欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2472-2484.doi: 10.3724/SP.J.1006.2023.24244

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究

玉泉馨1(), 杨宗桃1, 张海1, 程光远1, 周营栓1, 焦文迪1, 曾康1, 罗廷绪1, 黄国强1, 张木清2,*(), 徐景升1,*()   

  1. 1福建农林大学 / 农业农村部福建甘蔗生物学与遗传育种重点实验室 / 国家甘蔗工程技术研究中心 / 教育部作物遗传育种与综合利用重点实验室, 福建福州 350002
    2广西大学广西甘蔗生物学重点实验室, 广西南宁 530004
  • 收稿日期:2022-10-28 接受日期:2023-02-10 出版日期:2023-09-12 网络出版日期:2023-02-28
  • 通讯作者: *徐景升, E-mail: xujingsheng@126.com; 张木清, E-mail: zmuqing@163.com
  • 作者简介:玉泉馨, E-mail: YuQuanxin_YQX@outlook.com
  • 基金资助:
    国家自然科学基金项目(31971991);福建农林大学科技创新基金项目(CXZX2019132G);广西甘蔗生物学重点实验室开放课题(GXKLSCB-202003)

Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO

YU Quan-Xin1(), YANG Zong-Tao1, ZHANG Hai1, CHENG Guang-Yuan1, ZHOU Ying-Shuan1, JIAO Wen-Di1, ZENG Kang1, LUO Ting-Xu1, HUANG Guo-Qiang1, ZHANG Mu-Qing2,*(), XU Jing-Sheng1,*()   

  1. 1Fujian Agriculture and Forestry University / Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs / National Engineering Research Center for Sugarcane / Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, Fujian, China
    2Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China
  • Received:2022-10-28 Accepted:2023-02-10 Published:2023-09-12 Published online:2023-02-28
  • Supported by:
    National Natural Science Foundation of China(31971991);Science and Technology Innovation Project of Fujian Agriculture and Forestry University(CXZX2019132G);Open Project Program of Guangxi Key Laboratory of Sugarcane Biology(GXKLSCB-202003)

摘要:

植物囊泡膜蛋白相关蛋白PVA12 (plant vesicle-associated membrane protein (VAMP)-associated proteins homolog 12)属于VAP27家族蛋白, 在细胞中介导内质网囊泡运输以及膜融合。甘蔗(Saccharum spp. hybrid) PVA12应答甘蔗花叶病毒(Sugarcane mosaic virus, SCMV)侵染尚未见报道。本研究从栽培种新台糖22号(ROC22)中克隆了PVA12基因, 命名为ScPVA12。该基因开放读码框(open reading frame, ORF)的长度为735 bp, 其编码长度为244 aa的蛋白。生物信息学分析表明, ScPVA12是一种不稳定的亲水性脂溶蛋白, C端具有跨膜结构域; 二级结构中无规则卷曲占比最高; 进化树分析表明, 该蛋白在单子叶和双子叶植物中存在明显分化。酵母双杂交(yeast two-hybrid, Y2H)和双分子荧光互补(bimolecular fluorescence complementation, BiFC)试验表明, ScPVA12与SCMV-P3N-PIPO蛋白互作。亚细胞定位试验表明ScPVA12定位于内质网。共定位试验表明ScPVA12与SCMV-P3N-PIPO共定位于内质网。实时荧光定量PCR分析发现, ScPVA12基因在甘蔗各组织中均有表达, 在第8节间中的表达量最低, 在正七叶中的表达量最高; SCMV侵染对ScPVA12基因表达影响显著, 在SCMV胁迫下ScPVA12基因先下调表达, 后期恢复正常水平。

关键词: PVA12, 甘蔗花叶病毒, P3N-PIPO, 蛋白互作

Abstract:

PVA12 (plant vesicle-associated membrane protein (VAMP)-associated proteins homolog 12) is a member of the VAP27 family of proteins that mediate endoplasmic reticulum (ER) vesicle transport and membrane fusion in cells. Sugarcane (Saccharum spp. hybrid) PVA12 responding to Sugarcane mosaic virus (SCMV) infection has not been reported. In the present study, the coding gene of PVA12 was cloned from sugarcane cultivar ROC22 and designated as ScPVA12. The open reading frame (ORF) of ScPVA12 was 735 bp in length, which encoded a protein with 244 amino acids. Bioinformatics analysis showed that ScPVA12 was an unstable hydrophilic liposoluble protein with a transmembrane at the C-terminal domain. The ratio of the random coil ranked the highest in the secondary structure. Phylogenetic tree analysis revealed that the ScPVA12 was differentiated in monocotyledons and dicotyledons. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that ScPVA12 interacted with SCMV-P3N-PIPO. Subcellular localization experiments indicated that ScPVA12 was localized in the ER. Co-localization experiments demonstrated that ScPVA12 and SCMV-P3N-PIPO co-localized in the ER. Real-time quantitative PCR analysis showed that ScPVA12 gene was expressed in all sugarcane tissues, with the lowest expression level in the eighth internode and the highest expression level in the 7th leaves. The relative expression level of ScPVA12 gene was significantly affected under the stress of SCMV. ScPVA12 was down-regulated upon SCMV infection and then recovered to the regular level compared with the control.

Key words: PVA12, Sugarcane mosaic virus, P3N-PIPO, protein interaction

表1

本研究使用的引物"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
策略
Strategy
ScPVA12-F ATGGCCACCCCCGCCCCTGCCA 克隆
ScPVA12-R TGACTTCATCAGATAGCCCAGGATG Gene cloning
pPPR3-ScPVA12-F ATTAACAAGGCCATTACGGCCATGATGGCCACCCCCGCCCCTGCCA 酵母双杂交载体构建
Construction of yeast two-hybrid vector
pPPR3-ScPVA12-R TTGACTAAGGCCGAGGCGGCCGTTATGACTTCATCAGATAGCCCAG
221-ScPVA12-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGATGGCCACCCCCGCCCCTGCCA 亚细胞定位及双分子荧光互补载体构建
Construction of yeast subcellular localization and bimolecular fluorescence complementation vector
221-ScPVA12-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTGACTTCATCAGATAGCCCAGGATG
ScPVA12-qF ATGGAAGAGGTCAAGTTGCGAGT 定量PCR
Real-time qPCR
ScPVA12-qR TGAATCCTCCAGCAGGTCCATCTAC
Actin-F CACGGCCACTGGAAGCA 内参基因
Reference gene
Actin-R TCCTCAG GGTTCCTGATGCC
eEF-1α-F TTTCACACTTGGAGTGAAGCAGAT 内参基因
Reference gene
eEF-1α-R GACTTCCTTCACAATCTCATCATAA
SCMV-CP-F TACAGAGAGACACACAGCTG SCMV检测
Detection of SCMV
SCMV-CP-R ACGCTACACCAGAAGACACT

图1

ScPVA12蛋白结构域分析 A: ScPVA12与AtVAP27-3氨基酸比对结果(红色标记为MSD, 黄色标记为CCD, 蓝色标记为TMD)。B: ScPVA12与AtVAP27-3结构域示意图(标尺为250个氨基酸残基)。"

图2

甘蔗ScPVA12与其他单子叶植物PVA12蛋白的氨基酸序列比对 高粱: SbPVA12 (XP_002445075.1); 南荻: MlPVA12 (CAD6266147.1); 玉米: ZmPVA12 (NP_001130606.1); 黍: PmPVA12(RLN03983.1); 谷子: SiPVA12 (XP_004972806.1); 二穗短柄草: BdPVA12 (XP_003573476.1); 野生二粒小麦: TdPVA12 (XP_037458000.1)。"

图3

ScPVA12与其他物种PVA12蛋白的系统进化树分析 群I为单子叶植物群, 其中亚群I-1为C4植物, 亚群群I-2为C3植物; 群II为双子叶植物群。"

图4

ScPVA12-YFP在本氏烟表皮细胞中的定位 A: ScPVA12-YFP亚细胞定位; B: ScPVA12-YFP和SCMV-P3N-PIPO-CFP亚细胞共定位。将3种荧光蛋白信号进行两两组合并使用伪彩进行观察共定位情况, 组合分别为ScPVA12-YFP (绿色伪彩)+HDEL-RFP (红色)、ScPVA12-YFP (红色伪彩)+P3N-PIPO-CFP (绿色伪彩)以及HDEL-RFP (红色)+P3N-PIPO-CFP (绿色伪彩)。标尺为25 μm。白色箭头标记共定位位置。"

图5

Y2H检测ScPVA12与SCMV-P3N-PIPO的互作 pTSU2-APP/pNubG-Fe65为阳性对照, pPR3-N/pNubG-Fe65为阴性对照。DDO+X-Gal: 添加了5-溴-4-氯-3-吲哚-β-D-半乳糖苷的缺少亮氨酸(Leu)和色氨酸(Trp)的酵母合成限定基本培养基; QDO+X-Gal: 添加了X-Gal的缺少亮氨酸(Leu)、色氨酸(Trp)、组氨酸(His)和腺嘌呤(Ade)的酵母合成限定基本培养基。"

图6

BiFC检测ScPVA12与SCMV-P3N-PIPO的互作 A: YN融合于ScPVA12的N末端, YC融合于SCMV-P3N-PIPO的C末端; B: YC融合于ScPVA12的C末端, YN融合于SCMV-P3N-PIPO的N末端。将YN-ScPVA12和P3N-PIPO-YC (A)、YN-P3N-PIPO和ScPVA12-YC (B)分别共注射到本氏烟叶片中进行瞬时表达, 48 h后激光共聚焦观察。标尺为25 μm。白色箭头标记呈点状结构的荧光信号。"

图7

ScPVA12基因在甘蔗不同组织中的表达模式 误差线为每组处理的标准误差(n = 3)。柱上不同的小写字母表示在P < 0.05差异显著。"

图8

ScPVA12基因应答SCMV侵染的表达模式 误差线为每组处理的标准误差(n = 3)。柱上不同的小写字母表示在P < 0.05差异显著。"

[1] 刘晓雪, 王新超. 2017/18榨季中国食糖生产形势分析与2018/19榨季展望. 农业展望, 2018, 14(11): 40-46.
Liu X X, Wang X C. Domestic sugar production situation in 2017/18 crushing season and its prospect for 2018/19 crushing season. Outlook Agric, 2018, 14(11): 40-46. (in Chinese with English abstract)
[2] 王明强, 李文凤, 黄应昆, 王晓燕, 卢文洁, 罗志明. 我国大陆蔗区发生的甘蔗病毒病及防控对策. 中国糖料, 2010, (4): 55-58.
Wang M Q, Li Y P, Huang Y K, Wang X Y, Lu W J, Luo Z M. Occurrence and controlling strategies on sugarcane viral diseases in Chinese mainland. Sugar Crops China, 2010, (4): 55-58. (in Chinese with English abstract)
[3] 刘燕群, 李玉萍, 梁伟红, 宋启道, 秦小立, 叶露. 国外甘蔗产业发展现状. 世界农业, 2015, (8): 147-152.
Liu Y Q, Li Y P, Liang W H, Song Q D, Qin X L, Ye L. Current status and development of the abroad sugarcane industry. World Agric, 2015, (8): 147-152. (in Chinese with English abstract)
[4] 李明, 田洪春, 黄智刚. 我国甘蔗产业发展现状研究. 中国糖料, 2017, 39(1): 67-70.
Li M, Tian H C, Huang Z G. Research on the development status of sugarcane industry in China. Sugar Crops China, 39(1): 67-70. (in Chinese with English abstract)
[5] 翁卓, 黄寒. 中国制糖产业竞争力对比与政策建议—基于对巴西、印度、泰国考察的比较. 甘蔗糖业, 2015, (4): 65-72.
Weng Z, Huang H. Comparative analysis on China’s sugar industry competitiveness: based on the comparison of Brazil, India and Thailand sugar industry. Sugar Cane, 2015, (4): 65-72. (in Chinese with English abstract)
[6] 黄应昆, 李文风, 卢文洁, 罗志明. 云南蔗区甘蔗花叶病流行原因及控制对策. 云南农业大学学报, 2007, 22: 935-938.
Huang Y K, Li W F, Lu W J, Luo Z M. The Causes of sugarcane mosaic disease epidemic in Yunnan sugarcane area and the control strategy. J Yunnan Agric Univ, 2007, 22: 935-938. (in Chinese with English abstract)
[7] 颜梅新, 黄伟华, 邓展云, 韦金菊. 广西甘蔗花叶病SCMV调查初报. 中国糖料, 2012, (1): 50-51.
Yan M X, Huang W H, Deng Z Y, Wei J J. Investigation of Sugarcane mosaic virus infecting sugarcane in Guangxi. Sugar Crops China, 2012, (1): 50-51. (in Chinese with English abstract)
[8] 熊国如, 李增平, 赵婷婷, 蔡文伟, 王俊刚, 王文治, 冯翠莲, 张雨良, 张树珍. 海南蔗区甘蔗病害种类及发生情况. 热带作物学报, 2010, 31: 1588-1595.
Xiong G R, Li Z P, Zhao T T, Cai W W, Wang J G, Wang W Z, Feng C L, Zhang Y L, Zhang S Z. Primary Investigation to Sugarcane on the Diseases in Hainan Province. Chin J Trop Crops, 2010, 31: 1588-1595. (in Chinese with English abstract)
[9] 蒋军喜, 谢艳, 阙海勇. 江西甘蔗花叶病病原的分子鉴定. 植物病理学报, 2009, 39: 203-206.
Jiang J X, Xie Y, Que H Y. Molecular identification of the pathogen of sugarcane mosaic disease in Jiangxi province. Acta Phytopathol Sin, 2009, 39: 203-206 (in Chinese with English abstract).
[10] 梁姗姗, 罗群, 陈如凯, 高三基. 引起甘蔗花叶病的病原分子生物学进展. 植物保护学报, 2017, 44: 363-370.
Liang S S, Luo Q, Chen R K, Gao S J. Advances in researches on molecular biology of viruses causing sugarcane mosaic. Acta Phytophy Sin, 2017, 44: 363-370 (in Chinese with English abstract).
[11] 冯小艳, 沈林波, 王文治, 杨本鹏, 王勤南, 周峰, 王俊刚, 熊国如, 张树珍. 中国甘蔗主要杂交亲本病毒性病害的分子鉴定. 分子植物育种, 2018, 16: 6729-6737.
Feng X Y, Shen L B, Wang W Z, Yang B P, Wang Q N, Zhou F, Wang J G, Xiong G R, Zhang S Z. Molecular identification of viral diseases in major sugarcane hybrid parents in China. Mol Plant Breed, 2018, 16: 6729-6737. (in Chinese with English abstract)
[12] 周国辉, 许东林, 沈万宽. 甘蔗重要病害研究及防治策略. 甘蔗糖业, 2005, (1): 11-16.
Zhou G H, Xu D L, Shen W K. On sugarcane major diseases and their controlling. Sugar Cane, 2005, (1): 11-16. (in Chinese)
[13] 周丰静, 黄诚华, 李正文, 商显坤, 黄伟华, 潘雪红, 魏吉利, 林善海. 广西蔗区甘蔗花叶病病毒种群分析. 南方农业学报, 2015, 46: 609-613.
Zhou F J, Huang C H, Li Z W, Shang X S, Huang W H, Pan X H, Wei J L, Lin S H. Analysis of the virus population causing Sugarcane mosaic virus disease in sugarcane growing area of Guangxi. J Southern Agric, 2015, 46: 609-613. (in Chinese with English abstract)
[14] 杨荣仲, 周会, 肖祎, 吕达, 廖红香, 陈道德, 刘昔辉, 雷敬超, 林垠孚. 甘蔗主要亲本自然条件下抗甘蔗花叶病测定. 中国糖料, 2020, 42(2): 47-52.
Yang R Z, Zhou H, Xiao Y, Lyu D, Liao H X, Chen D D, Liu X H, Lei J C, Lin Y F. Testing on sugarcane mosaic resistance of sugarcane major parents under field conditions. Sugar Crops China, 2020, 42(2): 47-52. (in Chinese with English abstract)
[15] Ling H, Huang N, Wu Q, Su Y, Peng Q, Ahmed W, Gao S, Su W, Que Y, Xu L. Transcriptional insights into the Sugarcane- Sorghum mosaic virus interaction. Trop Plant Biol, 2018, 11: 163-176.
doi: 10.1007/s12042-018-9210-6
[16] Akbar S, Yao W, Yu K, Qin L, Ruan M, Powell C A, Chen B, Zhang M. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus (SCMV). Photosynth Res, 2020, 150: 279-294.
doi: 10.1007/s11120-019-00706-w
[17] Wu L, Zu X, Wang S, Chen Y. Sugarcane mosaic virus: long history but still a threat to industry. Crop Prot, 2012, 42: 74-78.
doi: 10.1016/j.cropro.2012.07.005
[18] 王文治, 马滋蔓, 张树珍, 杨本鹏, 蔡文伟, 顾丽红, 李娇. 甘蔗花叶病的基因工程研究. 生物技术通报, 2009, (1): 22-26.
Wang W Z, Ma Z M, Zhang S Z, Yang B P, Cai W W, Gu L H, Li J. Research on genetic engineering of sugarcane mosaic disease. Biotechnol Bull, 2009, (1): 22-26 (in Chinese with English abstract).
[19] 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究. 作物学报, 2020, 46: 1534-1545.
Zhang H, Liu S X, Yang Z T, Wang T, Cheng G Y, Shang H Y, Xu J S. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein. Acta Agron Sin, 2020, 46: 1534-1545. (in Chinese with English abstract)
[20] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016, 45(2): 135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ (Nat Sci Edn), 2016, 45(2): 135-140. (in Chinese with English abstract)
[21] Yao W, Ruan M, Qin L, Yang C, Chen R, Chen B, Zhang M. Field performance of transgenic sugarcane lines resistant to Sugarcane mosaic virus. Front Plant Sci, 2017, 8: 104.
[22] Filloux D, Fernandez E, Comstock J C, Mollov D, Roumagnac P, Rott P. Viral metagenomic-based screening of sugarcane from Florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of Sugarcane yellow leaf virus. Plant Dis, 2018, 102: 2317-2323.
doi: 10.1094/PDIS-04-18-0581-RE pmid: 30207899
[23] Yahaya A, Dangora D B, Kumar P L, Alegbejo M D, Gregg L, Alabi O J. Prevalence and genome characterization of field isolates of Sugarcane mosaic virus (SCMV) in Nigeria. Plant Dis, 2019, 103: 818-824.
doi: 10.1094/PDIS-08-18-1445-RE pmid: 30806574
[24] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016, 46: 775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016, 46: 775-782 (in Chinese with English abstract)
[25] Xu D L, Park J W, Mirkov T E, Zhou G H. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol, 2008, 153: 1031-1039.
doi: 10.1007/s00705-008-0072-3 pmid: 18438601
[26] 沈林波, 吴楠楠, 冯小艳, 熊国如, 赵婷婷, 王文治, 王俊刚, 张树珍. 52个甘蔗品种在广西受病毒侵染情况. 热带作物学报, 2020, 41(1): 116-126.
Shen L B, Wu N N, Feng X Y, Xiong G R, Zhao T T, Wang W Z, Wang J G, Zhang S Z. Virus infection situation of fifty-two sugarcane varieties in Guangxi. Chin J Trop Crops, 2020, 41(1): 116-126. (in Chinese with English abstract)
[27] Olspert A, Chung B Y, Atkins J F, Carr J P, Firth A E. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. Sci Rep, 2015, 16: 995-1004.
[28] Wei T, Zhang C, Hong J, Xiong R, Kasschau K D, Zhou X, Carrington J C, Wang A. Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog, 2010, 6: e1000962.
[29] Chai M, Wu X, Liu J, Fang Y, Luan Y, Cui X, Zhou X, Wang A, Cheng X. P3N-PIPO interacts with P3 via the shared N-terminal domain to recruit viral replication vesicles for cell-to-cell movement. J Virol, 2020, 94: e01898.
[30] Tilsner J, Linnik O, Louveaux M, Roberts I M, Chapman S N, Oparka K J. Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J Cell Biol, 2013, 201: 981-995.
doi: 10.1083/jcb.201304003 pmid: 23798728
[31] 胡帆, 雷荣, 廖晓兰. 植物病毒在细胞间转运的机理探讨. 生物学杂志, 2013, 30(6): 81-85.
Hu F, Lei R, Liao X L. The mechanism of viral intracellular transportation in plant. J Biol, 2013, 30(6): 81-85. (in Chinese with English abstract)
[32] Hillung J, Elena S F, Cuevas J M. Intra-specific variability and biological relevance of P3N-PIPO protein length in potyviruses. BMC Evol Biol, 2013, 13: 249.
doi: 10.1186/1471-2148-13-249 pmid: 24225158
[33] Lin W, Feng Z, Prasanth K R, Liu Y, Nagy P D. Dynamic interplay between the co-opted Fis1 mitochondrial fission protein and membrane contact site proteins in supporting tombusvirus replication. PLoS Pathog, 2021, 17: e1009423.
[34] 崔晓艳, 陈新, 顾和平, 张红梅, 陈华涛, 袁星星. 马铃薯Y病毒属病毒P3和P3-PiPo蛋白功能研究进展. 微生物学通报, 2012, 39(1): 99-105.
Cui X Y, Chen X, Gu H P, Zhang H M, Chen H T, Yuan X X. The functional characterization of Potyvirus-encoded P3 and P3-PiPo protein. Microb China, 2012, 39(1): 99-105. (in Chinese with English abstract)
[35] Wang A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015, 53: 45-66.
doi: 10.1146/annurev-phyto-080614-120001 pmid: 25938276
[36] Cheng G, Dong M, Xu Q, Peng L, Yang Z, Wei T, Xu J. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N-PIPO. Sci Rep, 2017, 7: 9868.
doi: 10.1038/s41598-017-10497-6
[37] Saravanan R S, Slabaugh E, Singh V R, Lapidus L J, Haas T, Brandizzi F. The targeting of the oxysterol-binding protein ORP3a to the endoplasmic reticulum relies on the plant VAP33 homolog PVA12. Plant J, 2009, 58: 817-830.
doi: 10.1111/tpj.2009.58.issue-5
[38] Laurent F, Labesse G, de Wit P. Molecular cloning and partial characterization of a plant VAP33 homologue with a major sperm protein domain. Biochem Biophys Res Commun, 2000, 270: 286-292.
doi: 10.1006/bbrc.2000.2387
[39] Pérez-Sancho J, Tilsner J, Samuels A L, Botella M A, Bayer E M, Rosado A. Stitching organelles: organization and function of specialized membrane contact sites in plants. Trends Cell Biol, 2016, 26: 705-717.
doi: S0962-8924(16)30050-2 pmid: 27318776
[40] Takáč T, Šamajová O, Vadovič P, Pechan T, Šamaj J. Shot-gun proteomic analysis on roots of Arabidopsis pldα1 mutants suggesting the involvement of PLDα1 in mitochondrial protein import, vesicular trafficking and glucosinolate biosynthesis. Int J Mol Sci, 2018, 20: 82.
doi: 10.3390/ijms20010082
[41] Sutter J U, Campanoni P, Blatt M R, Paneque M. Setting SNAREs in a different wood. Traffic, 2006, 7: 627-638.
doi: 10.1111/j.1600-0854.2006.00414.x
[42] Ichikawa M, Nakai Y, Arima K, Nishiyama S, Hirano T, Sato M H. A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis. Plant Signal Behav, 2015, 10: e990847.
[43] Wang P, Richardson C, Hawkins T J, Sparkes I, Hawes C, Hussey P J. Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development. New Phytol, 2016, 210: 1311-1326.
doi: 10.1111/nph.13857 pmid: 27159525
[44] Loewen C J, Levine T P. A highly conserved binding site in vesicle-associated membrane protein-associated protein (VAP) for the FFAT motif of lipid-binding proteins. J Biol Chem, 2005, 280: 14097-14104.
doi: 10.1074/jbc.M500147200 pmid: 15668246
[45] Murphy S E, Levine T P. VAP, a versatile access point for the endoplasmic reticulum: review and analysis of FFAT-like motifs in the VAPome. Biochim Biophys Acta, 2016, 1861: 952-961.
doi: S1388-1981(16)30030-0 pmid: 26898182
[46] D’Ippólito S, Arias L A, Casalongué C A, Pagnussat G C, Fiol D F. The DC1-domain protein VACUOLELESS GAMETOPHYTES is essential for development of female and male gametophytes in Arabidopsis. Plant J, 2017, 90: 261-275.
doi: 10.1111/tpj.2017.90.issue-2
[47] 金红敏, 李立新. 拟南芥SNARE因子在膜泡运输中的功能. 植物学报, 2010, 45: 479-491.
doi: 10.3969/j.issn.1674-3466.2010.04.012
Jin H M, Li L X. Role of Arabidopsis SNARE proteins in vesicle trafficking. Chin Bull Bot, 2010, 45: 479-491. (in Chinese with English abstract)
[48] Stefano G, Renna L, Wormsbaecher C, Gamble J, Zienkiewicz K, Brandizzi F. Plant endocytosis requires the ER membrane- anchored proteins VAP27-1 and VAP27-3. Cell Rep, 2018, 23: 2299-2307.
doi: 10.1016/j.celrep.2018.04.091
[49] Wang P, Pleskot R, Zang J, Winkler J, Wang J, Yperman K, Zhang T, Wang K, Gong J, Guan Y, Richardson C, Duckney P, Vandorpe M, Mylle E, Fiserova J, Van Damme D, Hussey P J. Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nat Commun, 2019, 10: 5132.
doi: 10.1038/s41467-019-12782-6 pmid: 31723129
[50] Wang P, Hawkins T J, Richardson C, Cummins I, Deeks M J, Sparkes I, Hawes C, Hussey P J. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr Biol, 2014, 24: 1397-1405.
doi: S0960-9822(14)00528-4 pmid: 24909329
[51] Zhang Z, Thomma B P. Structure-function aspects of extracellular leucine-rich repeat-containing cell surface receptors in plants. J Integr Plant Biol, 2013, 55: 1212-1223.
doi: 10.1111/jipb.12080
[52] Carette J E, Verver J, Martens J, van Kampen T, Wellink J, van Kammen A. Characterization of plant proteins that interact with Cowpea mosaic virus ‘60K’ protein in the yeast two-hybrid system. J Gen Virol, 2002, 83: 885-893.
doi: 10.1099/0022-1317-83-4-885 pmid: 11907339
[53] Barajas D, Xu K, de Castro Martín I F, Sasvari Z, Brandizzi F, Risco C, Nagy P D. Co-opted oxysterol-binding ORP and VAP proteins channel sterols to RNA virus replication sites via membrane contact sites. PLoS Pathog, 2014, 10: e1004388.
[54] Lin L, Luo Z, Yan F, Lu Y, Zheng H, Chen J. Interaction between potyvirus P3 and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) of host plants. Virus Genes, 2011, 43: 90-92.
doi: 10.1007/s11262-011-0596-6 pmid: 21400205
[55] 王倩. 调控黄瓜花叶病毒复制的寄主脂质因子的研究. 浙江理工大学硕士学位论文, 浙江杭州, 2019.
Wang Q. Study on the Regulation of Host Lipid Factors in CMV Replication. MS Thesis of Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China, 2019. (in Chinese with English abstract)
[56] Xu K, Nagy P D. Enrichment of phosphatidylethanolamine in viral replication compartments via co-opting the endosomal Rab5 small GTPase by a positive-strand RNA virus. PLoS Biol, 2016, 14: e2000128.
[57] Chuang C, Barajas D, Qin J, Nagy P D. Inactivation of the host lipin gene accelerates RNA virus replication through viral exploitation of the expanded endoplasmic reticulum membrane. PLoS Pathog, 2014, 10: e1003944.
[58] Sharma M, Sasvari Z, Nagy P D. Inhibition of sterol biosynthesis reduces tombusvirus replication in yeast and plants. J Virol, 2010, 84: 2270-2281.
doi: 10.1128/JVI.02003-09 pmid: 20015981
[59] Xu K, Nagy P D. RNA virus replication depends on enrichment of phosphatidylethanolamine at replication sites in subcellular membranes. Proc Natl Acad Sci USA, 2015, 112: E1782-E1791.
[60] Grison M S, Brocard L, Fouillen L, Nicolas W, Wewer V, Dörmann P, Nacir H, Benitez-Alfonso Y, Claverol S, Germain V, Boutté Y, Mongrand S, Bayer E M. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. Plant Cell, 2015, 27: 1228-1250.
doi: 10.1105/tpc.114.135731
[61] Xie J, Jiang T, Li Z, Li X, Fan Z, Zhou T. Sugarcane mosaic virus remodels multiple intracellular organelles to form genomic RNA replication sites. Arch Virol, 2021, 166: 1921-1930.
doi: 10.1007/s00705-021-05077-z
[62] 邹文娇, 葛磊, 予茜. 氧化甾醇结合蛋白相关蛋白家族的研究进展. 植物学报, 2021, 56: 627-640.
doi: 10.11983/CBB21045
Zou W J, Ge L, Yu Q. Research advances in oxysterol-binding protein-related proteins. Chin Bull Bot, 2021, 56: 627-640. (in Chinese with English abstract)
[63] Wang P, Hawes C, Hussey P J. Plant endoplasmic reticulum- plasma membrane contact sites. Trends Plant Sci, 2017, 22: 289-297.
doi: 10.1016/j.tplants.2016.11.008
[64] Levy A, Tilsner J. Creating contacts between replication and movement at plasmodesmata: a role for membrane contact sites in plant virus infections? Front Plant Sci, 2020, 11: 862.
doi: 10.3389/fpls.2020.00862
[65] Zhang H, Cheng G, Yang Z, Wang T, Xu J. Identification of sugarcane host factors interacting with the 6K2protein of the Sugarcane mosaic nirus. Int J Mol Sci, 2019, 20: 3867.
doi: 10.3390/ijms20163867
[66] Cheng G, Yang Z, Zhang H, Zhang J, Xu J. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. New Phytol, 2020, 225: 2122-2139.
doi: 10.1111/nph.v225.5
[67] Hyodo K, Okuno T. Pathogenesis mediated by proviral host factors involved in translation and replication of plant positive-strand RNA viruses. Curr Opin Virol, 2016, 17: 11-18.
doi: S1879-6257(15)00162-5 pmid: 26651023
[68] Addy H S, Nurmalasari, Wahyudi A H S, Sholeh A, Anugrah C, Iriyanto F E S, Darmanto W, Sugiharto B. Detection and response of sugarcane against the infection of Sugarcane mosaic virus (SCMV) in Indonesia. Agronomy, 2017, 7: 50.
doi: 10.3390/agronomy7030050
[1] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[2] 杜鹃, 彭晓君, 侯娟, 刘腾飞, 刘增, 宋波涛. 马铃薯淀粉酶StBAM9互作蛋白的鉴定及其互作机制分析[J]. 作物学报, 2023, 49(10): 2643-2653.
[3] 杨宗桃, 焦文迪, 张海, 张克闽, 程光远, 罗廷绪, 曾康, 周营栓, 徐景升. 甘蔗谷胱甘肽硫转移酶ScGSTF1与P3N-PIPO互作应答甘蔗花叶病毒侵染的研究[J]. 作物学报, 2023, 49(10): 2665-2676.
[4] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[5] 刘淑娴, 杨宗桃, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗易化子家族蛋白ScZIFL1与6K2互作应答SCMV侵染[J]. 作物学报, 2022, 48(12): 3080-3090.
[6] 许彬, 曹绍玉, 苏甜, 彭梦玲, 吕霞, 李振林, 张国平, 许俊强. 结球甘蓝类钙调蛋白CMLs与花粉萌发NPG1及NPGRs相互作用研究[J]. 作物学报, 2022, 48(11): 2934-2944.
[7] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[8] 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209.
[9] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[10] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[11] 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究[J]. 作物学报, 2020, 46(11): 1722-1733.
[12] 李媚娟,苏良辰,刘帅,李晓云,李玲. 花生AhHDA1互作蛋白AhGLK的筛选及特性分析[J]. 作物学报, 2017, 43(02): 218-225.
[13] 刘荣榜,陈明,郭萌萌,司青林,高世庆,徐兆师,李连城,马有志,尹钧. 拟南芥H+-焦磷酸化酶AVP1互作小GTP结合蛋白AtRAB的特性鉴定与功能分析[J]. 作物学报, 2014, 40(10): 1756-1766.
[14] 张小红,许鹏博,郭萌萌,徐兆师,李连城,陈明,马有志. 拟南芥G蛋白α亚基GPA1互作蛋白铜离子结合蛋白AtBCB的鉴定及功能分析[J]. 作物学报, 2013, 39(11): 1952-1961.
[15] 汪信东,陈亮,张增艳. 抗小麦黄矮病相关蛋白激酶TiDPK1与BYDV外壳蛋白的互作[J]. 作物学报, 2013, 39(10): 1720-1726.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[9] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[10] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .