欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2077-2087.doi: 10.3724/SP.J.1006.2023.23062

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位

王兴荣1(), 张彦军1, 涂奇奇2, 龚佃明2,*(), 邱法展2,*()   

  1. 1 甘肃省农业科学院作物研究所, 甘肃 兰州 730070
    2 湖北洪山实验室, 湖北 武汉 430070
  • 收稿日期:2022-09-23 接受日期:2023-02-21 出版日期:2023-08-12 网络出版日期:2023-03-10
  • 通讯作者: 龚佃明,邱法展
  • 作者简介:E-mail: wxr_0618@163.com
  • 基金资助:
    武汉市生物育种关键技术及新品种培育重大专项(2022021302024852);甘肃省农业科学院科研条件建设及成果转化项目(2021GAAS04);甘肃省省级重点人才项目(农作物种质资源保护利用与人才培养)和国家自然科学基金项目(31960405)

Identification and gene localization of a novel maize nuclear male sterility mutant ms6

WANG Xing-Rong1(), ZHANG Yan-Jun1, TU Qi-Qi2, GONG Dian-Ming2,*(), QIU Fa-Zhan2,*()   

  1. 1 Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    2 Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2022-09-23 Accepted:2023-02-21 Published:2023-08-12 Published online:2023-03-10
  • Contact: GONG Dian-Ming,QIU Fa-Zhan
  • Supported by:
    Wuhan Major Project of Key Technologies in Biological Breeding and New Variety Cultivation(2022021302024852);Research Condition Construction and Achievement Transformation Project of Gansu Academy of Agricultural Sciences(2021GAAS04);Key Talent Project of Gansu Province(Crop Germplasm Resources Protection and Utilization Talent Training). and National Natural Science Foundation of China(31960405)

摘要:

玉米雄性不育基因的定位、克隆和功能机理研究, 不仅能够加深我们对玉米雄花生长发育的分子调控机理的认识, 而且能够有效推动雄性不育技术体系的发展及在玉米育种和种子生产中的运用。本研究以玉米自交系Mo17为野生型背景材料, 经EMS诱变获得了一个玉米雄性不育突变体, 命名为ms6 (male sterile 6)。表型鉴定结果表明, ms6突变体植株能够正常抽雄, 但雄花颖壳不能正常开裂和散粉, 花粉粒干瘪, 表现为无花粉型不育。同时, ms6与Mo17野生型(wild type, WT)在株型、穗部性状以及籽粒粒形等相关性状上无显著差异, 说明该基因突变后, 仅影响植株的育性, 而不影响其他农艺性状。细胞学观察显示, ms6不育突变体的小孢子发育晚期出现异常, 表现为绒毡层细胞提前降解, 小孢子不能进行有丝分裂并逐渐裂解。扫描电镜观察表明, ms6花药外壁皱缩, 内壁无完整的花粉粒, 无乌氏小体的存在。遗传学分析表明, ms6突变性状受1对隐性核基因控制。以ms6 × B73 F2遗传定位群体, 利用全基因组约200对多态性SSR分子标记, 结合表型与基因型连锁分析, 将ms6初定位于玉米6号染色体C6-19与C6-30两个标记之间, 进一步利用区间内10对新开发的多态性标记, 最终将ms6定位在分子标记M13~M14之间约480 kb的区间范围内。转录组测序结合qRT-PCR试验验证结果, 初步将Zm00001d035201确定为ms6的关键候选基因。Zm00001d035201基因编码一个酸性核糖体蛋白。本研究结果为ms6后续基因功能的研究打下了坚实的基础。同时ms6作为一个新的核不育突变体也为将来玉米新型核不育基因的生产应用提供了重要材料支持。

关键词: 玉米, 雄性不育, ms6, 基因定位, 候选基因鉴定

Abstract:

The localization, cloning, and functional mechanism research of male sterility genes can not only deepen our understanding of the molecular regulation mechanism of male flower growth and development, but also effectively promote the development of male sterility technology system and its application in maize breeding and seed production in maize. In this study, maize inbred line Mo17 was used as the wild-type background material, and a maize male sterile mutant, named male sterile 6 (ms6), was obtained by EMS mutagenesis. Phenotypic identification of ms6 mutant plants showed that they could perform normal tasseling, but the male flower glume could not dehiscence and powder could not disperse normally, and the pollen grains were dry, indicating pollen free sterility. Meanwhile, there were no significant differences between ms6 and Mo17 wild type (WT) in plant architecture, ear-related traits, kernel size, and other related traits, demonstrating that the ms6 gene only affected plant fertility, but did not affect other agronomic traits. Cytological observation revealed that the microspore of ms6 mutant was abnormal at the late stage of microspore development, which showed that tapetal cells were degenerated in advance, and the microspore could not undergo mitosis and gradually split. Scanning electron microscopy demonstrated that the anther epidermis of mutant ms6 were shrunk, and there was no intact pollen or ubisch on the inner surface of anther locule. Genetic analysis revealed that the ms6 phenotype was controlled by a pair of recessive nuclear genes. Combined with phenotypic and genotypic linkage analysis, ms6 was initially located between C6-19 and C6-30 on maize chromosome 6 by using the ms6 × B73 F2 genetic mapping population and about 200 pairs of polymorphic SSR markers in the whole genome, and 10 pairs of newly developed polymorphic markers in the interval were further used. Finally, ms6 was located within the interval of about 480 kb between M13-M14. Gene mapping located the mutation site into a 480 kb interval between M13 and M14. Zm00001d035201 was preliminarily identified as the key candidate gene of ms6 by RNA-Seq combined with qRT-PCR. Zm00001d035201 encoded an acid ribosomal protein. This study provides a solid foundation for further studies on the function of ms6 gene. Meanwhile, as a novel male sterile mutant, ms6 also provides the important material support for the production and application of new maize genetic sterile genes in the future.

Key words: maize, male sterile, ms6, gene mapping, identification of candidate genes

图1

野生型WT和ms6突变体的表型鉴定 A: 野生型WT和ms6突变体散粉期的植株雄穗。B: 野生型WT和ms6突变体的花药; 标尺为2 mm。C: I2-KI染色后, 野生型的花粉粒形态; D: I2-KI染色后, 突变体ms6的花粉粒形态; 标尺为0.1 mm。"

图2

ms6突变体和野生型农艺性状调查 ms6突变体和野生型各种农艺性状比较分析, 其中HKW指百粒重, EW指穗重, KRN指穗行数, KL指粒长, KW指粒重, PH指株高, EH指穗位高, SBN指雄穗分枝数。所有数据均为平均值±SD, 显著性通过t检验估计, NS代表无显著性差异。"

图3

野生型和ms6花药扫描电镜 A: 野生型花药的花粉粒; B: ms6花药干瘪的花粉粒; C和D分别为野生型和突变体花药外壁, E和F分别为野生型和突变体花药内壁。Ub: 乌氏体; 放大倍数已在图中标注。"

图4

野生型和ms6突变体不同发育时期花药的石蜡切片观察 A~F: 野生型花药细胞学切片; G~L: ms6突变体花药细胞学切片; A和G为孢原细胞时期, B和H为二分体时期, C和I为四分体时期, D和J为单核小孢子初期, E和K为单核小孢子中后期, F和L为三核细胞早期。E: 表皮; En: 内皮层; ML: 中层; T: 绒毡层; Dy: 二分体; Msp: 小孢子; Bp: 二孢花粉; Mp: 成熟花粉。标尺为50 μm。"

表1

ms6突变位点的遗传分析"

群体
Population
总株数
Total number
可育株
Fertile plants
不育株
Sterile plants
可育/不育(3:1)
Fertility/sterile (3:1)
χ (3:1) χ20.05
ms6×B73 396 300 96 3.13 0.12 3.84
ms6×Mo17 159 116 43 2.70 0.35

表2

本研究所用的引物"

引物
Primer name
序列
Primer sequence (5°-3°)
引物
Primer name
序列
Primer sequence (5°-3°)
IN34-F AGCACGGAGAAATGGAGTTG M13-F GAGGCCAAGCACAATGTATG
IN34-R AACAGAAAGCTTGGCGTCAT M13-R TTTCAGGTGGAACCAGCAAT
MY8860-F AATGGCAGGAGCACTACACC C6-11A-F CAACCAGGAGAAGCTGGCTA
MY8860-R GGTCTGCCTGATGCTCTTGT C6-11A-R GAAGAGCGCGTAGAAGATGC
M10-F GTGGAGCCCAGACACATTTT M14-F ACTGCAGCGTGTGAAAACAA
M10-R TTTGTTTATGCTTGGCCGTA M14-R GCGGGAGACTCATACCTGAA
M11-F ATGACCACTCCTGGGTTTTG M17-F GAGTTCTAAATAAGGGGGATGGA
M11-R CTGTAGCCAAGAAGCCTTGC M17-R TTGGTTTCTGTGATGCATTGA
M12-F AATTGGAGGAACCAGCTCAA C6-20-F ATTCGATCTAGGGTTTGGGTTCAG
M12-R ATTTGGAGGGCGGTTTTATC C6-20-R GATGCAGTAGCATGCTGGATGTAG

图5

ms6精细定位结果 红色椭圆代表着丝粒。"

表3

候选基因功能注释"

基因ID Gene ID 注释 Gene annotation
Zm00001d035199 WPP domain-associated protein
Zm00001d035200 Putative AMP-dependent synthetize and ligase superfamily protein
Zm00001d035201 60S acidic ribosomal protein P0
AC187088.3_FG002 Guanylate kinase/Guanosine monophosphate kinase
Zm00001d035203 Unknown
Zm00001d035204 Unknown
Zm00001d035206 ATP binding protein
Zm00001d035207 Putative uncharacterized protein
Zm00001d035208 BTB/POZ domain-containing protein
Zm00001d035211 Ca(2)-dependent phospholipid-binding protein (Copine) family

表4

ms6区间内的基因在ms6和WT花药中的表达"

基因ID
Gene ID
表达差异Expression difference
花药发育时期
Anther development stage
ms6 野生型
WT
log2FC P-value 显著性
Significant
Zm00001d035199 四分体时期The tetrad stage 1024 1157 0.18 0.43 NS
双核期The binucleate stage 1069 911 -0.31 0.28 NS
Zm00001d035200 四分体时期The tetrad stage 103 140 0.45 0.38 NS
双核期The binucleate stage 135 75 -0.84 0.26 NS
Zm00001d035201 四分体时期The tetrad stage 9652 8941 -0.11 0.69 NS
双核期The binucleate stage 6690 17205 1.36 0.00018 DOWN
AC187088.3_FG002 四分体时期The tetrad stage NS NS NS NS NS
双核期The binucleate stage NS NS NS NS NS
Zm00001d035203 四分体时期The tetrad stage NS NS NS NS NS
双核期The binucleate stage NS NS NS NS NS
Zm00001d035204 四分体时期The tetrad stage NS NS NS NS NS
双核期The binucleate stage NS NS NS NS NS
Zm00001d035206 四分体时期The tetrad stage 600 943 0.65 0.0035 NS
双核期The binucleate stage 1196 1924 0.69 0.088 NS
Zm00001d035207 四分体时期The tetrad stage 736 819 0.15 0.56 NS
双核期The binucleate stage 763 729 -0.06 0.82 NS
Zm00001d035208 四分体时期The tetrad stage 827 1022 0.31 0.45 NS
双核期The binucleate stage 1184 877 -4.41 0.41 NS
Zm00001d035211 四分体时期The tetrad stage 167 134 -0.31 0.59 NS
双核期The binucleate stage 95 40 -1.06 0.16 DOWN

图6

候选基因qRT-PCR表达量分析 以Ubiquitin作为内参基因, 误差线表示n = 3的标准误。取野生型及突变体双核期花药进行表达量分析。WT: 野生型; ms6: 突变体。所有数据均为平均值 ± SD (n = 3)。**在P < 0.01水平上差异显著, NS: 不显著。"

[1] 吴锁伟, 张丹凤, 方才臣, 邓联武, 万向元. 玉米高效农杆菌转化体系的研究进展及其影响因素分析. 玉米科学, 2012, 20(5): 59-64.
Wu S W, Zhang D F, Fang C C, Deng L W, Wan X Y. Advances and major influencing factors of high-efficient agrobacterium- mediated genetic transformation in maize. J Maize Sci, 2012, 20(5): 59-64. (in Chinese with English abstract)
[2] 王保明, 陈永忠, 李红波, 莫华, 黄露波. 植物雄性不育的机制及应用研究进展. 河南农业科学, 2019, 48(5): 1-9.
Wang B M, Chen Y Z, Li H B, Mo H, Huang L B. Progress of mechanism of male sterility of plants and its application. J Henan Agric Sci, 2019, 48(5):1-9. (in Chinese with English abstract)
[3] Wasiak M, Niedziela A, Woś H, Pojmaj M, Bednarek P T. Genetic mapping of male sterility and pollen fertility QTLs in triticale with sterilizing Triticum timopheevii cytoplasm. J Appl Genet, 2021, 62: 59-71.
doi: 10.1007/s13353-020-00595-z
[4] 孙小媛, 王一帆, 王韫慧, 蔺佳雨, 李金红, 丘远涛, 方小龙, 孔凡江, 李美娜. 大豆细胞核雄性不育基因研究进展. 遗传, 2021, 43: 52-65.
Sun X Y, Wang Y F, Wang Y H, Lin J Y, Li J H, Qiu Y T, Fang X L, Kong F J, Li M N. Progress on genic male sterility gene in soybean. Hereditas, 2021, 43: 52-65. (in Chinese with English abstract)
[5] Goldberg R B, Beals T P, Sanders P M. Anther development: basic principles and practical applications. Plant Cell, 1993, 5: 1217-1229.
doi: 10.1105/tpc.5.10.1217 pmid: 8281038
[6] Chen X Y, Zhang H, Sun H Y, Luo H B, Zhao L, Dong Z B, Yan S S, Zhao C, Liu R Y, Xu C Y, Li S, Chen H B, Jin W W. IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiol, 2017, 173: 307-325.
doi: 10.1104/pp.16.00629
[7] Zhang D B, Wilson Z A. Stamen specification and anther development in rice. Chin Sci Bull, 2009, 54: 2342-2353.
doi: 10.1007/s11434-009-0348-3
[8] 田有辉, 万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法. 中国生物工程杂志, 2018, 38(1): 88-89.
Tian Y H, Wang X Y. The methods of cell biology and molecular genetics of maize anther development. Chin J Biotechnol, 2018, 38(1): 88-89. (in Chinese with English abstract)
[9] Wan X Y, Wu S W, Li Z W, Dong Z Y, An X L, Ma B, Tian Y H, Li J P. Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant, 2019, 12: 321-342.
doi: S1674-2052(19)30020-6 pmid: 30690174
[10] Zhang D F, Wu S W, An X L, Xie K, Dong Z Y, Zhou Y, Xu L W, Fang W, Liu S S, Liu S S, Zhu T T, Li J P, Rao L Q, Zhao J R, Wan X Y. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J, 2018, 16: 459-471.
doi: 10.1111/pbi.2018.16.issue-2
[11] Nan G L, Zhai J, Arikit S, Morrow D, Fernandes J, Mai L, Nguyen N, Meyers B C, Walbot V. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development, 2017, 144: 163-172.
[12] Moon J, Skibbe D, Timofejeva L, Wang C J, Kelliher T, Kremling K, Walbot V, Cande W Z. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant J, 2013, 76: 592-602.
doi: 10.1111/tpj.2013.76.issue-4
[13] Vernoud V, Laigle G, Rozier F, Meeley R B, Perez P, Rogowsky P M. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Plant J, 2009, 59: 883-894.
doi: 10.1111/tpj.2009.59.issue-6
[14] Wang D, Adams C M, Fernandes J F, Egger R L, Walbot V.A low molecular weight proteome comparison of fertile and male sterile 8 anthers of Zea mays. Plant Biotechnol J, 2012, 10: 925-935.
doi: 10.1111/j.1467-7652.2012.00721.x pmid: 22748129
[15] Wang Y B, Liu D C, Tian Y H, Wu S W, An X L, Dong Z Y, Zhang S M, Bao J X, Li Z W, Li J P, Wan X Y. Map-based cloning, phylogenetic, and microsynteny analyses of ZmMs20 gene regulating male fertility in maize. Int J Mol Sci, 2019, 20: 1411.
doi: 10.3390/ijms20061411
[16] Djukanovic V, Smith J, Lowe K, Yang M Z, Gao H R, Jones S, Nicholson M G, West A, Lape J, Bidney D, Carl Falco S, Jantz D, Alexander Lyznik L. Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J, 2013, 76: 888-899.
doi: 10.1111/tpj.12335
[17] An X L, Dong Z Y, Tian Y H, Xie K, Wu S W, Zhu T T, Zhang D F, Zhou Y, Niu C F, Ma B, Hou Q C, Bao J X, Zhang S M, Li Z W, Wang Y B, Yan T W, Sun X J, Zhang Y W, Li J P, Wan X Y. ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize. Mol Plant, 2019, 12: 343-359.
doi: 10.1016/j.molp.2019.01.011
[18] Xie K, Wu S W, Li Z W, Zhou Y, Zhang D F, Dong Z Y, An X L, Zhu T T, Zhang S M, Liu S S, Li J P, Wan X Y. Map-based cloning and characterization of Zea mays male sterility 33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase. Theor Appl Genet, 2018, 131: 1363-1378.
doi: 10.1007/s00122-018-3083-9 pmid: 29546443
[19] Fox T, DeBruin J, Haug Collet K, Trimnell M, Clapp J, Leonard A, Li B, Scolaro E, Collinson S, Glassman K, Miller M, Schussler J, Dolan D, Liu L, Gho C, Albertsen M, Loussaert D, Shen B. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol J, 2017, 15: 942-952.
doi: 10.1111/pbi.2017.15.issue-8
[20] Cigan A M, Unger E, Xu R J. Phenotypic complementation of ms45 maize requires tapetal expression of MS45. Sex Plant Reprod, 2001, 14: 135-142.
doi: 10.1007/s004970100099
[21] Tian Y H, Xiao S L, Liu J, Somaratne Y, Zhang H, Wang M M, Zhang H R, Zhao L, Chen H B. MALE STERILE6021 (MS6021) is required for the development of anther cuticle and pollen exine in maize. Sci Rep, 2017, 7: 16736.
doi: 10.1038/s41598-017-16930-0
[22] Somaratne Y, Tian Y H, Zhang H, Wang M M, Huo Y Q, Cao F G, Zhao L, Chen H B. ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant J, 2017, 90: 96-110.
doi: 10.1111/tpj.2017.90.issue-1
[23] Wang C J, Nan G L, Kelliher T, Timofejeva L, Vernoud V, Golubovskaya I N, Harper L, Egger R, Walbot V, Cande W Z. Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development, 2012, 139: 2594-2603.
doi: 10.1242/dev.077891
[24] 曹双河, 张相岐, 张爱民. 光(温)敏雄性不育的调控机理和分子遗传学研究进展. 植物学通报, 2005, 22: 19-26.
Cao S H, Zhang X Q, Zhang A M. Review of the molecular regulation mechanism and genetics of photoperiod- and/or thermosensitive male sterility. Chin Bull Bot, 2005, 22: 19-26. (in Chinese with English abstract)
[25] 谢潮添, 杨延红, 葛丽丽, 王瑞, 田惠桥. 白菜核雄性不育花药超微结构的研究. 实验生物学报, 2005, 38: 501-512.
Xie C T, Yang Y H, Ge L L, Wang R, Tian H Q. The study on ultrastructure of anther of male sterility in Chinese cabbage. Acta Biol Exp Sin, 2005, 38: 501-512. (in Chinese with English abstract)
[26] Vidakovic M B, Vancetovic J, Vidakovic M. A new search for restorer cytoplasm: the restorer cytoplasm for the gene ms10 most probably does not exist in maize. J Hered, 2002, 93: 444-447.
pmid: 12642646
[27] 王超, 安学丽, 张增为, 杨青, 饶力群, 陈信波, 方才臣, 万向元. 植物隐性核雄性不育基因育种技术体系的研究进展与展望. 植物生物工程杂志, 2013, 33(10): 124-130.
Wang C, An X L, Zhang Z W, Yang Q, Rao L Q, Chen X B, Fang C C, Wan X Y. Research progress and prospect of plant recessive nuclear male sterile gene breeding technology system. Chin J Biotechnol, 2013, 33(10): 124-130. (in Chinese with English abstract)
[28] An X L, Ma B, Duan M J, Dong Z Y, Liu R G, Yuan D Y, Hou Q C, Wu S W, Zhang D F, Liu D C, Yu D, Zhang Y W, Xie K, Zhu T T, Li Z W, Zhang S M, Tian Y H, Liu C, Li J P, Yuan L P, Wan X Y. Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species. Proc Natl Acad Sci USA, 2020, 117: 23499-23509.
doi: 10.1073/pnas.2010255117
[1] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[2] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[3] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[4] 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038.
[5] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[6] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
[7] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[8] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[9] 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757.
[10] 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828.
[11] 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707.
[12] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[13] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[14] 李璐璐, 明博, 高尚, 谢瑞芝, 王克如, 侯鹏, 薛军, 李少昆. 不同熟期玉米品种籽粒田间脱水特征差异性分析[J]. 作物学报, 2023, 49(6): 1643-1652.
[15] 王玉珑, 于爱忠, 吕汉强, 吕奕彤, 苏向向, 王鹏飞, 柴健. 绿洲灌区麦后复种绿肥并还田对翌年玉米根系性状及水分利用效率的影响[J]. 作物学报, 2023, 49(5): 1350-1362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .