欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2331-2343.doi: 10.3724/SP.J.1006.2023.23069

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析

黄钰杰(), 张啸天, 陈会丽, 王宏伟(), 丁双成()   

  1. 农业农村部长江中游作物绿色高效生产重点实验室(部省共建) / 长江大学农学院, 湖北荆州 434025
  • 收稿日期:2022-10-11 接受日期:2023-02-10 出版日期:2023-09-12 网络出版日期:2023-02-22
  • 通讯作者: *王宏伟, E-mail: wanghw@yangtzeue.edu.cn; 丁双成, E-mail: shchding@yangtzeu.edu.cn
  • 作者简介:黄钰杰, E-mail: 996802397@qq.com
  • 基金资助:
    国家自然科学基金项目(31701439)

Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize

HUANG Yu-Jie(), ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei(), DING Shuang-Cheng()   

  1. Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Ministry of Agricultural and Rural Affairs (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2022-10-11 Accepted:2023-02-10 Published:2023-09-12 Published online:2023-02-22
  • Supported by:
    National Natural Science Foundation of China(31701439)

摘要:

鉴定玉米ZmC2s基因家族成员, 分析其遗传变异与玉米耐热性的关联性, 为明确其在玉米耐热方面的功能和分子机制奠定基础。使用C2蛋白结构域PF00168, 利用hmmsearch从玉米全基因组中搜索ZmC2s基因家族成员, 分析其编码蛋白质等电点和分子量、系统进化和基因家族复制。使用候选基因关联分析的方法, 对ZmC2s基因自然变异位点与玉米苗期耐热性进行关联分析, 发现玉米ZmC2s基因家族重要的耐热候选基因。使用实时荧光定量PCR (RT-qPCR)的方法鉴定与玉米苗期耐热性最显著相关的ZmC2候选基因ZmC2-15在胁迫和激素处理下的基因相对表达水平, 在玉米原生质体瞬时表达系统中鉴定ZmC2-15-GFP的亚细胞表达部位, 以及获得过表达ZmC2-15的转基因拟南芥并分析其耐热性。从玉米参考基因组B73中共鉴定出95个玉米ZmC2s基因, 根据其物理坐标的先后顺序, 将95个玉米ZmC2s基因命名为ZmC2-1~ZmC2-95。其蛋白长度为130~2141, 等电点为4.1~10.8, 分子量为14.1~230.1。通过构建玉米、水稻和高粱基因组C2基因的进化树, 发现C2基因可以分为3个大的聚类分支, 每个聚类分支又可以细分为2个小的聚类分支。分析玉米、水稻和玉米、高粱的全基因组共线性数据, 发现了59个ZmC2s基因在水稻和高粱基因组均有一一对应的复制基因。ZmC2s基因家族关联分析表明ZmC2-15/60/91是重要的玉米耐热候选基因(P≤0.001, MLM), 其中ZmC2-15与玉米苗期耐热性最显著相关(P≤0.000,01, MLM), 且该基因的表达量在多种逆境胁迫处理下上调表达。亚细胞定位分析表明ZmC2-15表达定位于细胞质、核膜和内质网。过表达ZmC2-15的转基因拟南芥提高了植物耐热性。ZmC2-15可作为调控玉米耐热性的重要候选基因。

关键词: 玉米, 耐热, C2基因家族, 候选基因关联分析, 亚细胞定位

Abstract:

The objective of this study is to identify the members of maize ZmC2s gene family, to analyze the association between their genetic variations and heat tolerance, and to lay a foundation for clarifying its function and molecular mechanism in maize heat tolerance. Using the C2 protein domain PF00168, hmmsearch was applied to search for the members of the ZmC2s gene family from maize B73 genome. The protein isoelectric point, molecular weight, phylogenetic evolution, and gene family replication were analyzed. Using the method of candidate gene association analysis, the association between the natural variations of ZmC2s and the heat tolerance of maize seedlings was conducted, and the important heat-tolerant candidate genes of maize ZmC2s gene family were found. The relative gene expression level of the heat-tolerant candidate gene under stress was identified by Real time fluorescent quantitative PCR (RT-qPCR). The subcellular expression sites of heat-tolerant candidate gene were identified by transforming maize protoplasts. A total of 95 maize ZmC2s genes were identified from the reference genome B73 in maize. According to the order of their physical coordinates, 95 maize ZmC2s genes were named from ZmC2-1 to ZmC2-95, respectively. The length of the 95 proteins was 130-2141, the isoelectric point was 4.1-10.8, and the molecular weight was 14.1-230.1. The evolution tree of C2 gene in maize, rice, and sorghum genomes was constructed. We found that C2 genes can be divided into three major cluster branches, and each cluster branch can be subdivided into two small cluster branches. Analyzing the whole genome collinearity data of maize, rice, and sorghum, 59 ZmC2s genes were detected to have corresponding replication genes in rice and sorghum genomes. A candidate-gene based on the association analysis of ZmC2s showed that ZmC2-15/60/91 were important candidate genes for heat tolerance in maize (P ≤ 0.001, MLM), among which ZmC2-15 was the most significantly associated to heat tolerance at seedling stage (P ≤ 0.000,01, MLM), and the relative expression level of ZmC2-15 was up-regulated under various stress treatments. Subcellular localization indicated that ZmC2-15 was localized in the cytoplasm, nuclear membrane, and endoplasmic reticulum. The overexpression of ZmC2-15 improved plant heat tolerance. ZmC2-15 can be used as an important candidate gene for regulating heat tolerance in maize.

Key words: maize, heat tolerance, C2 gene family, association analysis of candidate genes, subcellular localization

图1

ZmC2s基因家族成员鉴定和蛋白理化性质分析结果图 ZmC2s基因家族成员的内含子数量(A)、外显子数量(B)、蛋白质分子量(C)、蛋白质等电点(D)、蛋白长度(E)、基因名称(F)、基因物理坐标(G)和GenBank登录号(H)。"

图2

玉米、水稻和高粱3种作物中C2结构域基因的系统发育进化树 通过比较MEGA 7中的C2结构域氨基酸序列来生成系统发生树。使用邻居连接方法, 所有的基因被分成3组, I、II和III。"

图3

玉米C2结构域基因与水稻和高粱的基因复制分析 1号、2号(A); 3号、4号(B); 5号、6号(C); 7号、8号、9号、10号(D)染色体上ZmC2s基因家族成员与水稻和高粱的基因复制分析; E: 玉米、水稻和高粱基因组C2基因复制类型和数目。"

图4

玉米C2结构域基因与玉米耐热性的关联分析 A: ZmC2s遗传多态性标记数目; ZmC2s自然变异与玉米耐热性显著关联(GLM, P ≤ 0.01); B: MLM, P ≤ 0.01; C: (MLM, P ≤ 0.001; D: MLM, P ≤ 0.000,01; E: 基因及基因内显著关联的标记数目; F: ZmC2s基因坐标; G: ZmC2s基因名称; H: ZmC2基因遗传变异与玉米苗期耐热性的关联分析QQplot; ZmC2-15 (I), ZmC2-60 (J), ZmC2-91 (K)基因遗传变异与玉米苗期耐热性的关联分析。"

图5

高温(A)、干旱(B)、低温(C)、乙烯利(D)、氯化钠(E)、过氧化氢(F)、赤霉素(G)、ABA (H)和水杨酸(I)处理下ZmC2-15基因的表达模式 柱状图代表均值±标准差。*: P ≤ 0.05; **: P ≤ 0.01; t测验。"

图6

ZmC2-15-GFP在玉米原生质体里的亚细胞定位 A: GFP蛋白在玉米原生质体亚细胞定位; B: ZmC2-15-GFP加入细胞核染料DAPI后原生质体亚细胞定位。图中ZmC2-15-GFP代指pGreenII-35SΩ-ZmC2-15-GFP, 35S:GFP代指pGreenII-35SΩ-GFP。"

图7

ZmC2-15-GFP与ERD2-mCherry (A)、ST-mCherry (B)、VHA-A1-mCherry (C)和HDEL-mCherryL (D)在玉米原生质体亚细胞共定位 HDEL-mCherry、ERD2-mCherry、ST-mCherry和VHA-A1-mCherry分别作为内质网、顺面高尔基体、高尔基体和反面高尔基体蛋白定位标记。"

图8

ZmC2-15转基因拟南芥高温胁迫表型分析 A: 高温处理前; B: 高温处理后; C: 引物及结构域示意图及半定量分析结果; D: 对照与转基因拟南芥存活率柱状图。VC代表空载pGreenII-35SΩ转化拟南芥。柱状图代表均值±标准差, 数据统计自3次生物学重复, VC、OE1和OE2各有30株。*: P ≤ 0.05; **: P ≤ 0.01; t测验。"

[1] Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and drought stresses in crops and approaches for their mitigation. Front Chem, 2018, 6: 26.
doi: 10.3389/fchem.2018.00026 pmid: 29520357
[2] Hunter M C, Smith R G, Schipanski M E, Atwood L W, Mortensen D A. Agriculture in 2050: recalibrating targets for sustainable intensification. BioScience, 2017, 67: 386-391.
doi: 10.1093/biosci/bix010
[3] Schauberger B, Archontoulis S, Arneth A, Balkovic J, Ciais P, Deryng D, Elliott J, Folberth C, Khabarov N, Muller C, Pugh T A, Rolinski S, Schaphoff S, Schmid E, Wang X, Schlenker W, Frieler K. Consistent negative response of US crops to high temperatures in observations and crop models. Nat Commun, 2017, 8: 13931.
[4] 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答. 作物学报, 2022, 48: 3004-3017.
doi: 10.3724/SP.J.1006.2022.13060
Yue M F, Zhang C, Zheng D Y, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmbHLH91 to abiotic stress. Acta Agron Sin, 2022, 48: 3004-3017 (in Chinese with English abstract).
[5] Bowler C, Fluhr R. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci, 2000, 5: 241-246.
pmid: 10838614
[6] Xiong L M, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14: S165-S183.
doi: 10.1105/tpc.000596
[7] Hetherington A M, Brownlee C. The generation of Ca2+ signals in plants. Annu Rev Plant Biol, 2004, 55: 401-427.
pmid: 15377226
[8] Liu J P, Zhang C C, Wei C C, Liu X, Wang M G, Yu F F, Xie Q, Tu J M. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol, 2016, 170: 429-443.
doi: 10.1104/pp.15.00879 pmid: 26564152
[9] Abdelrahman M, Ishii T, El-Sayed M, Tran L S P. Heat sensing and lipid reprograming as a signaling switch for heat stress responses in wheat. Plant Cell Physiol, 2020, 61: 1399-1407.
doi: 10.1093/pcp/pcaa072 pmid: 32467978
[10] Guerrero-Valero M, Marin-Vicente C, Gomez-Fernandez J C, Corbalan-Garcia S. The C2 domains of classical PKCs are specific PtdIns(4,5)P2-sensing domains with different affinities for membrane binding. J Mol Biol, 2007, 371: 608-621.
pmid: 17586528
[11] Zhang D P, Aravind L. Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. Gene, 2010, 469: 18-30.
doi: 10.1016/j.gene.2010.08.006 pmid: 20713135
[12] Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell, 2002, 14(S1): S389-S400.
doi: 10.1105/tpc.001115
[13] Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature, 1988, 334: 661-665.
doi: 10.1038/334661a0
[14] Ono Y, Fujii T, Igarashi K, Kuno T, Tanaka C, Kikkawa U, Nishizuka Y. Phorbol ester binding to protein kinase C requires a cysteine-rich zinc-finger-like sequence. Proc Natl Acad Sci USA, 1989, 86: 4868-4871.
pmid: 2500657
[15] Ramirez-Ortega F A, Herrera-Pola P S, Toscano-Morales R, Xoconostle-Cazares B, Ruiz-Medrano R. Overexpression of the pumpkin (Cucurbita maxima) 16 kDa phloem protein CmPP16 increases tolerance to water deficit. Plant Signal Behav, 2014, 9: e973823.
[16] Ouelhadj A, Kuschk P, Humbeck K. Heavy metal stress and leaf senescence induce the barley gene HvC2d1 encoding a calcium-dependent novel C2 domain-like protein. New Phytol, 2006, 170: 261-273.
pmid: 16608452
[17] Yang W Q, Lai Y, Li M N, Xu W Y, Xue Y B. A novel C2-domain phospholipid-binding protein, OsPBP1, is required for pollen fertility in rice. Mol Plant, 2008, 1: 770-785.
doi: 10.1093/mp/ssn035
[18] Qin T, Tian Q Z, Wang G F, Xiong L M. LOWER TEMPERATURE 1 enhances ABA responses and plant drought tolerance by modulating the stability and localization of C2-Domain ABA-related proteins in Arabidopsis. Mol Plant, 2019, 12: 1243-1258.
doi: 10.1016/j.molp.2019.05.002
[19] Zhu Y, Yang H J, Mang H Y G, Hua J. Induction of BAP1 by a moderate decrease in temperature is mediated by ICE1 in Arabidopsis. Plant Physiol, 2011, 155: 580-588.
doi: 10.1104/pp.110.169466
[20] Hou L X, Zhang G K, Zhao F G, Zhu D, Fan X X, Zhang Z, Liu X. VvBAP1 is involved in cold tolerance in Vitis vinifera L. Front Plant Sci, 2018, 9: 726.
doi: 10.3389/fpls.2018.00726
[21] Ye Q, Yu J T, Zhang Z, Hou L X, Liu X. VvBAP1, a grape C2 domain protein, plays a positive regulatory role under heat stress. Front Plant Sci, 2020, 11: 544374.
[22] Liu L J, Song X, He D D, Komma C, Kita A, Virbasius J V, Huang G Q, Bellamy H D, Miki K, Czech M P, Zhou G W. Crystal structure of the C2 domain of class II phosphatidylinositide 3-kinase C2alpha. J Biol Chem, 2006, 281: 4254-4260.
doi: 10.1074/jbc.M510791200 pmid: 16338929
[23] Nalefski E A, Falke J J. The C2 domain calcium-binding motif: structural and functional diversity. Protein Sci, 1996, 5: 2375-2390.
pmid: 8976547
[24] Finn R D, Clements J, Arndt W, Miller B L, Wheeler T J, Schreiber F, Bateman A, Eddy S R. HMMER web server: 2015 update. Nucleic Acids Res, 2015, 43: W30-38.
doi: 10.1093/nar/gkv397
[25] Marchlerbauer A, Lu S, Anderson J B, Chitsaz F, Derbyshire M K, Deweesescott C, Fong J H, Geer L Y, Geer R C, Gonzales N R. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res, 2011, 39: D225-D229.
[26] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33: 1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[27] 冯信, 张春梅, 王宏伟. 玉米ZmEXO70s基因家族鉴定及苗期耐热性关联分析. 南方农业学报, 2021, 52: 867-878.
Feng X, Zhang C M, Wang H W. Genome-wide identification of ZmEXO70s gene family in Zea mays L. and association analysis of natural variations in ZmEXO70s genes with thermotolerance in seedlings. J Southern Agric, 2021, 52: 867-878. (in Chinese with English abstract)
[28] Fu J J, Cheng Y B, Linghu J J, Yang X H, Kang L, Zhang Z X, Zhang J, He C, Du X M, Peng Z Y, Wang B, Zhai L H, Dai C M, Xu J B, Wang W D, Li X R, Zheng J, Chen L, Luo L H, Liu J J, Qian X J, Yan J B, Wang J, Wang G Y. RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun, 2013, 4: 2832.
doi: 10.1038/ncomms3832 pmid: 24343161
[29] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[30] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007, 2: 1565-1572.
doi: 10.1038/nprot.2007.199
[31] Townsley F M, Frigerio G, Pelham H R. Retrieval of HDEL proteins is required for growth of yeast cells. J Cell Biol, 1994, 127: 21-28.
pmid: 7929564
[32] Robinson D G, Aniento F. A model for ERD2 function in higher plants. Front Plant Sci, 2020, 11: 343.
doi: 10.3389/fpls.2020.00343 pmid: 32269585
[33] Wipf D, Pfister C, Mounier A, Leborgne-Castel N, Frommer W B, Courty P E. Identification of putative interactors of Arabidopsis sugar transporters. Trends Plant Sci, 2021, 26: 13-22.
doi: 10.1016/j.tplants.2020.09.009
[34] Lupanga U, Rohrich R, Askani J, Hilmer S, Kiefer C, Krebs M, Kanazawa T, Ueda T, Schumacher K. The Arabidopsis V-ATPase is localized to the TGN/EE via a seed plant-specific motif. eLife, 2020, 9: e60568
doi: 10.7554/eLife.60568
[35] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[36] Kuchipudi S V, Tellabati M, Nelli R K, White G A, Perez B B, Sebastian S, Slomka M J, Brookes S M, Brown I H, Dunham S P, Chang K C. 18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells. Virol J, 2012, 9: 230.
doi: 10.1186/1743-422X-9-230 pmid: 23043930
[37] Wang F W, Deng Y, Zhou Y G, Dong J Y, Chen H, Dong Y Y, Wang N, Li X W, Li H Y. Genome-wide analysis and expression profiling of the phospholipase C gene family in soybean (Glycine max). PLoS One, 2015, 10: e0138467.
[38] Schnable P S, Ware D, Fulton R S, Stein J C, Wei F S, Pasternak S, Liang C Z, Zhang J W, Fulton L, Graves T A, Minx P, Reily A D, Courtney L, Kruchowski S S, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock S M, Belter E, Du F Y, Kim K, Abbott R M, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson S M, Gillam B, Chen W Z, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J K, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy M J, Mcmahan L, Van Buren P, Vaughn M W, Ying K, Yeh C T, Emrich S J, Jia Y, Kalyanaraman A, Hsia A P, Barbazuk W B, Baucom R S, Brutnell T P, Carpita N C, Chaparro C, Chia J M, Deragon J M, Estill J C, Fu Y, Jeddeloh J A, Han Y J, Lee H, Li P H, Lisch D R, Liu S Z, Liu Z J, Nagel D H, McCann M C, Sanmiguel P, Myers A M, Nettleton D, Nguyen J, Penning B W, Ponnala L, Schneider K L, Schwartz D C, Sharma A, Soderlund C, Springer N M, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber T K, Yang L X, Yu Y, Zhang L F, Zhou S G, Zhu Q H, Bennetzen J L, Dawe R K, Jiang J M, Jiang N, Presting G G, Wessler S R, Aluru S, Martienssen R A, Clifton S W, McCombie W R, Wing R A, Wilson R K. The B73 maize genome: complexity, diversity, and dynamics. Science, 2009, 326: 1112-1115.
[39] Lee T H, Tang H B, Wang X Y, Paterson A H. PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res, 2013, 41: D1152-1158.
[40] Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829
[41] Nakashima K, Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed development. Plant Cell Rep, 2013, 32: 959-970.
doi: 10.1007/s00299-013-1418-1 pmid: 23535869
[42] Zheng L S, Liu Y T, Chen L, Wang Y, Rui Y N, Huang H Z, Lin S Y, Wang J, Wang Z X, Lin S C, Wu J W. Structure and mechanism of the unique C2 domain of Aida. FEBS J, 2014, 281: 4622-4632.
doi: 10.1111/febs.12966 pmid: 25117763
[43] Rizo J, Sudhof T C. C2-domains, structure and function of a universal Ca2+-binding domain. J Biol Chem, 1998, 273: 15879-15882.
doi: 10.1074/jbc.273.26.15879 pmid: 9632630
[1] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[2] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[3] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[4] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[5] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
[6] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[7] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[8] 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757.
[9] 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828.
[10] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[11] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[12] 李璐璐, 明博, 高尚, 谢瑞芝, 王克如, 侯鹏, 薛军, 李少昆. 不同熟期玉米品种籽粒田间脱水特征差异性分析[J]. 作物学报, 2023, 49(6): 1643-1652.
[13] 王玉珑, 于爱忠, 吕汉强, 吕奕彤, 苏向向, 王鹏飞, 柴健. 绿洲灌区麦后复种绿肥并还田对翌年玉米根系性状及水分利用效率的影响[J]. 作物学报, 2023, 49(5): 1350-1362.
[14] 李慧, 王旭敏, 刘苗, 刘朋召, 李巧丽, 王小利, 王瑞, 李军. 基于夏玉米产量和氮素利用的水氮减量方案优选[J]. 作物学报, 2023, 49(5): 1292-1304.
[15] 张俊杰, 陈金平, 汤钰镂, 张锐, 曹红章, 王丽娟, 马梦金, 王浩, 王泳超, 郭家萌, KRISHNA SV Jagadish, 杨青华, 邵瑞鑫. 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响[J]. 作物学报, 2023, 49(5): 1397-1409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[10] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .