欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (10): 1720-1726.doi: 10.3724/SP.J.1006.2013.01720

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

抗小麦黄矮病相关蛋白激酶TiDPK1与BYDV外壳蛋白的互作

汪信东,陈亮,张增艳*   

  1. 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业部麦类生物学与遗传育种重点实验室, 北京 100081
  • 收稿日期:2013-02-05 修回日期:2013-04-22 出版日期:2013-10-12 网络出版日期:2013-08-01
  • 通讯作者: 张增艳, E-mail: zhangzengyan@ caas.cn, Tel: 010-82108781
  • 基金资助:

    本研究国家高技术研究发展计划(863计划)项目(2012AA10A309 and 2006AA100102)资助。

Interaction between Wheat Resistance-related Kinase TiDPK1 and BYDV Coat Protein

WANG Xin-Dong,CHEN Liang,ZHANG Zeng-Yan*   

  1. National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2013-02-05 Revised:2013-04-22 Published:2013-10-12 Published online:2013-08-01
  • Contact: 张增艳, E-mail: zhangzengyan@ caas.cn, Tel: 010-82108781

摘要:

小麦黄矮病是由大麦黄矮病毒(Barley yellow dwarf virus, BYDV)引起的小麦重要病毒病。分离于小麦中间偃麦草易位系的蛋白激酶编码基因TiDPK1, 是一个抗小麦黄矮病相关基因。本文报道利用酵母双杂交技术和双分子荧光互补技术对TiDPK1BYDV外壳蛋白(coat protein, CP)互作的研究结果。酵母双杂交分析结果表明, TiDPK1能够与BYDV-GAV-PAV株系的CP互作, 双分子荧光互补分析结果进一步表明, TiDPK1可与BYDVCP互作、产生双分子荧光互补信号, 说明TiDPK1确可与BYDV CP相互作用, 该结果对了解TiDPK1在小麦抗BYDV反应机制具有一定意义。

关键词: 小麦, 蛋白激酶TiDPK1, 大麦黄矮病毒外壳蛋白, 酵母双杂交, 双分子荧光互补, 蛋白互作

Abstract:

Yellow dwarf virus disease is one of the important diseases of wheat (Tritium aestivum L.) worldwide. It is caused by Barley yellow dwarf virus (BYDV) that is vectored by aphids. A kinase protein encoding gene TiDPK1, which is derived from Thinopyrum intermedium, is an important gene involved in BYDV resistance in wheat-T. intermedium translocation lines. In this study, we used yeast two-hybrid and bimolecular fluorescence complementation assays to explore the relationship between TiDPK1 and coat protein (CP) of BYDV (BYDV-CP). The results proved that the protein TiDPK1 interacted with BYDV-CP, which may offer an insight to the resistance mechanism of TiDPK1.

Key words: Wheat, Protein kinase TiDPK1, Coat protein of Barley yellow dwarf virus, Yeast two-hybrid, Bimolecular fluorescence complementation, Protein–protein interaction

[1]Zhang Z Y, Lin Z S, Xin Z Y. Research progress in BYDV resistance genes derived from wheat and its wild relatives. J Genet Genomics, 2009, 36: 567–573



[2]Singh R P. Genetic association of gene Bdv1 for tolerance to barley yellow dwarf virus with gene Lr34 and Yr18 for adult plant resistance to rusts in bread wheat. Plant Dis, 1993, 77: 1103–1106



[3]Xin Z Y, Xu H J, Chen X, Lin Z S, Zhou G H, Qian Y T, Cheng Z M, Larkin P J., Banks P, Appels R, Glarke B, Brettell R S I. Development of common wheat germplasm resistant to Barley yellow dwarf virus by biotechnology. Sci China (Sci B), 1991, 34(9): 1055–1062



[4]Sun S C. The approach and methods of breeding new varieties and new species from Agrotriticum hybrids. Acta Agron Sin (作物学报), 1981, 7(1): 51–55 (in Chinese with English abstract)



[5]Sharma H, Ohm H, Perry K L. Registration of Barley yellow dwarf virus resistant wheat germplasm line P29. Crop Sci, 1997, 37: 1032–1033



[6]Zhang Z, Xin Z, Ma Y, Chen X, Xu Q, Lin Z. 1999, Mapping of a BYDV resistance gene from Thinopyrum intermedium in wheat background by molecular markers. Sci China C (Life Sci.) 42: 663–668



[7]Milller W A, Rasochova L. Barley yellow dwarf viruses. Annu Rev Phytopathol, 1997, 35: 167–190



[8]Jarošová J, Chrpová J, Šíp V, Kundu J K. A comparative study of the Barley yellow dwarf virus species PAV and PAS: distribution, accumulation and host resistance. Plant Pathol, 2013, 62: 436–443



[9]Kvarnheden A. Viruses of field crops—an overview. Risk assessment/risk management, forecasting pests and diseases of field crops in a changing climate-control strategies for pests, diseases and weeds. In: NJF Seminar, Sweden, 2011. 446: 53–58



[10]Zhou G H, Zhang S X, Rochow W F. Identifiaction of a barley yellow dwarf luteovirus strain transmitted by Macrosiphum avenae and Schizaphis gramium. Acta Phytopatho Sin (植物病理学报), 1986, 16: 17–22 (in Chinese)



[11]Ueng P P, Vincent J R, Kawata E E, Lei C-H, Lister R M, Larkins B A. Nucleotide sequence analysis of the genomes of the MAV-PS1 and P-PAV isolates of Barley yellow dwarf virus. J Gen Virol, 1992, 73: 487–492



[12]Wu B L, Alexandra L B, Liu Y, Zhou G H, Wang X F, Elena S F. Dynamics of molecular evolution and phylogeography of Barley yellow dwarf virus-PAV. PLoS One, 2011, 6: e16896



[13]Vincent J R, Lister R M, Larkins B A. Nucleotide sequence analysis and genomic organization of the NY-RPV isolate of Barley yellow dwarf virus. J Gen Virol, 1991, 72: 2347–2355



[14]Jin Z B, Wang X F, Chang S, Zhou G H. The complete nucleotide sequence and its organization of the genome of Barley yellow dwarf virus-GAV. Sci. China Ser C ( Life Sci), 2004, 47: 175–182



[15]Zhang W W, Cheng Z M, Xu L, Wu M S, Waterhouse P, Zhou G H, Li S F. The complete nucleotide sequence of the barley yellow dwarf GPV isolate from China shows that it is a new member of the genus Polerovirus. Arch Virol, 2009, 154: 1125–1128



[16]Liu Y, Zhai H, Zhao K, Wu B B, Wang X F. Two suppressors of RNA silencing encoded by cereal-infecting members of the family Lutroviridae. J Gen Virol, 2012, 93: 1825–1830



[17]Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner, J, Wang B, Zhai W X, Zhu L H. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270: 1804–1806



[18]Zhou J M, Tang X Y, Martin G B. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J, 1997, 16: 3207–3218



[19]Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X E , Chen P. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011, 108: 7727–7732



[20]Bendixen C, Gangloff S, Rothstein R. A yeast mating-selection scheme for detection of protein–protein interactions. Nucl Acids Res, 1994, 22: 1778–1779



[21]Hu C D, Chinenov Y, Kerppolal T. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell, 2002, 9: 789–798



[22]Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol, 1983, 162: 1142–1150



[23]Jones J D, Dangl J L. The plant immune system. Nature, 2006, 444: 323–332



[24]Stephen T, Chisholm, Gitta C, Brad D, Brain J. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 2006, 124: 803–814



[25]Deslandes L, Olivier J, Peeters N, Dong X F, Khounlotham M, Boucher C, Somssich I, Genin S, Marcos Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA, 2003, 100: 8024–8029



[26]Mackey D, Holt B F, Wiig A, Dangl J L. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated disease resistance in Arabidopsis. Cell, 2002, 108: 743–754



[27]Kodama Y, Hu C D. Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. BioTechniques, 2012, 53: 285–298



[28]Bar M, Sharfman M, Ron M, Avni A. BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J, 2000, 63: 791–800



[29]Burch-Smith T M, Schiff M, Caplan J L, Tsao J, Czymmek K, Dinesh-Kumar S P. A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol, 2007, 5: e68



[30]Wang W M, Ma X F, Zhang Y, Luo M C, Wang G L, Bellizzi M, Xiong X Y, Xiao S Y. PAPP2C interacts with the atypical disease resistance protein RPW8.2 and negatively regulates salicylic acid-dependent defense responses in Arabidopsis. Mol Plant, 2012, 5: 1125–1137

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!