欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2321-2330.doi: 10.3724/SP.J.1006.2023.23072

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

基于Adaptive Lasso的两阶段全基因组关联分析方法

杨文宇1,2(), 吴成秀1, 肖英杰1,3,*(), 严建兵1,3   

  1. 1作物遗传改良全国重点实验室, 湖北武汉 430070
    2华中农业大学理学院, 湖北武汉 430070
    3湖北洪山实验室, 湖北武汉 430070
  • 收稿日期:2022-10-28 接受日期:2023-02-21 出版日期:2023-09-12 网络出版日期:2023-03-03
  • 通讯作者: *肖英杰, E-mail: yxiao25@mail.hzau.edu.cn
  • 作者简介:杨文宇, E-mail: yangwenyurain@126.com
  • 基金资助:
    国家自然科学基金项目(32201855);国家自然科学基金项目(32122066)

ALGWAS: two-stage Adaptive Lasso-based genome-wide association study

YANG Wen-Yu1,2(), WU Cheng-Xiu1, XIAO Ying-Jie1,3,*(), YAN Jian-Bing1,3   

  1. 1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    3Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2022-10-28 Accepted:2023-02-21 Published:2023-09-12 Published online:2023-03-03
  • Supported by:
    National Natural Science Foundation of China(32201855);National Natural Science Foundation of China(32122066)

摘要:

作为进行全基因组关联分析的主流方法, 混合线性模型类方法得到了广泛的应用。但是, 现有方法仍存在检测功效不高的问题。本文提出一种基于Adaptive Lasso的2阶段全基因组关联分析方法(two-stage Adaptive Lasso-based genome-wide association analysis, ALGWAS), 该方法在第1阶段通过变量选择方法Adaptive Lasso筛选出与目标性状相关联的单核苷酸多态性位点(single nucleotide polymorphism, SNP), 第2阶段将第1阶段筛选出的SNP作为协变量放入线性模型中进行全基因组扫描。在模拟实验中, ALGWAS方法与3种常用的全基因组关联分析方法fastGWA、GEMMA和EMMAX相比具有最高的检测功效, 同时具有较低的错误发现率(false discovery rate, FDR)。将以上4种方法应用到包含1341份材料的玉米CUBIC (Complete-diallel plus Unbalanced Breeding-like Inter-Cross)群体的全基因组关联分析中, ALGWAS方法可检测到与开花期相关基因ZmMADS69ZmMADS15/31、ZmZCN8ZmRAP2.7, 与株高相关基因ZmBRD1ZmBR2, 与产量相关基因ZmUB2ZmKRN2ZmCLE7等, 而其他3种常用的全基因组关联分析方法检测功效较低。本研究提出了一种非混合线性模型类的全基因组关联分析方法, 对解析微效多基因决定的复杂遗传性状具有更高的检测效率, 为基因挖掘提供了新的途径。

关键词: 玉米, 全基因组关联分析, 变量选择, Adaptive Lasso

Abstract:

As mainstream methods for genome-wide association analysis, mixed linear model methods have been widely used. However, the existing methods still have the problem of low detection power. In this study, a two-stage Adaptive Lasso-based genome-wide association analysis (ALGWAS) method was proposed. In the first stage, single nucleotide polymorphism (SNP) associated with target traits were screened by Adaptive Lasso, a variable selection method. In the second stage, SNPs selected from the first stage were put into the linear model as the covariates for genome-wide scanning. Compared with fastGWA, GEMMA and EMMAX, the ALGWAS method had the highest detection power and lower false discovery rate (FDR) in the simulation experiments. The above four methods were applied to genome-wide association analysis of Complete-diallel plus Unbalanced Breeding-like Inter-Cross (CUBIC) population of 1341 individuals in maize. ALGWAS method can detect the genes (ZmMADS69, ZmMADS15/31, ZmZCN8, and ZmRAP2.7) related to days to tasseling, the genes (ZmBRD1 and ZmBR2) related to plant height, and the genes (ZmUB2, ZmKRN2, and ZmCLE7) related to yield, while the other three commonly used genome-wide association analysis methods had low detection efficiency. In this study, a non-mixed linear model class of genome-wide association analysis method was proposed, which had higher detection advantage for microeffect polygenes and provided a new way for genetic analysis of complex traits.

Key words: maize, genome-wide association study, variable selection, Adaptive Lasso

表1

基于从头模拟表型的不同全基因组关联分析方法的平均检测功效和错误发现率"

遗传力Heritability QTN数目
Number of QTN
方法
Method
检测功效
Detection power
高效应QTN
检测功效
Detection power of QTN with high effect
中等效应QTN
检测功效
Detection power of QTN with moderate effect
低效应QTN
检测功效
Detection power of QTN with low effect
错误发现率
False discovery rate
0.8
0.8
0.8
0.8
0.8
0.5
0.5
0.5
0.5
0.5
0.8
0.8
0.8
0.8
0.8
0.5
0.5
0.5
0.5
0.5
20
20
20
20
20
20
20
20
20
20
50
50
50
50
50
50
50
50
50
50
LM
ALGWAS
GEMMA
fastGWA
EMMAX
LM
ALGWAS
GEMMA
fastGWA
EMMAX
LM
ALGWAS
GEMMA
fastGWA
EMMAX
LM
ALGWAS
GEMMA
fastGWA
EMMAX
0.811
0.802
0.482
0.457
0.446
0.808
0.562
0.442
0.382
0.370
0.763
0.513
0.270
0.250
0.244
0.600
0.208
0.158
0.134
0.129
0.997
1.000
0.987
0.983
0.983
0.947
0.793
0.777
0.697
0.683
0.937
0.911
0.729
0.699
0.684
0.843
0.561
0.479
0.416
0.404
0.838
0.895
0.440
0.375
0.358
0.825
0.565
0.423
0.353
0.338
0.769
0.520
0.128
0.101
0.095
0.571
0.094
0.036
0.022
0.020
0.590
0.480
0.033
0.040
0.027
0.647
0.327
0.133
0.107
0.100
0.581
0.107
0.001
0.001
0.003
0.397
0.008
0.000
0.000
0.000
0.853
0.040
0.066
0.074
0.050
0.811
0.105
0.070
0.074
0.069
0.780
0.065
0.025
0.030
0.020
0.708
0.118
0.045
0.060
0.063

图1

基于真实性状遗传结构模拟表型的不同全基因组关联分析方法的检测功效 A: 抽雄期; B: 株高; C: 穗重。"

图2

CUBIC群体抽雄期的曼哈顿图"

图3

CUBIC群体株高的曼哈顿图"

图4

CUBIC群体穗重的曼哈顿图"

图5

不同全基因组关联分析方法的QQ图 A: 抽雄期; B: 株高; C: 穗重。"

表2

ALGWAS方法检测到的已知基因位置及其对应的peakSNP位置"

基因名称
Gene name
基因 ID
Gene ID
基因位置
Gene location
peakSNP位置
peakSNP location
P
P-value
ZmMADS69 GRMZM2G171650 Chr. 3: 159,022,119..159,050,063 Chr. 3: 158,013,626 8.434874E-09
ZmMADS15/31 GRMZM2G553379 Chr. 5: 6,993,294..7,011,505 Chr. 5: 6,684,616 1.667779E-08
ZmZCN8 GRMZM2G179264 Chr. 8: 123,028,887..123,033,675 Chr. 8: 121,955,506 1.638071E-12
ZmRAP2.7 GRMZM2G700665 Chr. 8: 131,575,389..131,581,816 Chr. 8: 131,013,374 6.050159E-10
ZmBR2 GRMZM2G315375 Chr. 1: 20,2334,824..202,342,008 Chr. 1: 202,814,745 1.595160E-09
ZmBRD1 GRMZM2G103773 Chr. 1: 249,371,977..249,376,239 Chr. 1: 249,462,103 3.165227E-21
ZmZCN8 GRMZM2G107829 Chr. 8: 123,028,887..123,033,675 Chr. 8: 124,009,899 2.306359E-10
ZmBAM1d GRMZM2G043584 Chr. 1: 30,516,319..30,522,796 Chr. 1: 27,500,593 1.373829E-04
ZmYIGE1 GRMZM2G008490 Chr. 1: 51,075,171..51,161,917 Chr. 1: 58,798,749 4.593378E-05
ZmUB2 GRMZM2G160917 Chr. 1: 188,213,876..188,220,983 Chr. 1: 192,566,425 1.078588E-05
ZmKRN2 GRMZM2G125656 Chr. 2: 17,742,986..17,750,216 Chr. 2: 17,280,224 6.421449E-06
ZmCLE7 GRMZM2G372364 Chr. 4: 7,568,824..7,572,604 Chr. 4: 16,087,155 7.774088E-06
ZmKRN6 GRMZM2G119714 Chr. 6: 94,188,754..94,201,186 Chr. 6: 90,084,654 8.809443E-05
[1] Zhang Y M, Mao Y C, Xie C Q, Smith H, Luo L, Xu S Z. Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics, 2005, 169: 2267-2275.
doi: 10.1534/genetics.104.033217
[2] Yu J M, Pressoir G, Briggs H W, Vroh B I, Yamasakiet M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203-208.
doi: 10.1038/ng1702 pmid: 16380716
[3] Kang H M, Zaitlen N A, Wade C M, Kirby A, Heckerman D, Daly M J, Eskin E. Efficient control of population structure in model organism association mapping. Genetics, 2008, 178: 1709-1723.
doi: 10.1534/genetics.107.080101 pmid: 18385116
[4] Kang H M, Sul J H, Service S K, Zaitlen N A, Kong S Y, Freimer N B, Sabatti C, Eskin E. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010, 42: 348-354.
doi: 10.1038/ng.548 pmid: 20208533
[5] Zhang Z W, Ersoz E, Lai C Q, Todhunter R J, Tiwari H K, Gore M A, Bradbury P J, Yu J, Arnett D K, Ordovas J M, Buckler E S. Mixed linear model approach adapted for genome-wide association studies. Nat Genet, 2010, 42: 355-360.
doi: 10.1038/ng.546 pmid: 20208535
[6] Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet, 2012, 44: 821-824.
doi: 10.1038/ng.2310 pmid: 22706312
[7] Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature, 2007, 447: 661-678.
doi: 10.1038/nature05911
[8] Li H, Peng Z Y, Yang X H, Wang W D, Fu J J, Wang J H, Han Y J, Chai Y C, Guo T T, Yang N, Liu J, Warburton M L, Cheng Y B, Hao X M, Zhang P, Zhao J Y, Liu Y J, Wang G Y, Li J S, Yan J B. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet, 2013, 45: 43-50.
doi: 10.1038/ng.2484 pmid: 23242369
[9] Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961-969.
doi: 10.1038/ng.695 pmid: 20972439
[10] Xiao Y J, Liu H J, Wu L J, Warburton M L, Yan J B. Genome- wide association studies in maize: praise and stargaze. Mol Plant, 2017, 10: 359-374.
doi: 10.1016/j.molp.2016.12.008
[11] 彭勃, 赵晓雷, 王奕, 袁文娅, 李春辉, 李永祥, 张登峰, 石云素, 宋燕春, 王天宇, 黎裕. 玉米叶向值的全基因组关联分析. 作物学报, 2020, 46: 819-831.
doi: 10.3724/SP.J.1006.2020.93063
Peng B, Zhao X L, Wang Y, Yuan W Y, Li C H, Li Y X, Zhang D F, Shi Y S, Song Y C, Wang T Y, Li Y. Genome-wide association studies of leaf orientation value in maize. Acta Agron Sin, 2020, 46: 819-831. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.93063
[12] 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析. 作物学报, 2021, 47: 1891-1902.
doi: 10.3724/SP.J.1006.2021.01078
Xie L, Ren Y, Zhang X Z, Wang J Q, Zhang Z H, Shi S B, Geng H W. Genome-wide association study of pre-harvest sprouting traits in wheat. Acta Agron Sin, 2021, 47: 1891-1902. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01078
[13] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选. 作物学报, 2022, 48: 1813-1821.
doi: 10.3724/SP.J.1006.2022.12047
Yang F, Zhang Z F, Nan B, Xiao B Z. Genome-wide association analysis and candidate gene selection of yield related traits in rice. Acta Agron Sin, 2022, 48: 1813-1821. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.12047
[14] Lippert C, Listgarten J, Liu Y, Kadiel C M, Davidson R I, Heckerman D. FaST linear mixed models for genome-wide association studies. Nat Methods, 2011, 8: 833-835.
doi: 10.1038/nmeth.1681 pmid: 21892150
[15] Listgarten J, Lippert C, Kadie C M, Davidson R I, Eskin E, Heckerman D. Improved linear mixed models for genome-wide association studies. Nat Methods, 2012, 9: 525-526.
doi: 10.1038/nmeth.2037 pmid: 22669648
[16] Loh P R, Bhatia G, Gusev A, Finucane H K, Bulik-Sullivan B K, Pollack S J. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat Genet, 2015, 47: 1385-1392.
doi: 10.1038/ng.3431 pmid: 26523775
[17] Jiang L D, Zheng Z L, Qi T, Kemper K E, Wray N R, Visscher P M, Yang J. A resource-efficient tool for mixed model association analysis of large-scale data. Nat Genet, 2019, 51: 1749-1755.
doi: 10.1038/s41588-019-0530-8 pmid: 31768069
[18] Maher B. Personal genomes: the case of the missing heritability. Nature, 2008, 456: 18-21.
[19] Visscher P. Sizing up human height variation. Nat Genet, 2008, 40: 489-490.
doi: 10.1038/ng0508-489 pmid: 18443579
[20] Yang J, Benyamin B, McEvoy B P, Gordon S, Henders A K, Nyholt D R, Madden P A, Heath A C, Martin N G, Montgomery G W, Goddard M E, Visscher P M. Common SNPs explain a large proportion of the heritability for human height. Nat Genet, 2010, 42: 565-569.
doi: 10.1038/ng.608 pmid: 20562875
[21] Song B, Mott R, Gan X. Recovery of novel association loci in Arabidopsis thaliana and Drosophila melanogaster through leveraging INDELs association and integrated burden test. PLoS Genet, 2018, 14: e1007699.
[22] Zhang Y W, Tamba C L, Wen Y J, Li P, Ren W L, Ni Y L, Gao J, Zhang Y M. mrMLM v4.0.2: an R platform for multi-locus genome-wide association studies. Genom Prot Bioinfor, 2020, 18: 481-487.
[23] Yang N, Lu Y L, Yang X H, Huang J, Zhou Y, Ali F H, Wen W W, Liu J, Li J S, Yan J B. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet, 2014, 10: e1004573.
[24] Liu H J, Wang X Q, Xiao Y J, Luo J Y, Qiao F, Yang W Y, Zhang R Y, Meng Y J, Sun J M, Yan S J, Peng Y, Niu L Y, Jian L M, Song W, Yan J L, Li C H, Zhao Y X, Liu Y, Warburton M L, Zhao J R, Yan J B. CUBIC: an atlas of genetic architecture promises directed maize improvement. Genome Biol, 2020, 21: 20.
doi: 10.1186/s13059-020-1930-x
[25] Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics, 1990, 124: 743-756.
doi: 10.1093/genetics/124.3.743 pmid: 1968875
[26] Yu J M, Holland J B, McMullen M D, Buckler E S. Genetic design and statistical power of nested association mapping in maize. Genetics, 2008, 178: 539-551.
doi: 10.1534/genetics.107.074245 pmid: 18202393
[27] Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Statist Society, 1996, 58: 267-288.
[28] Zou H. The adaptive lasso and its oracle properties. J Am Statist Assoc, 2006, 101: 1418-1429.
doi: 10.1198/016214506000000735
[29] Liang Y M, Liu Q, Wang X F, Huang C, Xu G H, Hey S, Lin H Y, Li C, Xu D Y, Wu L S, Wang C L, Wu W H, Xia J L, Han X, Lu S J, Lai J S, Song W B, Schnable P S, Tian F. ZmMADS69 functions as a flowering activator through the regulatory module and contributes to maize flowering time adaptation. New Phytol, 2019, 221: 2335-2347.
doi: 10.1111/nph.2019.221.issue-4
[30] Makarevitch I, Thompson A, Muehlbauer G J, Springer N M. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One, 2012, 7: e30798.
[31] Xing A Q, Gao Y F, Ye L F, Zhang W P, Cai L C, Ching A, Llaca V, Johnson B, Liu L, Yang X H, Kang D M, Yan J B, Li J S. A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. J Exp Bot, 2015, 66: 3791-3802.
doi: 10.1093/jxb/erv182 pmid: 25922491
[32] Yang N, Liu J, Gao Q, Gui S T, Chen L, Yang L F, Huang J, Deng T Q, Luo J Y, He L J, Wang Y B, Xu P W, Peng Y, Shi Z, Lan L, Ma Z Y, Yang X, Zhang Q Q, Bai M Z, Li W, Liu L, Jackson D, Yan J B. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet, 2019, 51: 1052-1059.
doi: 10.1038/s41588-019-0427-6 pmid: 31152161
[33] Luo Y, Zhang M L, Liu Y, Liu J, Li W Q, Chen G S, Peng Y, Jin M, Wei W J, Jian L M, Yan J, Fernie A R, Yan J B. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytol, 2022, 234: 513-526.
doi: 10.1111/nph.v234.2
[34] Du Y F, Liu L, Peng Y, Li M F, Li Y F, Liu D, Li X W, Zhang Z X. UNBRANCHED3 expression and inflorescence development is mediated by UNBRANCHED2 and the distal enhancer, KRN4, in maize. PLoS Genet, 2020, 16: e1008764.
[35] Chen W K, Chen L, Zhang X, Yang N, Guo J H, Wang M, Ji S G, Zhao X Y, Yin P F, Cai L C, Xu J, Zhang L L, Han Y J, Xiao Y N, Xu G, Wang Y B, Wang S H, Wu S, Yang F, Jackson D, Cheng J K, Chen S H, Sun C Q, Qin F, Tian F, Fernie A R, Li J S, Yan J B, Yang X H. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 2022, 375: e7985.
[36] Liu L, Gallagher J, Arevalo E D, Chen R, Skopelitis T, Wu Q, Bartlett M, Jackson D. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat Plants, 2021, 7: 287-294.
doi: 10.1038/s41477-021-00858-5 pmid: 33619356
[37] Jia H T, Li M F, Li W Y, Liu L, Jian Y N, Yang Z X, Shen X M, Ning Q, Du Y F, Zhao R, Jackson D, Yang X H, Zhang Z X. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat Commun, 2020, 11: 988.
doi: 10.1038/s41467-020-14746-7 pmid: 32080171
[38] Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468.
doi: 10.1093/genetics/136.4.1457 pmid: 8013918
[39] Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374.
doi: 10.1534/genetics.106.066811 pmid: 17110476
[1] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[2] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[3] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[4] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[5] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
[6] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[7] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[8] 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757.
[9] 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828.
[10] 王让剑, 杨军, 张力岚, 高香凤. 茶树新梢中香叶醇樱草糖苷含量的全基因组关联分析[J]. 作物学报, 2023, 49(7): 1843-1859.
[11] 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842.
[12] 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732.
[13] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[14] 马娟, 朱卫红, 刘京宝, 宇婷, 黄璐, 郭国俊. 玉米穗长一般配合力多位点全基因组关联分析和预测[J]. 作物学报, 2023, 49(6): 1562-1572.
[15] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .