欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2462-2471.doi: 10.3724/SP.J.1006.2023.24236

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

马铃薯StCYP85A3促进萌芽及根系伸长的功能解析

刘洁1,2(), 蔡诚诚1,2, 刘石锋1,2, 邓孟胜3, 王雪枫2, 温和1,2, 李罗品1,2, 严奉君1,2, 王西瑶1,2,*()   

  1. 1四川农业大学西南作物基因资源发掘与利用国家重点实验室, 四川成都 611130
    2四川农业大学农学院马铃薯研究与开发中心, 四川成都 611130
    3四川轻化工大学生物工程学院, 四川宜宾 644000
  • 收稿日期:2022-10-19 接受日期:2023-02-21 出版日期:2023-09-12 网络出版日期:2023-03-10
  • 通讯作者: *王西瑶, E-mail: 1357664714@qq.com
  • 作者简介:刘洁, E-mail: 1196438854@qq.com
  • 基金资助:
    马铃薯种薯活力调控的分子机制与应用研究项目(SKL-ZY202203);国家现代农业技术体系四川薯类创新团队项目(sccxtd- 2023-09)

Function analysis of potato StCYP85A3 in promoting germination and root elongation

LIU Jie1,2(), CAI Cheng-Cheng1,2, LIU Shi-Feng1,2, DENG Meng-Sheng3, WANG Xue-Feng2, WEN He1,2, LI Luo-Pin1,2, YAN Feng-Jun1,2, WANG Xi-Yao1,2,*()   

  1. 1State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2Potato Research and Development Center, College of Agriculture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    3College of Biological Engineering, Sichuan University of Light Chemical Industry, Yibin 644000, Sichuan, China
  • Received:2022-10-19 Accepted:2023-02-21 Published:2023-09-12 Published online:2023-03-10
  • Supported by:
    Molecular Mechanism and Application of Seed Potato Vigor Regulation(SKL-ZY202203);Sichuan potato Innovation Team Project of National Modern Agricultural Industry Technology System(sccxtd- 2023-09)

摘要:

油菜素内酯(BR)是一类植物甾醇类激素, 对植物生长发育及胁迫应答具有显著的调控作用, 马铃薯中StCYP85A3作为BR合成酶的编码基因, 功能仍待进一步探究。本研究从‘川芋10号’马铃薯中克隆出该基因, 生物信息学分析表明该蛋白具有催化BR合成的典型亲氧结合域, 属于CYP85As家族成员。通过组织表达分析发现该基因在块茎芽眼及根中表达量最高, 且芽眼中的表达量随着储藏时间的延长而增加, 在块茎芽眼休眠解除时表达迅速升高。同时发现外源BR可诱导马铃薯芽眼及根中StCYP85A3表达量升高, 从而显著促进了种薯萌芽及幼苗根的伸长。通过在拟南芥野生型及cyp85a2突变体中过表达StCYP85A3发现, 过表达株系种子萌发及根系伸长都早于野生型, 同时回补株系弥补了突变体种子萌发、植株根系生长迟缓的缺陷。此外, 外源BR对过表达株系种子萌发、根系伸长无显著促进作用, 但显著促进了野生型、突变体及回补株系种子萌发、根系伸长。上述马铃薯及拟南芥试验结果表明, StCYP85A3具有促进萌芽及根系伸长的功能。

关键词: 马铃薯, StCYP85A3, BR合成酶, 根系, 萌芽

Abstract:

Brassinolide (BR), a kind of phytosterol hormone, plays the significant role in regulating plant growth and development and stress response. The function of StCYP85A3 as the encoding gene of BR synthease in potato remains to be further explored. In this study, the gene was cloned from potato ‘Chuanyu 10’. Bioinformatics analysis showed that this protein had a typical aerobic binding domain for catalyzing BR synthesis and belonged to the CYP85As family. Tissue expression analysis indicated that the relative expression level of this gene was the highest in the bud eye of the tuber and the root, and the expression amount in the bud eye increased with the extension of storage time, and the expression increased rapidly when the dormancy of the tuber bud eye was released. At the same time, the exogenous BR could induce the relative expression level of StCYP85A3 in potato bud eye and root, which significantly promoted the germination of seed potato and the elongation of seedling root. The overexpression of StCYP85A3 in Arabidopsis wild-type and mutant cyp85a2 demonstrated that the seed germination and root elongation of the overexpression strains were earlier than wild type, and the defects of mutant seed germination and plant root growth retardation were remedied by supplementing strains. In addition, exogenous BR did not significantly promote seed germination and root elongation of over expressed strains, but significantly promoted seed germination and root elongation of wild type, mutant, and complementary strains. The above potato and Arabidopsis thaliana experiments showed that StCYP85A3 had the function of promoting germination and root elongation.

Key words: potato, StCYP85A3, BR synthetase, root system, germination

表1

本研究中所用的引物"

基因Gene name 编号Gene ID 引物Primer sequence (5°-3°)
EF1αL Soltu.DM.06G005580 F: CTTGTACACCACGCTAAGGAG
R: GTCAATGCAAACCATTCCTTG
qCYP85A3 Soltu.DM.02G009130.1 F: CCACATACTTGGTTGCCCTAC
R: TGCTCCTCTAATGTGCTTGTG
CYP85A3 Soltu.DM.02G009130.1 F: ATGGCCATTTTCTTGATTGTTTT
R: CTAGTAAGTTGAAACCTTAATC

图1

亚细胞定位预测、蛋白序列保守性Logo图、进化树分析 A: 亚细胞定位预测; B: 蛋白序列保守性Logo图; C: 进化树分析; D: 基因结构分析。蛋白序列保守型Logo图, 用来分析和展示序列保守性, 图中字母高度与该位置的相应碱基或氨基酸残基的出现频率决定, 以bit为单位, 每个位置字母由大到小排列, 可从顶端字母识别保守序列。"

表2

StCYP85A3启动子重要顺式作用元件"

调控元件
Cis-element
核心序列
Core sequence
元件功能描述
Functional description of cis-element
位置
Position
ABRE CACGTG ABA响应元件
Cis-acting element involved in the abscisic acid responsiveness
-6, -574
ARE AAACCA 顺式作用调节元件对无氧诱导至关重要
Cis-acting regulatory element essential for the anaerobic induction
-1467
TGA-element AACGAC 生长素响应元件
Auxin-responsive element
-205, -438
Box4 ATTAAT 参与光响应的保守DNA模块的一部分
Part of a conserved DNA module involved in light responsiveness
-12, -112, -818, -1082, -1442
GT1-motif GGTTAA 光响应元件
Cis-acting element for light responsive
-91
G-box TACGTG 光响应元件
Cis-acting element for light responsive
-6, -574
CAT-box GCCACT 与分生组织表达相关的顺式作用调节元件
Cis-acting regulatory element related to meristem expression
-245

图2

CYP85A3组织表达分析及C10贮藏期芽眼处CYP85A3表达量分析 A: CYP85A3组织表达量; B: C10贮藏期CYP85A3表达量分析。误差线代表标准差, 统计分析采用Student’s t检验, 不同小写字母表示组织间及贮藏后的显著差异(P < 0.05)。"

图3

BR外源施用对马铃薯块茎萌芽及根系生长的影响 A: 不同浓度BR处理对马铃薯块茎发芽率的影响; B: 不同浓度BR处理对马铃薯幼苗根长的影响; C: BR处理对马铃薯芽眼中StCYP85A3表达量的影响; D: BR处理对马铃薯幼苗根中StCYP85A3表达量的影响。误差线代表标准差, 统计分析采用Student’s t检验, 不同小写字母表示显著差异(P < 0.05)。"

图4

过表达、突变体及回补发芽率 A: MS培养基上不同株系拟南芥萌芽率统计; B: 含有50 nmol L-1 BR的MS培养基上不同株系拟南芥萌芽率统计; C: MS培养基上不同株系拟南芥种植3 d后萌芽情况; D: 含有50 nmol L-1 BR的MS培养基上不同株系拟南芥种植60 h的萌芽情况。误差线代表标准差, A, B两图60 h数据共同进行显著性分析, 统计分析采用Student’s t检验, 不同小写字母表示不同株系发芽的显著差异(P < 0.05)。"

图5

过表达、突变体及回补根长 A: MS及含50 nmol L-1 BR MS培养基上不同株系拟南芥根长统计; B: MS培养基上不同株系拟南芥根长表型; C: 50 nmol L-1 BR处理各株系拟南芥根中StCYP85A3表达量随时间变化; D: 50 nmol L-1 BR处理各株系拟南芥发芽10 d后根长表型。误差线代表标准差, 统计分析采用Student’s t检验, 不同小写字母表示根长及表达量的显著差异(P < 0.05)。"

[1] 荐红举, 张梅花, 尚丽娜, 王季春, 胡柏耿, Vadim K, 吕典秋. 利用WGCNA筛选马铃薯块茎发育候选基因. 作物学报, 2022, 48: 1658-1668.
doi: 10.3724/SP.J.1006.2022.14115
Jian H J, Zhang M H, Shang L N, Wang J C, Hu B G, Vadim K, Lyu D Q. Screening candidate genes involved in potato tuber development using WGCNA. Acta Agron Sin, 2022, 48: 1658-1668. (in Chinese with English abstract)
[2] 何蒲明, 狄书非. 生态安全与粮食安全并重导向下马铃薯主粮化发展路径研究. 农业经济, 2019, (6): 3.
He P M, Di S F. Research on the development path of potato as staple food with equal emphasis on ecological security and food security. Agric Econ, 2019, (6): 3. (in Chinese)
[3] Li L, Deng M S, Lyu C, Zhang J, Peng J, Cai C C, Yang S M, Lu L M, Ni S, Liu F. Quantitative phosphoproteomics analysis reveals that protein modification and sugar metabolism contribute to sprouting in potato after BR treatment. Food Chem, 2020, 325: 126-139.
[4] Wang L, Liu J, Shen Y T, Pu R L, Hou M Y, Wei Q, Zhang X Z, Li G S, Ren H Y, Wu G. Brassinosteroids synthesised by CYP85A/A1 but not CYP85A2 function via a BRI1-like receptor but not via BRI1 in Picea abies. J Exp Bot, 2020, 5: 5.
[5] Katsumata T, Hasegawa A, Fujiwara T, Komatsu T, Kawaide H. Arabidopsis CYP85A2 catalyzes lactonization reactions in the biosynthesis of 2-deoxy-7-oxalactone. Brassinosteroids. Biosci Biotechnol Biochem, 2008, 72: 210-217.
[6] Pereze V H, Nidia S L, Vielle C J P. CYP85A1 is required for the initiation of female gametogenesis in Arabidopsis thaliana. Plant Signal Behav, 2011, 6: 321-326.
doi: 10.4161/psb.6.3.13206
[7] Jin Y L, Tang R J, Wang H H, Jiang C M, Bao Y, Yang Y, Liang M X, Sun Z C, Kong F J, Li B, Zhang H X. Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees. Plant Biotechnol J, 2017, 15: 29-32.
[8] Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop G J, Yamaguchi S. The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J Biol Chem, 2005, 280: 73-79.
doi: 10.1074/jbc.M409795200
[9] 邹雪, 丁凡, 余金龙, 彭洁, 邓孟胜, 王宇, 刘丽芳, 余韩开宗, 陈年伟, 王西瑶. 挥发性抑芽物质对马铃薯块茎萌芽的影响及其作用机制. 作物学报, 2019, 45: 235-247.
doi: 10.3724/SP.J.1006.2019.84063
Zou X, Ding F, Yu J L, Peng J, Deng M S, Wang Y, Liu L F, Yu-Han K Z, Chen N W, Wang X Y. Suppression mechanism of volatile sprout-inhibitors on potato tuber sprouting. Acta Agron Sin, 2019, 45: 235-247. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84063
[10] 邹雪, 邓孟胜, 李立芹, 余金龙, 丁凡, 黄雪丽, 彭洁, 帅禹, 蔡诚诚, 王西瑶. 油菜素内酯合成和信号转导基因在马铃薯块茎贮藏期间的表达变化及对萌芽的影响. 作物学报, 2017, 43: 811-820.
Zou X, Deng M S, Li L Q, Yu J L, Ding F, Huang X L, Peng J, Shuai Y, Cai C C, Wang X Y. Expression changes of genes related to brassinosteroid biosynthesis and signal transduction during potato storage and its effect on tuber sprouting. Acta Agron Sin, 2017, 43: 811-820. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00811
[11] 马琛. 基于高通量测序半夏变异珠芽转录组研究. 浙江理工大学硕士学位论文, 浙江杭州, 2018.
Ma C. Based on High-throughput Sequencing of Pinellia ternate Variant Bulbil Transcriptome. MS Thesis of Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China, 2018. (in Chinese with English abstract)
[12] Chen J, Liu S S, Kohler A, Yan B, Luo H M, Chen M X, Guo S X. iTRAQ and RNA-Seq analyses provide new insights into regulation mechanism of symbiotic germination of dendrobium officinale seeds (Orchidaceae). J Proteome Res, 2017, 16: 174-187.
[13] 张松, 黄波, 夏学峰, 孙之荣. 蛋白质亚细胞定位的生物信息学研究. 生物化学与生物物理进展, 2007, 34: 573-579.
Zhang S, Huang B, Xia X F, Sun Z R. Bioinformatics research in subcellular localization of proteins. Prog Biochem Biophys, 2007, 34: 573-579. (in Chinese with English abstract)
[14] 范敏, 金黎平, 黄三文, 谢开云, 刘庆昌, 屈冬玉. 马铃薯SoFtsH基因全长cDNA克隆与在干旱条件下表达研究. 作物学报, 2007, 33: 1748-1754.
Fan M, Jin L P, Huang S W, Xie K Y, Liu C Q, Qu D Y. Cloning and expression of SoFtsH gene in potato under drought. Acta Agron Sin, 2007, 33: 1748-1754 (in Chinese with English abstract).
[15] 李素云, 李佳, 王莉莉, 钟嘉宏, 陈青, 熊文芳, 曾小微, 贺修胜. STGC3基因启动子生物信息学分析及载体构建. 中南医学科学杂志, 2017, 45(1): 48-53.
Li S Y, Li J, Wang L L, Zhong J H, Chen Q, Xiong W F, Zeng X W, He X S. Bioinformatics analysis and vector construction of STGC3 gene promoter. Med Sci J Central South China, 2017, 45(1): 48-53. (in Chinese with English abstract)
[16] 王怡, 于月华, 杨成元, 陈全家, 倪志勇. GbTCP10基因植物表达载体的构建及拟南芥转化. 分子植物育种, 2020, 18: 144-149.
Wang Y, Yu Y H, Yang C Y, Chen Q J, Ni Z Y. Construction of plant expression vector of GbTCP10 gene and transformation of Arabidopsis, Mol Plant Breed, 2020, 18: 144-149. (in Chinese with English abstract)
[17] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能. 作物学报, 2022, 48: 63-75.
doi: 10.3724/SP.J.1006.2022.01100
Meng Y, Xing L L, Cao X H, Guo G Y, Chai J F, Bei C L. Cloning of wheat Ta4CL1 gene and its function in promoting the growth and lignin deposition of transgenic Arabidopsis thaliana. Acta Agron Sin, 2022, 48: 63-75. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.01100
[18] 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna. C02SWEET15通过光周期途径正向调控油菜开花时间. 作物学报, 2022, 48: 1938-1947.
doi: 10.3724/SP.J.1006.2022.14155
Li S T, Xu Y F, Chang W, Liu Y J, Gu Y, Zhu H, Li J N, Lu K. Bna.C02SWEET15 positively regulates the flowering time of rapeseed through photoperiodic pathway. Acta Agron Sin, 2022, 48: 1938-1947. (in Chinese with English abstract)
[19] 邸雪妮, 邓孟胜, 邹雪, 李雅楠, 倪苏, 王西瑶. BR相关基因在低温调控马铃薯萌芽中的响应分析. 分子植物育种, 2018, 16: 4143-4150.
Di X N, Deng M S, Zou X, Li Y A, Ni S, Wang X Y. Response analysis of BR related genes in low temperature regulation of potato germination. Mol Plant Breed, 2018, 16: 4143-4150. (in Chinese with English abstract)
[20] Cai Z Y, Liu J J, Wang H J, Yang C J, Chen Y X, Li Y C, Pan S J, Dong R, Tang G L, Barajas L J D, Fujii H, Wang X L. GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proc Natl Acad Sci USA, 2014, 11: 11-16.
doi: 10.1073/pnas.11.1.11
[21] Wang L, Liu J, Shen Y T, Pu R L, Hou M Y, Wei Q, Zhang X Z, Li G S, Ren H Y, Wu G. Brassinosteroids synthesised by CYP85A/A1 but not CYP85A2 function via a BRI1-like receptor but not via BRI1 in Picea abies. J Exp Bot, 2021, 72: 1748-1763.
doi: 10.1093/jxb/eraa557 pmid: 33247718
[22] 唐晓, 邓孟胜, 邹雪, 祝渊智, 王西瑶. 马铃薯StDWF1基因克隆及表达分析. 浙江农业学报, 2018, 30: 909-917.
doi: 10.3969/j.issn.1004-1524.2018.06.04
Tang X, Deng M S, Zou X, Zhu Y Z, Wang X Y. Cloning and expression analysis of StDWF1 gene in potato. Acta Agric Zhejiangensis, 2018, 30: 909-917. (in Chinese with English abstract)
[23] Zhao W Y, Bai Q Z, Zhao B L, Wu Q, Wang C Q, Liu Y, Yang T Q, Liu Y, He H, Du S S. The geometry of the compound leaf plays a significant role in the leaf movement of Medicago truncatula modulated by mtdwarf4a. New Phytol, 2021, 230: 475-484.
doi: 10.1111/nph.v230.2
[24] Wang L, Wang Z, Xu Y Y, Joo S H, Kim S K, Xue Z, Xu Z H, Wang Z Y, Chong K. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J, 2010, 57: 498-510.
doi: 10.1111/tpj.2009.57.issue-3
[1] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[2] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[3] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[4] 赵喜娟, 刘圣宣, 刘腾飞, 郑洁, 杜鹃, 胡新喜, 宋波涛, 何长征. 转录组分析揭示光诱导转录因子StMYB113调控马铃薯块茎表皮叶绿素合成[J]. 作物学报, 2023, 49(7): 1860-1870.
[5] 索海翠, 刘计涛, 王丽, 李成晨, 单建伟, 李小波. 马铃薯锌转运蛋白基因StZIP12调控锌吸收功能[J]. 作物学报, 2023, 49(7): 1994-2001.
[6] 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制[J]. 作物学报, 2023, 49(6): 1630-1642.
[7] 王玉珑, 于爱忠, 吕汉强, 吕奕彤, 苏向向, 王鹏飞, 柴健. 绿洲灌区麦后复种绿肥并还田对翌年玉米根系性状及水分利用效率的影响[J]. 作物学报, 2023, 49(5): 1350-1362.
[8] 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995.
[9] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征[J]. 作物学报, 2023, 49(4): 1039-1051.
[10] 张卫娜, 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩. StEFR1正调控马铃薯对晚疫病的抗性[J]. 作物学报, 2023, 49(4): 996-1005.
[11] 王硕, 鲍天旸, 刘建刚, 段绍光, 简银巧, 李广存, 金黎平, 徐建飞. 基于RGB颜色空间评价马铃薯块茎绿化程度[J]. 作物学报, 2023, 49(4): 1102-1110.
[12] 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794.
[13] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820.
[14] 赵富贵, 张龙, 李丹, 韩固, 王楠, 侯贤清. 不同气候年型下耕作覆盖对宁南旱区土壤水热及马铃薯产量的影响[J]. 作物学报, 2023, 49(10): 2806-2819.
[15] 杜鹃, 彭晓君, 侯娟, 刘腾飞, 刘增, 宋波涛. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023, 49(10): 2643-2653.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[6] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[7] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[8] 王立新;李云伏;常利芳;黄 岚;李宏博;葛玲玲;刘丽华;姚 骥;赵昌平;姚 骥;赵昌平. 建立小麦品种DNA指纹的方法研究[J]. 作物学报, 2007, 33(10): 1738 -1740 .
[9] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .
[10] 杨燕;赵献林;张勇;陈新民;何中虎;于卓;夏兰琴. 四个小麦抗穗发芽分子抗性标记有效性的验证与评价[J]. 作物学报, 2008, 34(01): 17 -24 .