欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (6): 1630-1642.doi: 10.3724/SP.J.1006.2023.22040

• 耕作栽培·生理生化 • 上一篇    下一篇

施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制

徐冉(), 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光*()   

  1. 中国水稻研究所/水稻生物学国家重点实验室, 浙江杭州 311400
  • 收稿日期:2022-06-29 接受日期:2022-10-10 出版日期:2023-06-12 网络出版日期:2022-10-26
  • 通讯作者: *褚光, E-mail: chuguang@caas.cn
  • 作者简介:E-mail: 1037152516@qq.com
  • 基金资助:
    浙江省重点研发计划项目(2021C02023);浙江省重点研发计划项目(2022C02034);国家自然科学基金项目(32101825);财政部和农业农村部国家现代农业产业技术体系建设专项(水稻, CARS-01)

Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases

XU Ran(), CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang*()   

  1. State Key Laboratory of Rice Biology/China National Rice Research Institute, Hangzhou 311400, Zhejiang, China
  • Received:2022-06-29 Accepted:2022-10-10 Published:2023-06-12 Published online:2022-10-26
  • Contact: *E-mail: chuguang@caas.cn
  • Supported by:
    Key Research and Development Program of Zhejiang Province(2021C02023);Key Research and Development Program of Zhejiang Province(2022C02034);National Natural Science Foundation of China(32101825);China Agriculture Research System of MOF and MARA(Rice, CARS-01)

摘要:

旨在探讨施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其相关生理基础。本研究以浙江省大面积推广应用的籼粳杂交稻品种甬优1540为材料, 设置4个施氮量, 即全生育期不施用氮肥(N0)、全生育期施用纯氮80 kg hm-2 (N1)、160 kg hm-2 (N2)以及240 kg hm-2 (N3)。研究结果表明, (1) 施氮量对水稻产量与氮肥利用效率影响显著。在0~160 kg hm-2范围内, 水稻产量随施氮量的增加而增加, 产量的增加主要得益于总颖花量的增加; 超过此范围产量则不再增加, 主要是由于结实率降低, 且氮收获指数与氮肥利用效率(氮肥农学利用率、氮肥吸收利用率、氮肥偏生产力以及产谷利用率)也显著降低。(2) 施氮量对水稻地上部生长发育影响显著。在0~240 kg hm-2范围内, 随着施氮量的增加, 拔节期、齐穗期以及成熟期水稻地上部干物重显著增加, 但收获指数则显著降低; 在0~160 kg hm-2范围内, 灌浆中、后期水稻剑叶净光合速率、剑叶中Z+ZR含量以及籽粒中蔗糖-淀粉代谢途径关键酶活性随施氮量的增加而增加, 超过此范围则不再增加, 甚至会有所降低。(3) 施氮量对水稻根系形态生理特征影响显著。在0~160 kg hm-2范围内, 拔节期、齐穗期以及成熟期水稻根干重、0~10 cm土层根干重、10~20 cm土层根干重、总根长、根长密度、比根长以及灌浆中、后期水稻根系氧化力、根系与根系伤流液中Z+ZR浓度水平等根系形态与生理指标均随施氮量的增加而增加, 但进一步将施氮量提高至240 kg hm-2时, 上述指标中仅根干重、0~10 cm土层根干重、总根长以及根长密度有所增加。(4) 相关分析表明, 灌浆期水稻根系氧化力、根系中Z+ZR含量以及根系伤流液中Z+ZR浓度与剑叶净光合速率、剑叶中Z+ZR含量以及籽粒中蔗糖-淀粉代谢途径关键酶活性呈极显著正相关关系。以上结果表明, 适宜的施氮量可以优化甬优1540的根系形态与生理特征, 促进地上部生长发育, 提高灌浆中、后期植株生理活性, 进而实现高产与氮肥高效利用。

关键词: 籼粳杂交稻, 施氮量, 产量, 氮肥利用率, 根系形态生理

Abstract:

The objective of this study is to understand how nitrogen (N) application rates affected on grain yield and N use efficiency (NUE) of japonica-indica hybrid rice cultivar Yongyou-1540 and its physiological bases. In the present study, a japonica-indica hybrid rice cultivar Yongyou 1540, which was widely planted in Zhejiang province was field grown in 2020 and 2021, and four N application rates [0 kg hm-2 (N0), 80 kg hm-2 (N1), 160 kg hm-2 (N2), and 240 kg hm-2 (N3)] were applied during rice growing season. The results indicated that, (1) N application rate had significant effects on grain yield and NUE of rice. Grain yield was significantly increased with the increase of N application rate from 0 kg hm-2 to 160 kg hm-2, and the increase in grain yield was mainly attributed to the increase in total spikelets per unit area. However, there were no significantly difference in grain yield between N2 and N3 treatments, which was mainly due to the reduce in grain filling percentage in N3 treatment. When compared with N2 treatment, N3 treatment significantly reduced N harvest index and NUE, including agronomic N use efficiency (AEN), N recovery efficiency (REN), N partial factor productivity (PFPN), and internal N use efficiency (IEN). (2) N application rate had significant effects on shoot growth and development. Shoot dry weight was significantly increased at jointing, heading, and maturity stages and harvest index was significantly decreased with the increase of N application rate from 0 kg hm-2 to 240 kg hm-2. The net photosynthetic rate of flag leaf, the concentration of zeatin plus zeatin riboside (Z+ZR) in flag leaves, and the activities of key enzymes involved in sucrose-to-starch conversion in grains were significantly increased with the increase of N application rate from 0 kg hm-2 to 160 kg hm-2, however, N3 treatment could not increase or even reduce the above indicators compared with N2 treatment. (3) N application rate had significant effects on rice root morphological and physiological traits. Root dry weight, root dry weight in both 0-10 cm and 10-20 cm soil layers, total root length, root length density, specific root length at jointing, heading, and maturity stages, and root oxidation activity (ROA) and concentration of Z+ZR in both roots and root-bleeding sap at mid- and late grain filling stages were significantly increased with the increase of N application rate from 0 kg hm-2 to 160 kg hm-2. However, when compared with N2 treatment, N3 treatment significantly increased root dry weight, and root dry weight in 0-10 cm soil layer, total root length and root length density. (4) The results of the correlation analysis showed that ROA, and concentration of Z+ZR in roots or in root-bleeding sap, were significantly positively correlated with net photosynthetic rate of flag leaves, the concentration of Z+ZR in flag leaves, and activities of key enzymes involved in sucrose-to-starch conversion in grains. Generally, the appropriate N application rate could improve rice root morphological and physiological traits and promote shoot growth and development, and then improved plant physiological performances during the mid- and late grain filling stages, and finally achieved the due goal of increase both grain yield and NUE.

Key words: japonica-indica hybrid rice, nitrogen application rate, grain yield, nitrogen use efficiency, root morphological and physiological traits

表1

试验地耕层土壤理化性状"

年度
Year
pH 全氮含量
Total N content
(g kg-1)
有机质含量
Organic matter content
(g kg-1)
速效养分含量Available nutrients content (mg kg-1)
N P K
2020 5.95 2.49 56.5 207 20.8 64.9
2021 6.02 2.55 57.2 211 21.3 65.7

表2

水稻生长期降雨量、日照时长以及平均气温的变化"

年份/气象条件
Year/meteorological condition
6月
June
7月
July
8月
August
9月
September
10月
October
2020
降雨量Precipitation (mm) 341 236 66.1 223 39.9
日照时长Sunshine (h) 71.1 102 258 122 134
平均气温Temperature (℃) 26.6 26.8 31.0 23.9 19.2
2021
降雨量Precipitation (mm) 221 317 315 125 68.6
日照时长Sunshine (h) 141 246 254 237 196
平均气温Temperature (℃) 26.6 29.3 28.6 26.8 20.0

表3

施氮量对籼粳杂交稻甬优1540产量及其构成因素的影响"

年度/处理
Year/treatment
产量
Grain yield
(t hm-2)
穗数
No. of panicles
(×104 hm-2)
每穗粒数
Spikelets per panicle
总颖花量
Total spikelets
(×106 hm-2)
结实率
Filled grains
(%)
千粒重
1000-grain weight (g)
收获指数
Harvest index
(%)
2020 N0 7.35 c 175 c 195 d 3.41 d 93.2 a 23.1 a 49.5 a
N1 10.2 b 198 b 255 c 5.05 c 87.2 b 23.1 a 48.8 b
N2 12.7 a 220 a 310 b 6.82 b 81.5 c 22.9 ab 47.5 c
N3 12.8 a 222 a 335 a 7.44 a 75.6 d 22.7 b 45.2 d
2021 N0 6.98 c 161 d 200 d 3.22 d 93.5 a 23.2 a 50.1 a
N1 9.74 b 200 c 246 c 4.92 c 85.7 b 23.1 a 48.7 b
N2 12.2 a 215 b 307 b 6.60 b 80.4 c 22.9 ab 47.2 c
N3 12.3 a 225 a 334 a 7.52 a 71.5 d 22.8 b 45.1 d
方差分析ANOVA
Year (Y) NS NS NS NS NS NS NS
Treatment (T) ** ** ** ** ** * **
Y × T NS NS NS NS NS NS NS

表4

施氮量对籼粳杂交稻甬优1540氮肥利用效率的影响"

年度/处理
Year/treatment
植株吸氮量
N uptake
(kg hm-2)
氮收获指数
N harvest index
(%)
氮肥吸收利用率
Recovery
efficiency
(%)
农学利用率
Agronomic
efficiency
(kg kg-1)
氮肥偏生产力
Partial factor
productivity of N
(kg kg-1)
产谷利用率
Internal N use
efficiency
(kg kg-1)
2020 N0 114 d 68.5 a 64.7 a
N1 168 c 64.4 b 67.9 a 35.3 a 127.0 a 60.6 b
N2 215 b 63.7 b 63.6 b 33.6 a 79.6 b 59.1 b
N3 238 a 57.2 c 51.6 c 22.6 b 53.2 c 53.7 c
2021 N0 109 d 70.4 a 64.2 a
N1 159 c 65.8 b 62.3 a 34.4 a 122.0 a 61.4 b
N2 200 b 64.5 b 57.3 b 32.3 a 76.0 b 60.6 b
N3 226 a 56.4 c 48.9 c 21.9 b 51.0 c 54.1 c
方差分析 ANOVA
Year (Y) NS NS NS NS NS NS
Treatment (T) ** ** ** ** ** **
Y × T NS NS NS NS NS NS

图1

施氮量对籼粳杂交稻甬优1540地上部干物重(A, B)、根干重(C, D)以及根冠比(E, F)的影响 JT: 拔节期; HD: 抽穗期; MA: 成熟期。"

图2

施氮量对籼粳杂交稻甬优1540在0~10 cm土层根干重(A, B)、10~20 cm土层根干重(C, D)以及深根比(E, F)的影响 JT: 拔节期; HD: 抽穗期; MA: 成熟期。"

图3

施氮量对籼粳杂交稻甬优1540根长(A, B)、根长密度(C, D)以及比根长(E, F)的影响 JT: 拔节期; HD: 抽穗期; MA: 成熟期。"

图4

施氮量对籼粳杂交稻甬优1540根系氧化力(A, B)、根系伤流液中Z+ZR浓度(C, D)以及根系Z+ZR浓度(E, F)的影响 EF: 灌浆早期; MF: 灌浆中期; LF: 灌浆末期。"

图5

施氮量对籼粳杂交稻甬优1540剑叶净光合速率(A, B)以及剑叶中Z+ZR浓度水平(C, D)的影响 EF: 灌浆早期; MF: 灌浆中期; LF: 灌浆末期。"

表5

施氮量对籼粳杂交稻甬优1540籽粒中蔗糖-淀粉代谢途径关键酶活性的影响"

年度/处理
Year/treatment
蔗糖合酶
SuSase (μmol g-1 FW min-1)
腺苷二磷酸葡萄糖焦磷酸化酶
AGPase (μmol g-1 FW min-1)
EG MG LG EG MG LG
2020 N0 7.94 c 5.61 c 3.65 d 6.45 b 4.15 c 2.44 d
N1 10.7 b 7.56 b 5.01 c 7.98 a 5.27 b 3.67 c
N2 12.4 a 9.89 a 7.17 a 9.45 a 7.29 a 5.44 a
N3 12.1 a 9.77 a 6.22 b 9.79 a 7.55 a 4.59 b
2021 N0 8.25 c 5.92 c 4.11 d 6.02 c 3.87 c 2.89 d
N1 9.79 b 8.44 b 5.79 c 7.57 b 5.28 b 4.18 c
N2 11.2 a 10.3 a 7.10 a 8.91 a 7.15a 6.57 a
N3 11.5 a 10.5 a 6.45 b 9.20 a 6.99 a 5.79 b
方差分析 Analysis of variance
Year (Y) NS NS NS NS NS NS
Treatment (T) ** ** ** ** * *
Y × T NS NS NS NS NS NS

表6

水稻根-冠部分生理指标的相关性"

指标
Trait
叶片中Z+ZR含量
Z+ZR in leaves
剑叶净光合速率
Photosynthetic rate
蔗糖合酶
SuSase
腺苷二磷酸葡萄糖焦磷酸化酶
AGPase
2020
根系氧化力 ROA 0.78** 0.85** 0.79** 0.82**
根系中Z+ZR浓度 Z+ZR in roots 0.85** 0.88** 0.81** 0.78**
根系伤流液中Z+ZR浓度 Z+ZR in root bleeding 0.75** 0.80** 0.83** 0.76**
2021
根系氧化力 ROA 0.84** 0.88** 0.79** 0.85**
根系中Z+ZR浓度 Z+ZR in roots 0.79** 0.85** 0.80** 0.78**
根系伤流液中Z+ZR浓度 Z+ZR in root bleeding 0.83** 0.78** 0.72** 0.69**
[1] 章秀福, 王丹英, 方福平, 曾衍坤, 廖西元. 中国粮食安全和水稻生产. 农业现代化研究, 2005, 26(2): 85-88.
Zhang X F, Wang D Y, Fang F P, Zeng Y K, Liao X Y. Food safety and rice production in China. Res Agric Modern, 2005, 26(2): 85-88. (in Chinese with English abstract)
[2] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Prod Sci, 2009, 12: 3-8.
doi: 10.1626/pps.12.3
[3] 彭少兵. 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014, 44: 845-850.
Peng S B. Reflection on China’s rice production strategies during the transition period. Sci Sin (Vitae), 2014, 44: 845-850 (in Chinese with English abstract).
[4] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19: 259-273.
Zhu Z L, Jin J Y. Fertilizer use and food security in China. Plant Nutur Fert Sci, 2013, 19: 259-273 (in Chinese with English abstract).
[5] 彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Buresh R, Witt C. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35: 1095-1103.
Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Buresh R, Witt C. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Sci Agric Sin, 2002, 35: 1095-1103 (in Chinese with English abstract).
[6] 张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 46: 3161-3171.
doi: 10.3864/j.issn.0578-1752.2013.15.010
Zhang W F, Ma L, Huang G Q, Wu L, Chen X P, Zhang F S. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Sci Agric Sin, 2013, 46: 3161-3171. (in Chinese with English abstract)
[7] Cui Z, Zhang H, Chen X. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555: 363-366.
doi: 10.1038/nature25785
[8] Zhang G Q. Prospects of utilization of inter-subspecific heterosis between indica and japonica rice. J Integr Agric, 2020, 19: 1-10.
doi: 10.1016/S2095-3119(19)62843-1
[9] 林建荣, 宋昕蔚, 吴明国, 程式华. 籼粳超级杂交稻育种技术创新与品种培育. 中国农业科学, 2016, 49: 207-218.
doi: 10.3864/j.issn.0578-1752.2016.02.002
Lin J R, Song X W, Wu M G, Cheng S H. Breeding technology innovation of indica-japonica super hybrid rice and varietal breeding. Sci Agric Sin, 2016, 49: 207-218. (in Chinese with English abstract)
[10] 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海. 水稻甬优12产量13.5 t hm-2以上超高产群体的生育特征. 作物学报, 2014, 40: 2149-2159.
doi: 10.3724/SP.J.1006.2014.02149
Wang X Y, Wei H H, Zhang H C, Sun J, Zhang J M, Li C, Lu H B, Yang J W, Ma R R, Xu J F, Wang J, Xu Y J, Sun Y H. Population characteristics for super-high yielding hybrid rice Yongyou 12 (>13.5 t hm-2). Acta Agron Sin, 2014, 40: 2149-2159. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.02149
[11] 胡雅杰, 朱大伟, 钱海军, 曹伟伟, 邢志鹏, 张洪程, 周有炎, 陈厚存, 汪洪洋, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 籼粳杂交稻甬优 2640 钵苗机插超高产群体若干特征探讨. 作物学报, 2014, 40: 2016-2027.
doi: 10.3724/SP.J.1006.2014.02016
Hu Y J, Zhu D W, Qian H J, Cao W W, Xing Z P, Zhang H C, Wei H Y, Zhou Y Y, Chen H C, Wang H Y, Dai Q G, Huo Z Y, Xu K, Guo B W. Some characteristics of mechanically transplanted pot seedlings in super high yielding population of indica-japonica hybrid rice Yongyou 2640. Acta Agron Sin, 2014, 40: 2016-2027. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.02016
[12] Wei H Y, Hu L, Zhu Y, Xu D, Zheng L M, Chen Z F, Hu Y J, Cui P Y, Guo B W, Dai Q G, Zhang H C. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Res, 2018, 218: 88-96.
doi: 10.1016/j.fcr.2018.01.012
[13] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44: 36-46.
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin, 2011, 44: 36-46. (in Chinese with English abstract)
[14] Chu G, Chen S, Xu C M, Wang D Y, Zhang X F. Agronomic and physiological performance of indica/japonica hybrid rice cultivar under low nitrogen conditions. Field Crops Res, 2019, 243: 107625.
doi: 10.1016/j.fcr.2019.107625
[15] Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015, 175: 47-59.
doi: 10.1016/j.fcr.2015.02.007
[16] Yang J C, Zhang H, Zhang J H. Root morphology and physiology in relation to the yield formation of rice. J Integr Agric, 2012, 11: 920-926.
doi: 10.1016/S2095-3119(12)60082-3
[17] Chu G, Chen T T, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res, 2014, 162: 108-119.
doi: 10.1016/j.fcr.2013.11.006
[18] Li H W, Liu L J, Wang Z Q, Yang J C, Zhang J H. Agronomic and physiological performance of high-yielding wheat and rice in the lower reaches of Yangtze River of China. Field Crops Res, 2012, 133: 119-129.
doi: 10.1016/j.fcr.2012.04.005
[19] Pan X Q, Welti R, Wang X. Quantitative analysis of major plant hormones in crude plant extracts by high performance liquid chromatography-mass spectrometry. Nat Prot, 2010, 5: 986-992.
doi: 10.1038/nprot.2010.37
[20] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res, 2003, 81: 69-81.
doi: 10.1016/S0378-4290(02)00214-9
[21] Yang J C, Zhang J H, Wang Z Q, Xu G W, Zhu Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621-1629.
pmid: 15235118
[22] 袁锐, 周群, 王志琴, 张耗, 顾骏飞, 刘立军, 张伟杨, 杨建昌. 籼粳杂交稻甬优2640氮素吸收利用特点. 中国水稻科学, 2022, 36: 77-86.
doi: 10.16819/j.1001-7216.2022.210310
Yuan R, Zhou Q, Wang Z Q, Zhang H, Gu J F, Liu L J, Zhang W Y, Yang J C. Characteristics of nitrogen absorption and utilization of an indica-japonica hybrid rice, Yongyou 2640. Chin J Rice Sci, 2022, 36: 77-86. (in Chinese with English abstract)
[23] 孟天瑶, 葛佳琳, 张徐彬, 韦还和, 陆钰, 李心月, 陶源, 丁恩浩, 周桂生, 戴其根. 甬优中熟籼粳杂交稻栽后植株氮素积累模型与特征. 作物学报, 2020, 46: 798-807.
doi: 10.3724/SP.J.1006.2020.92046
Meng T Y, Ge J L, Zhang X B, Wei H H, Lu Y, Li X Y, Tao Y, Ding E H, Zhou G S, Dai Q G. A dynamic model and its characteristics for nitrogen accumulation after transplanting in medium-maturity types of Yongyou japonica/indica hybrids. Acta Agron Sin, 2020, 46: 798-807. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.92046
[24] 褚光, 徐冉, 陈松, 徐春梅, 王丹英, 章秀福. 干湿交替灌溉对籼粳杂交稻产量与水分利用效率的影响及其生理基础. 中国农业科学, 2021, 54: 1499-1511.
doi: 10.3864/j.issn.0578-1752.2021.07.014
Chu G, Xu R, Chen S, Xu C M, Wang D Y, Zhang X F. Effects of alternate wetting and soil drying on the grain yield and water use efficiency of indica-japonica hybrid rice and its physiological bases. Sci Agric Sin, 2021, 54: 1499-1511. (in Chinese with English abstract)
[25] Chu G, Chen T T, Chen S, Xu, C M, Wang D Y, Zhang X F. The effect of alternate wetting and severe drying irrigation on grain yield and water use efficiency of indica-japonica hybrid rice (Oryza sativa L.). Food Energy Security, 2018, 7: e00133.
doi: 10.1002/fes3.2018.7.issue-2
[26] Wei H H, Meng T Y, Li C, Xu K, Huo Z Y, Wei H Y, Guo B W, Zhang H C, Dai Q G. Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Res, 2017, 204: 101-109.
doi: 10.1016/j.fcr.2017.01.001
[27] 李俊峰, 杨建昌. 水分与氮素及其互作对水稻产量和水肥利用效率的影响研究进展. 中国水稻科学, 2017, 31: 327-334.
doi: 10.16819/j.1001-7216.2017.6078 327
Li J F, Yang J C. Research advances in the effects of water, nitrogen and their interaction on the yield, water and nitrogen use efficiencies of rice. Chin J Rice Sci, 2017, 31: 327-334 (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2017.6078 327
[28] 刘立军, 王康君, 卞金龙, 熊溢伟, 陈璐, 王志琴, 杨建昌. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系. 作物学报, 2014, 40: 1999-2007.
doi: 10.3724/SP.J.1006.2014.01999
Liu L J, Wang K J, Bian J L, Xiong Y W, Chen L, Wang Z Q, Yang J C. Differences in yield response to nitrogen fertilizer among rice cultivars and their relationship with root morphology and physiology. Acta Agron Sin, 2014, 40: 1999-2007 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01999
[29] 陈露, 张伟杨, 王志琴, 张耗, 刘立军, 杨建昌. 施氮量对江苏不同年代中粳稻品种产量与群体质量的影响. 作物学报, 2014, 40: 1412-1423.
doi: 10.3724/SP.J.1006.2014.01412
Chen L, Zhang W Y, Wang Z Q, Zhang H, Liu L J, Yang J C. Effects of nitrogen application rate on grain yield and population quality of mid-season japonica rice cultivars at different decades in Jiangsu province. Acta Agron Sin, 2014, 40: 1412-1423 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01412
[30] Meng T Y, Wei H H, Li X Y, Dai Q G, Huo Z Y. A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Res, 2018, 228: 135-146.
doi: 10.1016/j.fcr.2018.08.024
[31] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res, 2009, 113: 31-40.
doi: 10.1016/j.fcr.2009.04.004
[32] Chu G, Xu R, Chen S, Xu C M, Liu Y H, Abliz B, Zhang X F, Wang D Y. Root morphological- physiological traits for japonica/indica hybrid rice with better yield performance under low N conditions. Food Energy Security, 2022, 11: e355.
[33] Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in the new plant type of tropical rice lines. J Plant Nutr, 2005, 28: 835-850.
doi: 10.1081/PLN-200055550
[34] Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Samejima H. Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines. Soil Sci Plant Nutr, 2004, 50: 545-554.
doi: 10.1080/00380768.2004.10408511
[35] Passioura J. Roots and drought resistance. Agric Water Manag, 1983, 7: 265-280.
doi: 10.1016/0378-3774(83)90089-6
[36] 褚光, 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英. 优化栽培模式对水稻根-冠生长特性、水氮利用效率和产量的影响. 中国水稻科学, 2021, 35: 586-594.
doi: 10.16819/j.1001-7216.2021.201213
Chu G, Xu R, Chen S, Xu C M, Liu Y H, Zhang X F, Wang D Y. Effects of improved crop management on growth characteristic of root and shoot, water and nitrogen use efficiency, and grain yield in rice. Chin J Rice Sci, 2021, 35: 586-594 (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2021.201213
[37] 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016, 42: 1026-1036.
doi: 10.3724/SP.J.1006.2016.01026
Chu G, Zhan M F, Zhu K Y, Wang Z Q, Yang J C. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice. Acta Agron Sin, 2016, 42: 1026-1036.
doi: 10.3724/SP.J.1006.2016.01026
[38] Osaki M, Shinano T, Matsumoto M, Zheng T, Tadano T. A root-shoot interaction hypothesis for high productivity of field crops. Soil Sci Plant Nutr, 1997, 43: 1079-1084.
doi: 10.1080/00380768.1997.11863721
[39] Gu J F, Li Z K, Mao Y Q, Struik P, Zhang H, Liu L J, Wang Z Q, Yang J C. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci, 2018, 274: 320-331.
doi: S0168-9452(18)30135-3 pmid: 30080619
[40] Liu K, Li T T, Chen Y, Huang J, Qiu Y Y, Li S Y, Wang H, Zhu A, Zhuo X X, Yu F, Zhang H, Gu J F, Liu L J, Yang J C. Effects of root morphology and physiology on the formation and regulation of large panicles in rice. Field Crops Res, 2020, 258: 107946.
doi: 10.1016/j.fcr.2020.107946
[41] 褚光, 刘洁, 张耗, 杨建昌. 超级稻根系形态生理特征及其与产量形成的关系. 作物学报, 2014, 40: 850-858.
doi: 10.3724/SP.J.1006.2014.00850
Chu G, Liu J, Zhang H, Yang J C. Morphology and physiology of roots and their relationships with yield formation in super rice. Acta Agron Sin, 2014, 40: 850-858.
doi: 10.3724/SP.J.1006.2014.00850
[42] Chu G, Wang Z Q, Zhang H, Yang J C, Zhang J H. Agronomic and physiological performance of rice under integrative crop management. Agron J, 2016, 108: 1-12.
doi: 10.2134/agronj15.0135
[1] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[2] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[3] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[4] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[5] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
[6] 宋毅, 李静, 谷贺贺, 陆志峰, 廖世鹏, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮肥用量对冬油菜籽粒产量和品质的影响[J]. 作物学报, 2023, 49(7): 2002-2011.
[7] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[8] 闫金垚, 宋毅, 陆志峰, 任涛, 鲁剑巍. 磷肥用量对油菜籽产量及品质的影响[J]. 作物学报, 2023, 49(6): 1668-1677.
[9] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[10] 雷新慧, 冷佳俊, 陶金才, 万晨茜, 吴怡欣, 王家乐, 王鹏科, 冯佰利, 王孟, 高金锋. 叶面喷施亚硒酸钠对甜荞光合特性、产量及硒积累效应的影响[J]. 作物学报, 2023, 49(6): 1678-1689.
[11] 陶玥玥, 盛雪雯, 徐坚, 沈园, 王海候, 陆长婴, 沈明星. 长三角水稻-油菜周年两熟温光资源分配与利用特征[J]. 作物学报, 2023, 49(5): 1327-1338.
[12] 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349.
[13] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304.
[14] 张俊杰, 陈金平, 汤钰镂, 张锐, 曹红章, 王丽娟, 马梦金, 王浩, 王泳超, 郭家萌, KRISHNA SV Jagadish, 杨青华, 邵瑞鑫. 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响[J]. 作物学报, 2023, 49(5): 1397-1409.
[15] 岳海旺, 韩轩, 魏建伟, 郑书宏, 谢俊良, 陈淑萍, 彭海成, 卜俊周. 基于GYT双标图分析对黄淮海夏玉米区域试验品种综合评价[J]. 作物学报, 2023, 49(5): 1231-1248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .