturity stage -0.183* -0.464** -0.492**
总脱水速率Moisture loss rate of pre- and post-maturity stage -0.287** -0.509** -0.592**

图6

生理成熟前、后籽粒平均脱水速率的关系 实线为线性拟合方程及95%置信区间, 垂直虚线为生理成熟前脱水速率的平均值, 水平虚线为生理成熟后脱水速率的平均值, 缩略词同图3。"

[1] Borrás L, Gambín B L. Trait dissection of maize kernel weight: towards integrating hierarchical scales using a plant growth approach. Field Crops Res, 2010, 118: 1-12.
doi: 10.1016/j.fcr.2010.04.010
[2] Brooking I R. Maize ear moisture during grain-filling, and its relation to physiological maturity and grain-drying. Field Crops Res, 1990, 23: 55-68.
doi: 10.1016/0378-4290(90)90097-U
[3] Gambín B L, Borrás L, Otegui M E. Kernel water relations and duration of grain filling in maize temperate hybrids. Field Crops Res, 2007, 101: 1-9.
doi: 10.1016/j.fcr.2006.09.001
[4] Sala R G, Andrade F H, Westgate M E. Maize kernel moisture at physiological maturity as affected by the source-sink relationship during grain filling. Crop Sci, 2007, 47: 711-716.
doi: 10.2135/cropsci2006.06.0381
[5] Sala R G, Westgate M E, Andrade F H. Source/sink ratio and the relationship between maximum water content, maximum volume, and final dry weight of maize kernels. Field Crops Res, 2007, 101: 19-25.
doi: 10.1016/j.fcr.2006.09.004
[6] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆. 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018, 51: 1878-1889.
doi: 10.3864/j.issn.0578-1752.2018.10.007
Li L L, Ming B, Gao S, Xie R Z, Hou P, Wang K R, Li S K. Study on grain dehydration characters of summer maize and its relationship with grain filling. Sci Agric Sin, 2018, 51: 1878-1889. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.10.007
[7] 万泽花, 任佰朝, 赵斌, 刘鹏, 张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化. 作物学报, 2019, 45: 1446-1453.
doi: 10.3724/SP.J.1006.2019.83078
Wan Z H, Ren B Z, Zhao B, Liu P, Zhang J W. Grain filling, dehydration characteristics and changes of endogenous hormones of summer maize hybrids differing in maturities. Acta Agron Sin, 2019, 45: 1446-1453. (in Chinese with English abstract)
[8] 荆彦平. 小麦和玉米颖果的生长及胚乳细胞的发育. 扬州大学硕士学位论文, 江苏扬州, 2014.
Jing Y P. The Caryopsis Growth and the Endosperm Cell Development in Wheat and Maize. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2014 (in Chinese with English abstract).
[9] Henderson S M, Perry R L. Agricultural Process Engineering. New York: John Wiley & Sons, Inc. 1955. pp 277-287.
[10] Van Ee G R, Kline G L. CORNSIM: a corn production model for central Iowa. Trans ASAE, 1990, 33: 757-763.
doi: 10.13031/2013.31397
[11] Piggott S D. Simulation of Corn in-Field Dry Down. MS Thesis of Michigan State University, Michigan, America, 2010.
[12] Maiorano A, Fanchini D, Donatelli M. MIMYCS. Moisture, a process-based model of moisture content in developing maize kernels. Eur J Agron, 2014, 59: 86-95.
doi: 10.1016/j.eja.2014.05.011
[13] 王金涛, 董心亮, 肖宇, 刘青松, 张冬梅, 韩金玲, 刘毅, 高广瑞, 刘占卯, 孙宏勇. 基于扩散理论的华北春玉米生理成熟后籽粒脱水过程分析. 中国农业生态学报, 2020, 28: 545-557.
Wang J T, Dong X L, Xiao Y, Liu Q S, Zhang D M, Han J L, Liu Y, Gao G D, Liu Z M, Sun H Y. Analysis of kernel dry down process after physiological maturity of spring maize based on diffusion theory in the North China. Chin J Eco-Agric, 2020, 28: 545-557. (in Chinese with English abstract)
[14] Gao S, Ming B, Li L L, Yin X B, Xue J, Wang K R, Xie R Z, Li S K. Relationship and distribution of in-field dry-down and equilibrium in maize grain moisture content. Agric For Meteorol, 2021, 304/305: 108409.
doi: 10.1016/j.agrformet.2021.108409
[15] Baron V S, Daynard T B. Factors affecting grain dry-down in early-maturing European and Canadian corn hybrids. Can J Plant Sci, 1984, 64: 465-474.
doi: 10.4141/cjps84-069
[16] Mišević D, Alexander D E, Dumanović J, Kerečki B, Ratković S. Grain moisture loss rate of high-oil and standard-oil maize hybrids. Agron J, 1988, 80: 841-845.
doi: 10.2134/agronj1988.00021962008000050032x
[17] Newton S D, Eagles H A. Development traits affecting time to low ear moisture in maize. Plant Breed, 1991, 106: 58-67.
doi: 10.1111/pbr.1991.106.issue-1
[18] Yang J, Carena M J, Uphaus J. Area under the dry down curve (AUDDC): a method to evaluate rate of dry down in maize. Crop Sci, 2010, 50: 2347-2354.
doi: 10.2135/cropsci2010.02.0098
[19] 张亚军, 张林, 周艳春, 王振华. 玉米杂交种生理成熟后子粒田间自然脱水速率差异分析. 作物杂志, 2010, (2): 58-61.
Zhang Y J, Zhang L, Zhou Y C, Wang Z H. Analysis of dehydration rate after physiological maturity in maize hybrids. Crops, 2010, (2): 58-61. (in Chinese with English abstract)
[20] 李德新, 宫秀杰, 钱春荣. 玉米籽粒灌浆及脱水速率品种差异与相关分析. 中国农学通报, 2011, 27(27): 92-97.
Li D X, Gong X J, Qian C R. Difference and correlation analysis of grain milking rate and grain dehydrating rate on maize. Chin Agric Sci Bull, 2011, 27(27): 92-97 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2011-0831
[21] 王克如, 李少昆. 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017, 50: 2027-2035.
doi: 10.3864/j.issn.0578-1752.2017.11.008
Wang K R, Li S K. Analysis of influencing factors on kernel dehydration rate of maize hybrids. Sci Agric Sin, 2017, 50: 2027-2035. (in Chinese with English abstract)
[22] Hillson M T, Penny L H. Dry matter accumulation and moisture loss during maturation of corn grain. Agron J, 1965, 57: 150-153.
doi: 10.2134/agronj1965.00021962005700020007x
[23] Hunter R B, Mortimore G, Gerrish E E, Kannenberg L W. Field drying of flint and dent endosperm maize. Crop Sci, 1979, 19: 401-402.
doi: 10.2135/cropsci1979.0011183X001900030031x
[24] 李璐璐, 谢瑞芝, 范盼盼, 雷晓鹏, 王克如, 侯鹏, 李少昆. 郑单958与先玉335子粒脱水特征研究. 玉米科学, 2016, 24(2): 57-61.
Li L L, Xie R Z, Fan P P, Lei X P, Wang K R, Hou P, Li S K. Study on dehydration in kernel between Zhengdan 958 and Xianyu 335. J Maize Sci, 2016, 24(2): 57-61. (in Chinese with English abstract)
[25] Hallauer A R, Russell W A. Estimates of maturity and its inheritance in maize. Crop Sci, 1962, 2: 289-294.
doi: 10.2135/cropsci1962.0011183X000200040006x
[26] Borrás L, Zinselmeier C, Senior M L, Westgate M E, Muszynski M G. Characterization of grain-filling patterns in diverse maize germplasm. Crop Sci, 2009, 49: 999-1009.
doi: 10.2135/cropsci2008.08.0475
[27] Prado S A, López C G, Gambín B L, Abertondo V J, Borrás L. Dissecting the genetic basis of physiological processes determining maize kernel weight using the IBM (B73×Mo17) Syn4 population. Field Crops Res, 2013, 145: 33-43.
doi: 10.1016/j.fcr.2013.02.002
[28] Prado S A, López C G, Senior M L, Borrás L. The genetic architecture of maize (Zea mays L.) kernel weight determination. Genes Genom Genet, 2014, 4: 1611-1621.
[29] 李璐璐, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆. 黄淮海夏玉米生理成熟期子粒含水率研究. 作物杂志, 2017, (2): 88-92.
Li L L, Xie R Z, Wang K R, Ming B, Hou P, Li S K. Kernel moisture content of summer maize at physiological maturity stage in Huanghuaihai Region. Crops, 2017, (2): 88-92. (in Chinese with English abstract)
[30] 张立国, 范骐骥, 陈喜昌, 李波, 张宇, 修丽丽. 玉米生理成熟后籽粒脱水速率与主要农艺性状的相关分析. 黑龙江农业科学, 2012, (3): 1-5.
Zhang L G, Fan Q J, Chen X C, Li B, Zhang Z, Xiu L L. Correlation analysis on dry-down rate and main agricultural traits in maize after physiological maturity. Heilongjiang Agric Sci, 2012, (3): 1-5. (in Chinese with English abstract)
[31] 张立国, 张林, 管春云, 金益, 王振华, 任晓亮, 宫纪娟. 玉米生理成熟后籽粒脱水速率与品质性状的相关分析. 东北农业大学学报, 2007, 38: 582-585.
Zhang L G, Zhang L, Guan C Y, Jin Y, Wang Z H, Ren X L, Gong J J. Correlation analysis on dry-down rate and quality traits in corn after physiological maturity. J Northeast Agric Univ, 2007, 38: 582-585. (in Chinese with English abstract)
[32] 李淑芳, 张春宵, 路明, 刘文国, 李晓辉. 玉米籽粒自然脱水速率研究进展. 分子植物育种, 2014, 12: 825-829.
Li S F, Zhang C X, Lu M, Liu W G, Li X H. Research development of kernel dehydration rate in maize. Mol Plant Breed, 2014, 12: 825-829. (in Chinese with English abstract)
[33] 雷蕾, 王威振, 方伟, 张子学, 刘正, 李文阳. 影响夏玉米生理成熟后子粒脱水的相关因素分析. 玉米科学, 2016, 24(3): 103-109.
Lei L, Wang W Z, Fang W, Zhang Z X, Liu Z, Li W Y. Analysis of factors affecting the kernel dehydrating after physiological mature in summer maize. J Maize Sci, 2016, 24(3): 103-109. (in Chinese with English abstract)
[34] 代力强, 吴律, 董青松, 吴楠, 张卓, 王丕武. 玉米生理成熟后子粒自然脱水速率的遗传变异与相关分析. 吉林农业大学学报, 2016, 38: 261-265.
Dai L Q, Wu L, Dong Q S, Wu N, Zhang Z, Wang P W. Analysis of genetic variation and correlation of dehydration rate of maize after physiological maturity. J Jilin Agric Univ, 2016, 38: 261-265. (in Chinese with English abstract)
[35] Gambín B L, Borrás L, Otegui M E. Source-sink relations and kernel weight differences in maize temperate hybrids. Field Crops Res, 2006, 95: 316-326.
doi: 10.1016/j.fcr.2005.04.002
[36] 任佰朝, 高飞, 魏玉君, 董树亭, 赵斌, 刘鹏, 张吉旺. 冬小麦-夏玉米周年生产条件下夏玉米的适宜熟期与积温需求特性. 作物学报, 2018, 44: 137-143.
doi: 10.3724/SP.J.1006.2018.00137
Ren B Z, Gao F, Wei Y J, Dong S T, Zhao B, Liu P, Zhang J W. Suitable maturity period and accumulated temperature of summer maize in wheat-maize double cropping system. Acta Agron Sin, 2018, 44: 137-143. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00137
[37] Troyer A F, Ambrose W B. Plant characteristics affecting field drying rate of ear corn. Crop Sci, 1971, 11: 529-531.
doi: 10.2135/cropsci1971.0011183X001100040019x
[38] 吕香玲, 兰进好, 张宝石. 玉米果穗脱水速率的研究. 西北农林科技大学学报(自然科学版), 2006, 34(2): 48-52.
Lyu X L, Lan J H, Zhang B S. Study on ear moisture loss rate in maize. J Northwest Agric For Univ (Nat Sci Edn), 2006, 34(2): 48-52. (in Chinese with English abstract)
[39] 谭福忠, 韩翠波, 邹双利, 刘振江, 籍依安. 极早熟玉米品种籽粒脱水特性的初步研究. 中国农学通报, 2008, 24(7): 161-168.
Tan F Z, Han C B, Zou S L, Liu Z J, Ji Y A. Elementary study on kernel dry-down traits in earliest-maturity maize hybrid. Chin Agric Sci Bull, 2008, 24(7): 161-168. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.20086052
[40] Crane P L, Miles S R, Newman J E. Factors associated with varietal differences in rate of field drying in corn. Agron J, 1959, 51: 318-320.
doi: 10.2134/agronj1959.00021962005100060003x
[41] Cross H Z. A selection procedure for ear drying-rates in maize. Euphytica, 1985, 34: 409-418.
doi: 10.1007/BF00022936
[42] Cavalieri A J, Smith O S. Grain filling and field drying of a set of maize hybrids released from 1930 to 1982. Crop Sci, 1985, 25: 856-860.
doi: 10.2135/cropsci1985.0011183X002500050031x
[43] Cross H Z, Kabir K M. Evaluation of field dry-down rates in early maize. Crop Sci, 1989, 29: 54-58.
doi: 10.2135/cropsci1989.0011183X002900010012x
[44] 孙生林, 张树光, 薛继生, 张天英, 高树仁, 向春阳. 玉米粒含水量与果穗性状相关性的研究. 黑龙江八一农垦大学学报, 1993, 7(1): 12-17.
Sun S L, Zhang S G, Xue J S, Zhang T Y, Gao S R, Xiang C Y. Study on correlation between kernel dehydration and ear characters of maize. Heilongjiang August First Land Reclam Univ, 1993, 7(1): 12-17. (in Chinese with English abstract)
[45] 张树光, 冯学民, 高树仁, 孙生林. 玉米成熟期籽粒含水量与果穗性状的关系. 中国农学通报, 1994, 10(2): 15-17.
Zhang S G, Feng X M, Gao S R, Sun S L. Study on kernel moisture content and ear characters of maize hybrids with different maturity time. Chin Agric Sci Bull, 1994, 10(2): 15-17. (in Chinese with English abstract)
[46] 张春荣, 岳竞之, 张莉, 郜永强, 孙迷平. 玉米子粒含水量与穗部性状的相关分析. 玉米科学, 2007, 15(1): 59-61.
Zhang C R, Yue J Z, Zhang L, Gao Y Q, Sun J P. Correlation analysis of kernel water content and ear characteristics of maize. J Maize Sci, 2007, 15(1): 59-61. (in Chinese with English abstract)
[47] 闫淑琴, 苏俊, 李春霞, 龚士琛, 宋锡章, 李国良, 扈光辉, 王明泉, 贲利. 玉米籽粒灌浆, 脱水速率的相关与通径分析. 黑龙江农业科学, 2007, (4): 1-4.
Yan S Q, Su J, Li C X, Gong S C, Song X Z, Li G L, Hu G H, Wang M Q, Ben L. Correlation analysis of dry-down and grain filling rate in maize. Heilongjiang Agric Sci, 2007, (4): 1-4. (in Chinese with English abstract)
[48] 张林, 张宝石, 王霞, 王振华. 玉米收获期籽粒含水量与主要农艺性状相关分析. 东北农业大学学报, 2009, 40(10): 9-12.
Zhang L, Zhang B S, Wang X, Wang Z H. Correlation analysis of agronomic characters and grain moisture in maize harvest time. J Northeast Agric Univ, 2009, 40(10): 9-12. (in Chinese with English abstract)
[49] 李璐璐, 明博, 谢瑞芝, 王克如, 侯鹏, 李少昆. 玉米品种穗部性状差异及其对籽粒脱水的影响. 中国农业科学, 2018, 51: 1855-1867.
doi: 10.3864/j.issn.0578-1752.2018.10.005
Li L L, Ming B, Xie R Z, Wang K R, Hou P, Li S K. Differences of ear characters in maize and their effects on grain dehydration. Sci Agric Sin, 2018, 51: 1855-1867 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.10.005
[1] 王媛, 王劲松, 董二伟, 刘秋霞, 武爱莲, 焦晓燕. 施氮量对高粱籽粒灌浆及淀粉累积的影响[J]. 作物学报, 2023, 49(7): 1968-1978.
[2] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[3] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[4] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[5] 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757.
[6] 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828.
[7] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[8] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[9] 王玉珑, 于爱忠, 吕汉强, 吕奕彤, 苏向向, 王鹏飞, 柴健. 绿洲灌区麦后复种绿肥并还田对翌年玉米根系性状及水分利用效率的影响[J]. 作物学报, 2023, 49(5): 1350-1362.
[10] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[11] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304.
[12] 张俊杰, 陈金平, 汤钰镂, 张锐, 曹红章, 王丽娟, 马梦金, 王浩, 王泳超, 郭家萌, KRISHNA SV Jagadish, 杨青华, 邵瑞鑫. 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响[J]. 作物学报, 2023, 49(5): 1397-1409.
[13] 岳海旺, 韩轩, 魏建伟, 郑书宏, 谢俊良, 陈淑萍, 彭海成, 卜俊周. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价[J]. 作物学报, 2023, 49(5): 1231-1248.
[14] 刘昕萌, 程乙, 刘玉文, 庞尚水, 叶秀芹, 卜艳霞, 张吉旺, 赵斌, 任佰朝, 任昊, 刘鹏. 黄淮海区域现代夏玉米品种产量与资源利用效率的差异分析[J]. 作物学报, 2023, 49(5): 1363-1371.
[15] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .