欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2446-2461.doi: 10.3724/SP.J.1006.2023.24186

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

比较转录组分析花生种子休眠调控网络

王菲菲1(), 张胜忠1, 胡晓辉1, 崔凤高1, 钟文3, 赵立波4, 张天雨3, 郭进涛5, 于豪谅6, 苗华荣1,*(), 陈静1,*()   

  1. 1山东省花生研究所, 中国山东青岛 266100
    2佐治亚大学蒂芙顿校区园艺系, 美国佐治亚州蒂芙顿 31793
    3山东省种子管理总站, 中国山东济南 250100
    4青岛市农业技术推广中心, 中国山东青岛 266071
    5新郑市和庄农业服务中心, 中国河南新郑 451150
    6烟台枫林食品股份有限公司, 中国山东烟台 264108
  • 收稿日期:2022-08-10 接受日期:2023-02-21 出版日期:2023-09-12 网络出版日期:2023-03-03
  • 通讯作者: *陈静, E-mail: mianbaohua2008@126.com; 苗华荣, E-mail: 1649813628@qq.com
  • 作者简介:王菲菲, E-mail: wangfeifeisj@163.com
  • 基金资助:
    国家自然科学基金青年基金项目(32001584);国家自然科学基金青年基金项目(32201876);山东省自然科学基金面上项目(ZR2022MC045);山东省农业良种工程(2020LZGC001);山东省农业科学院创新工程(CXGC2022A03);山东省农业科学院创新工程(CXGC2022A21);青岛市民生科技计划项目(20-3-4-26-nsh);新疆维吾尔自治区重大科技专项(2022A02008-3)

Comparative transcriptome profiling of dormancy regulatory network in peanut

WANG Fei-Fei1(), ZHANG Sheng-Zhong1, HU Xiao-Hui1, CHU Ye2, CUI Feng-Gao1, ZHONG Wen3, ZHAO Li-Bo4, ZHANG Tian-Yu3, GUO Jin-Tao5, YU Hao-Liang6, MIAO Hua-Rong1,*(), CHEN Jing1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2Department of Horticulture, University of Georgia Tifton Campus, Tifton 31793, GA, United States
    3Shandong Seed Administration Station, Jinan 250100, Shandong, China
    4Qingdao Agricultural Technology Extension Center, Qingdao 266071, Shandong, China
    5Agricultural Service Center of Hezhuang, Xinzheng, Zhengzhou 451150, Henan, China
    6Yantai Fenglin Foodstuff Co., Ltd, Yantai 264108, Shandong, China
  • Received:2022-08-10 Accepted:2023-02-21 Published:2023-09-12 Published online:2023-03-03
  • Supported by:
    Youth Fund Project of the National Natural Science Foundation of China(32001584);Youth Fund Project of the National Natural Science Foundation of China(32201876);General Project of Shandong Natural Science Foundation(ZR2022MC045);Shandong Province Agriculture Improved Seed Project(2020LZGC001);Innovation Project of Shandong Academy of Agriculture Sciences(CXGC2022A03);Innovation Project of Shandong Academy of Agriculture Sciences(CXGC2022A21);Qingdao People’s Livelihood Science and Technology Project(20-3-4-26-nsh);Major Science and Technology Program of Xinjiang Uygur Autonomous Region(2022A02008-3)

摘要:

种子休眠性是花生重要且复杂的农艺性状, 对花生(Arachis hypogaea L.)的产量和品质影响巨大。为深入揭示花生种子休眠维持和解除的分子调控网络, 本研究以强休眠品种花育52号(HY52)和弱休眠突变株系M23、M67为试材, 种子吸胀处理(0 h、12 h、24 h)后测定其激素ABA和GA含量并进行转录组测序。吸胀12 h时M23和M67中GA含量显著高于HY52, ABA含量和ABA/GA比值则低于HY52。测序共得到31,373个差异表达基因(DEGs), 其中ABA和GA生物合成和信号转导相关的基因在种子休眠维持和解除过程中发生显著变化, 挖掘到50个ABA相关基因、8个GA相关基因、49个乙烯相关基因和13个生长素相关基因。此外, 还鉴定到许多参与碳水化合物和脂质代谢、氨基酸代谢途径相关的DEG, 挖掘到糖代谢相关基因5个、脂质代谢相关基因4个; 昼夜节律调控也可能参与花生种子休眠解除。这表明, 花生种子休眠维持和解除的调控是一个复杂网络, 植物激素平衡调控可能只是其中一个重要部分。

关键词: 花生, 休眠维持, 休眠解除, 转录组, 植物激素, 氨基酸代谢

Abstract:

Seed dormancy is an important and complex agronomic trait affecting yield and quality of peanut (Arachis hypogaea L.). Seed dormancy and germination was reported to be regulated by the balance between abscisic acid (ABA) and gibberellic acid (GA). In this study, transcriptomic sequencing was performed with Huayu 52 (HY52), a peanut cultivar with strong dormancy, and two EMS mutant lines from HY52 with a weak level of dormancy. Seeds from these three lines were imbibed for 0, 12, and 24 h before tissue harvesting and RNA seq analysis. GA content of M23 and M67 was significantly higher than HY52 at 12 h after imbibition, however, the ABA content and ABA/GA ratio were lower than HY52. A total of 31,374 differentially expressed genes (DEGs) including biosynthesis and signal transduction related genes of plant hormones such as ABA and GA were discovered. We identified 50 genes related to ABA, 8 genes related to GA, 49 genes related to ethylene, and 13 genes related to auxin. Expression profiles of ABA and GA related genes was consistent with the higher GA and lower ABA content in the mutants compared with HY52 after 12 h and 24 h imbibition. In addition, many DEGs involved in carbohydrate and lipid metabolism, amino acid metabolism, and glutathione metabolism pathway were also identified. There were 5 carbohydrate metabolism related genes (GPT) and 4 lipid metabolism related genes. In addition, differentially regulated circadian rhythm pathways were found to involve in the process of peanut seed dormancy release. These results suggested that the regulation of dormancy maintenance and release was more complicated than phytohormone balance.

Key words: peanut, dormancy maintenance, dormancy release, transcriptome, plant hormone, amino acid metabolism

图1

HY52、M23和M67的休眠性差异 A: HY52、M23和M67的萌发率, B~D: 吸胀12 h和24 h的GA含量、ABA含量和ABA/GA。GA: 赤霉素; ABA: 脱落酸; HY52: 花育52号。星号表示通过单因素方差分析与HY52相比有显著性(*P<0.05, **P<0.01, ***P<0.001)。"

表1

参试样品的转录组数据质量"

样品名称
Sample name
原始读长
Raw reads
有效读长
Clean reads
有效碱基
Clean bases (Gb)
有效读长的比例
Valid ratio (reads) (%)
基因组上的比对率
Mapped ratio (%)
≥Q30 (%) GC含量
GC content (%)
HY52_0_1 47,336,764 46,882,472 7.03 99.04 92.15 94.54 46.00
HY52_0_2 40,239,562 39,850,56 5.98 99.03 92.52 96.56 45.50
HY52_0_3 42,126,764 41,757,916 6.26 99.12 92.29 94.37 47.00
M23_0_1 53,524,396 47,595,296 7.14 88.92 84.53 90.44 48.50
M23_0_2 54,811,458 53,791,824 8.07 98.14 91.70 96.29 48.00
M23_0_3 58,964,636 58,493,438 8.77 99.20 92.87 96.57 45.50
M67_0_1 44,573,54 44,010,372 6.60 98.74 92.02 95.24 47.00
M67_0_2 43,794,954 43,380,290 6.51 99.05 91.63 92.85 45.50
M67_0_3 43,654,578 43,168,590 6.48 98.89 92.05 93.96 46.00
HY52_12_1 43,666,144 43,006,610 6.45 98.49 92.15 95.24 49.00
HY52_12_2 40,974,886 40,618,232 6.09 99.13 92.86 93.45 46.00
HY52_12_3 48,252,204 47,774,688 7.17 99.01 92.33 94.51 45.50
M23_12_1 44,263,360 43,728,20 6.56 98.79 92.87 94.23 47.00
M23_12_2 44,207,630 43,791,190 6.57 99.06 92.59 94.40 46.00
M23_12_3 57,707,210 57,167,752 8.58 99.07 93.87 96.48 46.50
M67_12_1 47,514,726 46,870,288 7.03 98.64 92.41 95.52 47.00
M67_12_2 47,016,098 46,486,226 6.97 98.87 92.85 94.35 45.00
M67_12_3 41,492,948 41,145,894 6.17 99.16 92.88 93.62 45.00
HY52_24_1 51,701,800 50,178,368 7.53 97.05 93.48 96.37 47.50
HY52_24_2 39,391,916 39,016,270 5.85 99.05 92.14 93.33 46.50
HY52_24_3 48,847,594 48,142,426 7.22 98.56 93.28 96.44 47.00
M23_24_1 42,599,196 41,768,316 6.27 98.05 92.71 94.42 46.00
M23_24_2 63,130,436 62,578,018 9.39 99.12 93.84 95.84 45.00
M23_24_3 60,429,598 59,883,810 8.98 99.10 94.47 96.12 46.50
M67_24_1 44,066,802 43,632,302 6.54 99.01 94.07 95.96 47.50
M67_24_2 41,088,448 40,772,706 6.12 99.23 94.22 96.06 45.50
M67_24_3 42,584,300 42,214,250 6.33 99.13 93.06 92.79 45.00

表2

花育52号全长转录组的功能注释"

数据库
Database
总基因簇
Total_unigene
KOG数据库
KOG database
KEGG数据库
KEGG database
NR数据库
NR database
SwissProt数据库
SwissProt
database
GO数据库
GO database
注释基因总数
Overall_
annotated
Gene_Number 47,697 25,840 19,192 43,623 33,161 19,468 43,930
Annotation_Ratio 54.18% 40.24% 91.46% 69.52% 40.82% 92.10%

图2

不同处理差异表达基因比较及韦恩图 HY52: 花育52号; DEGs: 差异表达基因。"

图3

HY52、M23和M67的差异基因表达谱 HY52 (A)和M67 (C)的表达谱聚成2个组, 即上调和双向表达谱, M23 (B)则聚成3个组, 即上调、下调和双向表达谱。表达谱编号标记在左上角, 每个表达谱对应的P值标记在左下角, 括号中为每个表达谱中差异基因的数量。HY52: 花育52号。"

图4

花生种子休眠保持过程中差异基因GO富集分析 HY52: 花育52号。"

图5

花生种子休眠保持过程中差异基因KEGG富集分析 HY52: 花育52号。"

图6

花生种子休眠解除过程中差异基因GO富集分析"

图7

花生种子休眠解除过程中差异基因KEGG富集分析"

图8

花生种子吸胀过程中与激素合成、代谢和信号转导相关的差异基因表达热图 A: ABA、GA、乙烯和生长素的生物合成、代谢和信号转导示意图; B: 与植物激素相关的差异表达基因热图。HY52: 花育52号。"

图9

花生种子吸胀过程中与碳水化合物、脂质合成、代谢相关的差异基因表达热图 A: 脂质代谢相关差异表达基因热图; B: 碳水化合物合成和代谢相关差异表达基因热图。HY52: 花育52号。"

图10

HY52_12 vs M67_12 (A) and HY52_24 vs M67_24 (B)比较组前20个GO条目中与植物激素和胁迫相关的差异表达基因热图分析 HY52: 花育52号。"

[1] Hilhorst H W. Standardizing seed dormancy research. Methods Mol Biol, 2011, 773: 43-52.
doi: 10.1007/978-1-61779-231-1_3 pmid: 21898248
[2] Baskin J M, Baskin C C. A classification system for seed dormancy. Seed Sci Res, 2007, 14: 1-16.
doi: 10.1079/SSR2003150
[3] Fenner M, Thompson K, The Ecology of Seeds. New York: Cambridge University Press, 2005. pp 99-104.
[4] Wang M L, Wang H, Zhao C, Tonnis B, Tallury S, Wang X, Clevenger J, Guo B. Identification of QTLs for seed dormancy in cultivated peanut using a recombinant inbred line mapping population. Plant Mol Biol Rep, 2021, 40: 208-217.
doi: 10.1007/s11105-021-01315-5
[5] 胡晓辉, 崔凤高, 张胜忠, 苗华荣, 张智猛, 陈静. 花生种子休眠特异突变材料的创制及理化因素研究. 花生学报, 2018, 47(1): 33-37.
Hu X H, Cui F G, Zhang S Z, Miao H R, Zhang Z M, Chen J. Study on the creation and physicochemical factors of peanut seed dormancy mutant. J Peanut Sci, 2018, 47(1): 33-37. (in Chinese with English abstract)
[6] Shi J, Shi J, Liang W, Zhang D. Integrating GWAS and transcriptomics to identify genes involved in seed dormancy in rice. Theor Appl Genet, 2021, 134: 3553-3562.
doi: 10.1007/s00122-021-03911-1 pmid: 34312681
[7] Finkelstein R, Reeves W, Ariizumi T, Steber C. Molecular aspects of seed dormancy. Annu Rev Plant Biol, 2008, 59: 387-415.
doi: 10.1146/annurev.arplant.59.032607.092740 pmid: 18257711
[8] Sondheimer E, Tzou D S, GalsonE C. Abscisic acid levels and seed dormancy. Plant Physiol, 1968, 43: 1443-1447.
doi: 10.1104/pp.43.9.1443 pmid: 16656935
[9] Kallio P, Piiroinen P. Effect of gibberellin on the termination of dormancy in some seeds. Nature, 1959, 183: 1830-1831.
doi: 10.1038/1831830a0
[10] Nee G, Xiang Y, Soppe W J. The release of dormancy, a wake-up call for seeds to germinate. Curr Opin Plant Biol, 2017, 35: 8-14.
doi: S1369-5266(16)30133-9 pmid: 27710774
[11] Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2007, 15: 281-307.
doi: 10.1079/SSR2005218
[12] Zhang M, Zeng Q, Liu H, Qi F, Sun Z, Miao L, Li X, Li C, Liu D, Guo J, Zhang M, Xu J, Shi L, Tian M, Dong W, Huang B, Zhang X. Identification of a stable major QTL for fresh-seed germination on chromosome Arahy. 04 in cultivated peanut (Arachis hypogaea L.). Crop J, 2022, 10: 1767-1773.
doi: 10.1016/j.cj.2022.03.012
[13] 郝西, 张俊, 刘娟, 臧秀旺, 董文召, 汤丰收. 不同花生品种种子休眠性鉴定. 种子, 2018, 37(8): 1-3.
Hao X, Zhang J, Liu J, Zang X W, Dong W Z, Tang F S. Identification of seed dormancy of diffident varieties. Seed, 2018, 37(8): 1-3. (in Chinese with English abstract)
[14] 任明刚, 何大智, 冯明友, 李婵, 杨如英, 张超, 穆航. 贵州78份地方花生品种的休眠性及相关分析. 种子, 2020, 39(11): 55-58.
Ren M G, He D Z, Feng M Y, Li C, Yang R Y, Zhang C, Mu H. Dormancy and correlation analysis of 78 local peanut varieties in Guizhou. Seed, 2020, 39(11): 55-58 (in Chinese with English abstract).
[15] Xie K, Bai J, Yang Y Y, Duan N B, Ma Y M, Guo T, Yao F Y, Ding H F. The RNA-seq transcriptome analysis identified genes related to rice seed dormancy. Biol Plant, 2019, 63: 308-313.
doi: 10.32615/bp.2019.035
[16] Han Z, Wang B, Tian L, Wang S, Zhang J, Guo S, Zhang H, Xu L, Chen Y. Comprehensive dynamic transcriptome analysis at two seed germination stages in maize (Zea mays L.). Physiol Plant, 2020, 168: 205-217.
[17] Li X, Qiao H, Wang Z, Han B, Xing Y, Yang Y. A Comparative transcriptome analysis reveals new insights into pre-harvest sprouting (PHS) in wheat. Res Square, 2021, DOI: 10.21203/rs.3.rs-910461/v1.
doi: 10.21203/rs.3.rs-910461/v1
[18] Park M, Choi W, Shin S Y, Moon H, Lee D, Gho Y S, Jung K H, Jeon J S, Shin C. Identification of genes and microRNAs affecting pre-harvest sprouting in rice(Oryza sativa L.)by transcriptome and small RNAome analyses. Front Plant Sci, 2021, 12: 727302.
doi: 10.3389/fpls.2021.727302
[19] Xu P, Tang G, Cui W, Chen G, Ma C L, Zhu J, Li P, Shan L, Liu Z, Wan S. Transcriptional differences in peanut (Arachis hypogaea L.)seeds at the freshly harvested, after-ripening and newly germinated seed stages: insights into the regulatory networks of seed dormancy release and germination. PLoS One, 2020, 15: e0219413.
[20] Zhang J, Qian J Y, Bian Y H, Liu X, Wang C L. Transcriptome and metabolite conjoint analysis reveals the seed dormancy release process in Callery Pear. Int J Mol Sci, 2022, 23: 2186.
doi: 10.3390/ijms23042186
[21] Tai L, Wang H J, Xu X J, Sun W H, Ju L, Liu W T, Li W Q, Sun J, Chen K M. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. J Exp Bot, 2021, 72: 2857-2876.
doi: 10.1093/jxb/erab024 pmid: 33471899
[22] Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballen-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet, 2019, 51: 877-884.
doi: 10.1038/s41588-019-0405-z pmid: 31043755
[23] Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics, 2006, 7: 191.
pmid: 16597342
[24] Liu D, Yu H L, Li F L, Guo H H. An analysis of dormancy and dormancy release in Taxus chinensis var. mairei seeds. Seed Sci Technol, 2011, 39: 29-43.
doi: 10.15258/sst
[25] Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe W J. Molecular mechanisms of seed dormancy. Plant Cell Environ, 2012, 35: 1769-1786.
doi: 10.1111/pce.2012.35.issue-10
[26] Ali-Rachedi S, Bouinot D, Wagner M H, Bonnet M, Sotta B, Grappin P, Jullien M. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta, 2004, 219: 479-488.
doi: 10.1007/s00425-004-1251-4 pmid: 15060827
[27] Cadman C S, Toorop P E, Hilhorst H W, Finch-Savage W E. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J, 2006, 46: 805-822.
doi: 10.1111/tpj.2006.46.issue-5
[28] Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol, 2006, 171: 501-523.
doi: 10.1111/j.1469-8137.2006.01787.x pmid: 16866955
[29] 崔维佩, 唐桂英, 徐平丽, 李鹏祥, 朱洁琼, 单雷. 花生种子萌发过程中内源激素含量的变化. 中国油料作物学报, 2020, 42: 869-877.
Cui W P, Tang G Y, Xu P L, Li P X, Zhu J Q, Shan L. Changes of endogenous hormone content in peanut seeds during germination. Chin J Oil Crop Sci, 2020, 42: 869-877. (in Chinese with English abstract)
[30] Grappin P, Bouinot D, Sotta B, Miginiac E, Jullien M. Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta, 2000, 210: 279-285.
doi: 10.1007/PL00008135 pmid: 10664134
[31] Shu K, Liu X D, Xie Q, He Z H. Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant, 2016, 9: 34-45.
doi: S1674-2052(15)00356-1 pmid: 26343970
[32] Yang B, Cheng J, Wang J, Cheng Y, He Y, Zhang H, Wang Z. Physiological characteristics of cold stratification on seed dormancy release in rice. Plant Growth Regul, 2019, 89: 131-141.
doi: 10.1007/s10725-019-00516-z
[33] Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J, 2001, 25: 295-303.
pmid: 11208021
[34] Lee S, Cheng H, King K E, Wang W, He Y, Hussain A, Lo J, Harberd N P, Peng J. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev, 2002, 16: 646-658.
doi: 10.1101/gad.969002
[35] Ramaih S, Guedira M, Paulsen G M. Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. Funct Plant Biol, 2003, 30: 939-945.
doi: 10.1071/FP03113 pmid: 32689078
[36] Bai B, Novak O, Ljung K, Hanson J, Bentsink L. Combined transcriptome and translatome analyses reveal a role for tryptophan-dependent auxin biosynthesis in the control of DOG1-dependent seed dormancy. New Phytol, 2018, 217: 1077-1085.
doi: 10.1111/nph.14885 pmid: 29139127
[37] Pellizzaro A, Neveu M, Lalanne D, Vu B L, Kanno Y, Seo M, Leprince O, Buitink J. A role for auxin signaling in the acquisition of longevity during seed maturation. New Phytol, 2020, 225: 284-296.
doi: 10.1111/nph.16150 pmid: 31461534
[38] Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E. Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol, 2009, 50: 1786-1800.
doi: 10.1093/pcp/pcp121 pmid: 19713425
[39] Ayele B T, Ozga J A, Wickramarathna A D, Reinecke D M. Gibberellin metabolism and transport during germination and young seedling growth of pea (Pisum sativum L.). J Plant Growth Regul, 2011, 31: 235-252.
doi: 10.1007/s00344-011-9234-8
[40] Liu A, Gao F, Kanno Y, Jordan M C, Kamiya Y, Seo M, Ayele B T. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. PLoS One, 2013, 8: e56570.
doi: 10.1371/journal.pone.0056570
[41] Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie A R, Galili G. Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol, 2006, 142: 839-854.
doi: 10.1104/pp.106.086694
[42] Rosental L, Nonogaki H, Fait A. Activation and regulation of primary metabolism during seed germination. Seed Sci Res, 2014, 24: 1-15.
doi: 10.1017/S0960258513000391
[43] Pandey M K, Pandey A K, Kumar R, Nwosu C V, Guo B, Wright G C, Bhat R S, Chen X, Bera S K, Yuan M, Jiang H, Faye I, Radhakrishnan T, Wang X, Liang X, Liao B, Zhang X, Varshney R K, Zhuang W. Translational genomics for achieving higher genetic gains in groundnut. Theor Appl Genet, 2020, 133: 1679-1702.
doi: 10.1007/s00122-020-03592-2 pmid: 32328677
[44] Ullrich S E. Barley: Production, Improvement, and Uses. Chichester: John Wiley & Sons, 2010. p 137.
[45] Bryan A, Joseph L, Bennett J A, Jacobson H I, Andersen T T. Design and synthesis of biologically active peptides: a ‘tail’ of amino acids can modulate activity of synthetic cyclic peptides. Peptides, 2011, 32: 2504-2510.
doi: 10.1016/j.peptides.2011.10.007
[46] Sato K, Yamane M, Yamaji N, Kanamori H, Tagiri A, Schwerdt J G, Fincher G B, Matsumoto T, Takeda K, Komatsuda T. Alanine aminotransferase controls seed dormancy in barley. Nat Commun, 2016, 7: 11625.
doi: 10.1038/ncomms11625 pmid: 27188711
[47] McClung C R. Plant circadian rhythms. Plant Cell, 2006, 18: 792-803.
doi: 10.1105/tpc.106.040980 pmid: 16595397
[48] Penfield S, Hall A. A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell, 2009, 21: 1722-1732.
doi: 10.1105/tpc.108.064022 pmid: 19542296
[1] 胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立[J]. 作物学报, 2023, 49(9): 2498-2504.
[2] 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432.
[3] 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384.
[4] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
[5] 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104.
[6] 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170.
[7] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[8] 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894.
[9] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[10] 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798.
[11] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[12] 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230.
[13] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[14] 纪红昌, 胡畅丽, 邱晓臣, 吴兰荣, 李晶晶, 李鑫, 李晓婷, 刘雨函, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁品质性状高通量表型分析模型的构建[J]. 作物学报, 2023, 49(3): 869-876.
[15] 刘俊华, 吴正锋, 党彦学, 于天一, 郑永美, 万书波, 王才斌, 李林. 密度对不同株型花生单粒精播群体质量及产量的影响[J]. 作物学报, 2023, 49(2): 459-471.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[9] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[10] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .