欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2934-2944.doi: 10.3724/SP.J.1006.2022.14243

• 研究简报 • 上一篇    下一篇

结球甘蓝类钙调蛋白CMLs与花粉萌发NPG1及NPGRs相互作用研究

许彬1,2(), 曹绍玉1,2(), 苏甜1, 彭梦玲1,2, 吕霞1, 李振林1, 张国平1, 许俊强1,*()   

  1. 1云南农业大学云南省滇台特色农业产业化工程研究中心, 云南昆明 650201
    2云南农业大学园林园艺学院, 云南昆明 650201
  • 收稿日期:2021-12-22 接受日期:2022-03-25 出版日期:2022-11-12 网络出版日期:2022-04-20
  • 通讯作者: 许俊强
  • 作者简介:第一作者联系方式: 许彬, E-mail: 1650379536@qq.com;
    曹绍玉, E-mail: 1194642629@qq.com第一联系人:** 同等贡献。
  • 基金资助:
    本研究由云南省重大科技计划项目(202102AE09005);云南省科技人才和平台计划项目(202205AF150017);云南省科技人才和平台计划项目(202005AF150035);云南省科技人才和平台计划项目(2019IC009);国家自然科学基金项目(31560560);昆明市科技计划项目(2019-1-H-24615)

Interactions between CMLs and NPG1 and related proteins in pollen germination of Brassica oleracea L. var. capitata

XU Bin1,2(), CAO Shao-Yu1,2(), SU Tian1, PENG Meng-Ling1,2, LYU Xia1, LI Zhen-Lin1, ZHANG Guo-Ping1, XU Jun-Qiang1,*()   

  1. 1Dian-Tai Engineering Research Center for Characteristic Agriculture Industrialization of Yunnan Province, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, Yunnan, China
  • Received:2021-12-22 Accepted:2022-03-25 Published:2022-11-12 Published online:2022-04-20
  • Contact: XU Jun-Qiang
  • Supported by:
    The Major Projects of Yunnan Science and Technology Plan(202102AE09005);The Science and Technology Talents and Platform Plan of Yunnan Province(202205AF150017);The Science and Technology Talents and Platform Plan of Yunnan Province(202005AF150035);The Science and Technology Talents and Platform Plan of Yunnan Province(2019IC009);The National Natural Science Foundation of China(31560560);The Science and Technology Plan Project of Kunming(2019-1-H-24615)

摘要:

类钙调蛋白作为钙调蛋白的家族之一, 调控植物生长发育、激素调控及各种胁迫, 对类钙调蛋白对参与花粉萌发及伸长的深入研究具有重要意义。为研究结球甘蓝花粉CMLs与NPG1及相关蛋白互作关系, 探索CMLs在花粉发育及萌发过程的功能, 本研究以结球甘蓝ZG为材料, 克隆到12个花粉发育及萌发相关CMLs基因, 及花粉萌发基因NPG1NPGR1NPGR2, 通过酵母双杂交试验检测编码蛋白相互之间的互作关系, 并检测NPG1NPGR1NPGR2在不同授粉时间后的表达水平。结果表明, 12个CMLs基因开放阅读框(open reading frame, ORF)在447~1095 bp之间, 其中CML20CML48CML49CML50均含有4个内含子, CML21含有2个内含子, 其余均不含内含子; 编码蛋白均不含信号肽和跨膜域, 均为胞外蛋白, 且均为亲水性蛋白; 分别含有2~4个EF-Hands结构域, 氨基酸数目在148~364个氨基酸之间, 亚细胞定位预测主要定位于细胞膜、液泡及细胞核中; 结球甘蓝NPG1NPGR1NPGR2分别聚类到不同的进化枝上, 与油菜、白菜的亲缘关系最近, 与拟南芥亲缘关系较近; 酵母双杂交试验表明, CML13、CML21、CML24、CML42不能与NPG1、NPGR1及NPGR2在体外发生相互作用, CML15、CML20、CML25、CML39、CML41、CML48、CML49均能与NPG1、NPGR1及NPGR2在体外发生相互作用, CML50可与NPGR1、NPGR2互作, 而不能与NPG1发生互作。表达分析表明, NPG1表达量在授粉后的柱头中呈显著上升趋势, NPGR1NPGR2表达量变化均不显著; CMLs在不同授粉时间均有不同的表达量变化, 其中CML15CML20CML39CML41CML49均呈现出先升高后下降的趋势。本研究在结球甘蓝中筛选得到能与NPG1、NPGRs互作的CMLs蛋白, 说明多个CMLs能参与花粉萌发及花粉管伸长过程, 期望为Ca2+信号系统参与花粉萌发及花粉管伸长的机制研究提供参考。

关键词: 结球甘蓝, 花粉, CMLs, NPG1, NPGRs, 蛋白互作

Abstract:

As one of calmodulin families, calmodulin-like (CMLs) regulate plant growth and development, hormone regulation, stresses, which have great significance to the further study of calmodulin-like protein involved in pollen germination and growth. In this study, to explore the interaction between CMLs and NPG1 related genes in pollen development of Brassica oleracea L. var. capitata, and to explore the function of CMLs in pollen development and germination, 12 CMLs genes related to pollen development and germination, and pollen germination genes NPG1, NPGR1, and NPGR2 were cloned from “ZG”. Interactions between them were detected by yeast two-hybrid test. and the relative expression levels of NPG1, NPGR1, and NPGR2 after different pollination time was detected. The results showed that the open reading frames (ORFs) of 12 CMLs genes ranged from 447 bp to 1095 bp, among which CML20, CML48, CML49, and CML50 contained 4 introns, CML21 contained 2 introns, and the others contained no introns. All of them contained no signal peptide and transmembrane domain, all of them were extracellular proteins and hydrophilic proteins which contain 2-4 EF-hands, with amino acids range of 148-364 aa. Subcellular localization was mainly located in cell membrane, vacuole, and nucleus. NPG1, NPGR1, and NPGR2 were clustered on different evolutionary branches, which were the closest to Brassica rape and Brassica napus, and closer to Arabidopsis thaliana. Yeast two-hybrid showed that CML13, CML21, CML24, CML42 could not interact with NPG1, NPGR1, and NPGR2 in vitro, CML15, CML20, CML25, CML39, CML41, CML48, and CML49 could interact with NPG1, NPGR1, and NPGR2, CML50 could interact with NPGR1 and NPGR2, but not with NPG1. The relative expression level of NPG1 increased significantly after pollination, while the relative expression levels of NPGR1 and NPGR2 didn’t change significantly. The relative expression levels of CMLs genes were varied at different pollination times, and CML15, CML20, CML39, CML41, and CML49 were a trend of first increasing and then decreasing. In conclusion, several CMLs proteins were screened which can interact with NPG1 and NPGRs, indicating that CMLs can participate in the process of pollen germination and pollen tube elongation, and it was expected to provide references for the research on the mechanism of Ca2+ signaling system participating in pollen germination and pollen tube elongation.

Key words: Brassica oleracea L. var. capitata, pollen, calmodulin-like protein (CMLs), NPG1, NPGRs, protein interaction

表1

本研究中用到的引物"

基因 Gene name 正向引物 Forward primer (5°-3°) 反向引物 Reverse primer (5°-3°)
CML13 GAGCGAAATCCGACCCGGCTT CTACTTAGCAACCATCCTGGCA
CML15 CTCTCATCTGTGTTTTGAGG TCATGAATTAATTTTTAAACCA
CML20 CGAGAAATCGACGCGGAAAGAGCT ATAACAGAGACCTCATCAGTACC
CML21 CGATCTGATCTCAAAGCAGGA CACAAACATCAAGCCTTGTCA
CML24 CATCGTCTTCTTCTCCACCACA CCTAAAATACGATCATCAAGC
CML25 GATCCAGAGATTCATTCGCTTCCTT GTGAAACTCTACCACTGACCAC
CML39 CATCATGAAGAACACTCAACGT CAACATTGGATGGGCTGATGCCTTA
CML41 CCAATATGGCAACTCCCCAAG CTTCATAAGCATTTCGAGCAA
CML42 GTCAAGGAAGAGGATAAATGG TGAAGTCAAGAAGGGATAACG
CML48 CTTGATGATGGGACTGGCAACACTG CATATGAGGCAATGAACGGAATGAC
CML49 ATGTCTGGTTACCCTCCTTCGAGC TTAAGCGACGAGGAACGGTAGAAC
CML50 TTCCCAGCGATGTCAGGTTACC GTTGTTGTTGTATGTTCGTCG
NPG1 GGCTCTGCATGAAAACAACTGA TTAAAGAATGGTTGAGAAGCT
NPGR1 ATGTTGTGTGCTTGTTCAGGCG TCAAATGAAACTCTGCACCGG
NPGR2 ATGAGGAACAGCGAGACTAGGC TCATCTGAATGGCTCCACTGGC
qCML15 CTCGGTCTCAAACCATCAGGAGA GTTACCGATCTCTTCGTTCAGG
qCML20 ATGTCGAGTCTATACAGAGGTG TGCTCTTCCGTCATCTCGAAACC
qCML25 GTTCGGCGTCTAGAACCGGAGCA TGGAACCTCGTGGCCTAGACTTG
qCML39 TCAAGACACTGGGAGAGCAA CAAAATCCAGCATCCCATCT
qCML41 GTCACCACTCCCATGACGAGCT TGCCTCGTGAGTTATATACTCAC
qCML48 TCAGCTTGATGATGGGACTG TAACCGGGGTCCTTCTCTTT
qCML49 GGAGACCACAAGCCGCACAAA CGCCTGGAAGCAAGTCACGAT
qCML50 ACCAACGCCATGAAGATAGG CATCTATTCTCCCGCTCCTG
qNPG1 TAGTCAGACCTCGGTGCTC GCTCCTCGCTGCAAACCTTA
qNPGR1 CGAATCAAGACAGATACCG CATAGCATACGCCAAGGAA
qNPGR2 AACTACGAGGAGGCGAGGGC GAGGCTGAGGAGGAGCAACA
β-Actin TATCAACTACCAGCCACC GAACACCTCAGCTACACTC

图1

结球甘蓝CMLs基因克隆 M: Trans2K plus II DNA marker; 1~12分别为CML13、CML15、CML20、CML21、CML24、CML25、CML39、CML41、CML42、CML48、CML49、CML50基因的克隆。"

表2

结球甘蓝CMLs基因基本信息"

基因
Gene name
编码区
Coding
region (bp)
内含子
Introns
跨膜域
Transmembrane
信号肽
Signal peptide
预测的蛋白 Predicted protein 疏水性
Hydrophobicity
亚细胞定位
Subcellular
localization
EF-
hand
氨基酸
Amino acid (aa)
分子量
Molecular weight (kD)
pI
CML13 447 0 无No 无No 3 148 16.40 4.62 亲水
Hydrophilic
细胞膜
Cell membrane
CML15 471 0 无No 无No 4 156 16.99 3.94 亲水
Hydrophilic
液泡
Vacuole
CML20 510 4 无No 无No 4 169 19.60 4.55 亲水
Hydrophilic
细胞膜
Cell membrane
CML21 678 2 无No 无No 4 225 25.96 4.17 亲水
Hydrophilic
细胞膜
Cell membrane
CML24 447 0 无No 无No 4 158 17.40 4.64 亲水
Hydrophilic
细胞膜, 液泡
Cell membrane, vacuole
CML25 552 0 无No 无No 4 183 20.14 4.42 亲水
Hydrophilic
液泡
Vacuole
CML39 510 0 无No 无No 4 169 19.25 4.35 亲水
Hydrophilic
液泡
Vacuole
CML41 612 0 无No 无No 4 203 22.64 4.97 亲水
Hydrophilic
细胞膜
Cell membrane
CML42 567 0 无No 无No 3 188 20.70 4.25 亲水
Hydrophilic
细胞膜, 液泡
Cell membrane, vacuole
CML48 672 4 无No 无No 2 223 25.28 4.53 亲水
Hydrophilic
细胞核
Nucleus
CML49 954 4 无No 无No 2 317 33.51 6.93 亲水
Hydrophilic
细胞核
Nucleus
CML50 1095 4 无No 无No 2 364 38.06 6.27 亲水
Hydrophilic
细胞膜, 细胞核
Cell membrane, nucleus

图2

结球甘蓝CMLs的进化树和基因结构图 左侧为进化树, 右侧为甘蓝CMLs的基因结构图。"

表3

结球甘蓝NPG1、NPGR1及NPGR2基本信息"

基因
Gene
编码区
Coding region
(bp)
内含子
Introns
跨膜域
Transmembrane
信号肽
Signal peptide
预测的蛋白 Predicted proteins 疏水性
Hydrophobicity
亚细胞定位
Subcellular
localization
TPR 氨基酸
Amino
acid (aa)
分子量Molecular
weight (kD)
pI
NPG1 2043 4 无No 无No 3 680 75.31 5.98 亲水Hydrophilic 细胞核Nucleus
NPGR1 2109 2 无No 无No 3 702 77.65 6.27 亲水Hydrophilic 细胞核Nucleus
NPGR2 2224 3 无No 无No 7 737 82.44 7.58 亲水Hydrophilic 细胞核Nucleus

图3

结球甘蓝NPG1、NPGR1、NPGR2基因扩增及序列分析 M: Trans2K plus II DNA marker; A: 结球甘蓝NPG1、NPGR1、NPGR2基因cDNA扩增; B: 结球甘蓝NPG1、NPGR1、NPGR2基因gDNA扩增; C: 结球甘蓝和拟南芥NPG1、NPGR1、NPGR2蛋白TPRs结构域分析; D: 结球甘蓝和拟南芥NPG1-TPR1结构域序列对比。"

图4

结球甘蓝NPG1、NPGR1、NPGR2蛋白进化树分析"

图5

转重组质粒在SD/-Leu/-Trp/X-α-gal/AbA培养基的酵母自激活检测 P: Y187 (AD-T)×Y2H (BK-53); N: Y187 (ADT7-T)×Y2H (BK-Lam); 1: Y2H (BK-CML13)×Y187 (AD-T); 2: Y2H (BK-CML15)× Y187 (AD-T); 3: Y2H (BK-CML20)×Y187 (AD-T); 4: Y2H (BK-CML21)×Y187 (AD-T); 5: Y2H (BK-CML24)×Y187 (AD-T); 6: Y2H (BK-CML25)×Y187 (AD-T); 7: Y2H (BK-CML39)×Y187 (AD-T); 8: Y2H (BK-CML41)×Y187 (AD-T); 9: Y2H (BK-CML42)×Y187 (AD-T); 10: Y2H (BK-CML48) ×Y187 (AD-T); 11: Y2H (BK-CML49)×Y187 (AD-T); 12:Y2H (BK-CML50)×Y187 (AD-T); 13: Y187 (AD-NPG1)×Y2H (BK-53); 14: Y187 (AD-NPGR1)×Y2H (BK-53); 15: Y187 (AD-NPGR2)×Y2H (BK-53)."

表4

结球甘蓝CMLs与NPG1、NPGR1及NPGR2互作分析"

AD\BK CML13 CML15 CML20 CML21 CML24 CML25 CML39 CML41 CML42 CML48 CML49 CML50
NPG1 + + + + + + +
NPGR1 + + + + + + + +
NPGR2 + + + + + + + +

图6

结球甘蓝CMLs与NPG1、NPGR1、NPGR2互作分析 P: 阳性对照; N: 阴性对照。"

表5

结球甘蓝CMLs与NPG1、NPGR1及NPGR2聚合强度分析"

AD\BK β-半乳糖酶活性 β-galactosidase activity (Miller units)
CML15 CML20 CML25 CML39 CML41 CML48 CML49 CML50
NPG1 5.37 5.85 5.61 5.71 7.77 8.31 6.68
NPGR1 4.58 2.31 4.16 3.97 5.31 7.17 2.69 3.65
NPGR2 4.50 4.96 4.82 4.51 6.58 7.70 4.47 5.90

图7

结球甘蓝CMLs(A)和NPG1、NPGR1及NPGR2(B)不同授粉时间表达分析 柱上不同小写字母表示差异显著(P < 0.05)。"

[1] Batistic O, Kudla J. Analysis of calcium signaling pathways in plants. Biochim Biophys Acta, 2012, 1820: 1283-1293.
[2] Leba L J, Cheval C, Ortiz-Martín I, Ranty B, Beuzón C R, Galaud J P, Aldon D. CML9, an Arabidopsis calmodulin-like protein, contributes to plant innate immunity through a flagellin- dependent signalling pathway. Plant J, 2012, 71: 976-989.
doi: 10.1111/j.1365-313X.2012.05045.x
[3] Cheval C, Aldon D, Galaud J P, Ranty B. Calcium/ calmodulin-mediated regulation of plant immunity. Biochim Biophys Acta, 2013, 1833: 1766-1771.
[4] Schulz P, Romeis H T. Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol, 2013, 163: 523-530.
doi: 10.1104/pp.113.222539
[5] 刘辉, 邓治, 陈江淑, 李德军. 巴西橡胶树类钙调素蛋白基因HbCML27克隆与表达分析. 分子植物育种, 2015, 13: 2721-2727.
Liu H, Deng Z, Chen J S, Li D J.Cloning and expression analysis of calmodulin-like protein gene HbCML27 from Hevea brasiliensis. Mol Plant Breed, 2015, 13: 2721-2727. (in Chinese with English abstract)
[6] Boonburapong B, Buaboocha T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol, 2007, 7: 4.
pmid: 17263873
[7] Mccormack E, Braam J. Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol, 2010, 159: 585-598.
[8] Bouché N, Yellin A, Snedden W A, Fromm H. Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol, 2005, 56: 435-466.
doi: 10.1146/annurev.arplant.56.032604.144224
[9] McCormack E, Tsai Y C, Braam J. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci, 2005, 10: 383-389.
doi: 10.1016/j.tplants.2005.07.001
[10] Nie S S, Zhang M J, Zhang L G. Genome-wide identification and expression analysis of calmodulin-like (CML) genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis). BMC Genomics, 2017, 18: 842.
doi: 10.1186/s12864-017-4240-2
[11] 蒲敏, 罗绍兰, 廉小平, 曾静, 张贺翠, 刘倩莹, 左同鸿, 朱利泉. 结球甘蓝CML家族基因及其在授粉后柱头中的表达. 园艺学报, 2018, 45: 2129-2140.
Pu M, Luo S L, Lian X P, Zeng J, Zhang H C, Liu Q Y, Zuo T H, Zhu L Q. Study on CML family genes and expressions in stigma after pollination. Acta Hortic Sin, 2018, 45: 2129-2140. (in Chinese with English abstract)
[12] Wang S S, Diao W Z, Yang X, Qiao Z, Wang M, Acharya B R, Zhang W. Arabidopsis thaliana CML25mediates the Ca2+ regulation of K+ transmembrane trafficking during pollen germination and tube elongation. Plant Cell Environ, 2015, 38: 2372-2386.
doi: 10.1111/pce.12559
[13] 于晓俊, 曹绍玉, 董玉梅, 毕保良, 张应华, 许俊强. 钙结合蛋白对花粉生长发育调控研究进展. 西北植物学报, 2016, 36: 2121-2127.
Yu X J, Cao S Y, Dong Y M, Bi B L, Zhang Y H, Xu J Q. Research progress of calcium binding proteins in pollen growth and development. Acta Bot Boreali-Occident Sin, 2016, 36: 2121-2127. (in Chinese with English abstract)
[14] 曹绍玉, 王艳芳, 苏婉玉, 张琳, 张应华, 许俊强. 类钙调蛋白在植物生长发育及逆境胁迫中的功能研究进展. 植物生理学报, 2018, 54: 1517-1526.
Cao S Y, Wang Y F, Su W Y, Zhang L, Zhang Y H, Xu J Q. Research progress on functions of calmodulin-like proteins in processes of plant growth and developments and stresses. Plant Physiol J, 2018, 54: 1517-1526. (in Chinese with English abstract)
[15] Ma W, Smigel A, Tsai Y C, Braam J, Berkowitz G A. Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein. Plant Physiol, 2008, 148: 818-828.
doi: 10.1104/pp.108.125104
[16] Yang X, Wang S S, Wang M, Qiao Z, Bao C C, Zhang W. Arabidopsis thaliana calmodulin-like protein CML24 regulates pollen tube growth by modulating the actin cytoskeleton and controlling the cytosolic Ca2+ concentration. Plant Mol Biol, 2014, 86: 225-236.
doi: 10.1007/s11103-014-0220-y pmid: 25139229
[17] Zhou L, Fu Y, Yang Z. A genome-wide functional characterization of Arabidopsis regulatory calcium sensors in pollen tubes. J Integr Plant Biol, 2009, 51: 751-761.
doi: 10.1111/j.1744-7909.2009.00847.x
[18] Wang Y, Zhang W Z, Song L F, Zou J J, Su Z, Wu W H. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol, 2008, 148: 1201-1211.
doi: 10.1104/pp.108.126375
[19] 宋明, 许俊强, 孙梓健, 汤青林, 王志敏, 王小佳. 结球甘蓝花粉类钙调素蛋白基因BoCML49的克隆及表达分析. 作物学报, 2012, 38: 2162-2169.
doi: 10.3724/SP.J.1006.2012.02162
Song M, Xu J Q, Sun Z J, Tang Q L, Wang Z M, Wang X J. Molecular cloning and expression analysis of CaM-Like protein genes (BoCML49) from cabbage (Brassica oleracea L. var. capitata). Acta Agron Sin, 2012, 38: 2162-2169. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.02162
[20] 许俊强. 甘蓝花粉管钙感受蛋白编码基因CML49的克隆及功能鉴定研究. 西南大学博士学位论文, 重庆, 2014.
Xu J Q. Study of Cloning andIdentification of Calcium Sensor Protein-coding Gene CML49 of Pollen Tube in Brassica oleracea L. PhD Dissertation of Southwest University, Chongqing, China, 2014. (in Chinese with English abstract)
[21] Golovkin M, Reddy A S. A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination. Proc Natl Acad Sci USA, 2003, 100: 10558-10563.
doi: 10.1073/pnas.1734110100
[22] Schiott M, Romanowsky S M, Baekgaard L, Jakobsen M K, Palmgren M G, Harper J F. A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA, 2004, 101: 9502-9507.
doi: 10.1073/pnas.0401542101
[23] 苏贺楠, 韩风庆, 杨丽梅, 庄木, 张扬勇, 王勇, 李占省, 方智远, 吕红豪. 结球甘蓝小孢子培养条件优化及高代自交系胚状体诱导研究. 中国蔬菜, 2018, (4): 30-36.
Su H N, Han F Q, Yang L M, Zhuang M, Zhang Y Y, Wang Y, Li Z S, Fang Z Y, Lyu H H. Studies on optimization of cabbage isolated microspore culture conditions andgeneration of embryoids from high-generation inbred lines. China Veget, 2018, (4): 30-36. (in Chinese with English abstract)
[24] 邢苗苗, 刘星, 孔枞枞, 杨丽梅, 庄木, 张扬勇, 王勇, 吕红豪. 甘蓝NLR家族全基因组鉴定、进化分析及在不同病害胁迫下的表达分析. 园艺学报, 2019, 46: 723-737.
Xing M M, Liu X, Kong C C, Zhang Y M, Zhuang M, Yang L M, Wang Y, Lyu H H. Whole-genome identification and evolutionary analysis of cabbage NLR family genes and their expression profiles in response to various disease stress. Acta Hortic Sin, 2019, 46: 723-737. (in Chinese with English abstract)
[25] 赵云霞, 魏艳玲, 黄先忠. 新疆无苞芥类钙调素蛋白基因OpCML13的克隆与分析. 西北植物学报, 2014, 34: 431-437.
Zhao Y X, Wei Y L, Huang X Z. Clone and expres-sion analysis of calmulin-like protein gene OpCMLl3 from Olimarabidopsis pumila of Xinjiang. Acta Bot Boreali-Occident Sin, 2014, 34: 431-437. (in Chinese with English abstract)
[26] Lin W D, Liao Y Y, Yang T J, Pan C Y, Buckhout T J, Schmidt W. Coexpression-based clustering of Arabidopsis root genes predicts functionalmodules in early phosphate deficiency signaling. Plant Physiol, 2011, 155: 1383-1402.
doi: 10.1104/pp.110.166520
[27] Yang X, Wang S S, Wang M, Qiao Z, Bao C C, Zhang W. Arabidopsis thaliana calmodulin-like protein CML24regulates pollen tube growthby modulating the actin cytoskeleton and controlling the cytosolic Ca2+ concentration. Plant Mol Biol, 2014, 86: 225-236.
doi: 10.1007/s11103-014-0220-y pmid: 25139229
[28] Shin S B, Golovkin M, Reddy A S. A pollen-specific calmodulin-binding protein, NPG1, interacts with putative pectate lyases. Sci Rep, 2014, 4: 5263.
doi: 10.1038/srep05263
[1] 刘淑娴, 杨宗桃, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗易化子家族蛋白ScZIFL1与6K2互作应答SCMV侵染[J]. 作物学报, 2022, 48(12): 3080-3090.
[2] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[3] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[4] 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209.
[5] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[6] 高芸, 张玉雪, 马泉, 苏盛楠, 李春燕, 丁锦峰, 朱敏, 朱新开, 郭文善. 春季低温对小麦花粉育性及粒数形成的影响[J]. 作物学报, 2021, 47(1): 104-115.
[7] 陈淼, 谢赛, 王超智, 李焱龙, 张献龙, 闵玲. 棉花GhPIF4调控高温下花药败育机制初探[J]. 作物学报, 2020, 46(9): 1368-1379.
[8] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[9] 蒲敏, 罗绍兰, 廉小平, 张贺翠, 白晓璟, 王玉奎, 左同鸿, 高启国, 任雪松, 朱利泉. 自花授粉诱导的甘蓝功能基因BoSPI的克隆与表达分析[J]. 作物学报, 2018, 44(02): 177-184.
[10] 李媚娟,苏良辰,刘帅,李晓云,李玲. 花生AhHDA1互作蛋白AhGLK的筛选及特性分析[J]. 作物学报, 2017, 43(02): 218-225.
[11] 雷建峰,李月,徐新霞,阿尔祖古丽?塔什,蒲艳,张巨松,刘晓东. 棉花不同GbU6启动子截短克隆及功能鉴定[J]. 作物学报, 2016, 42(05): 675-683.
[12] 刘荣榜,陈明,郭萌萌,司青林,高世庆,徐兆师,李连城,马有志,尹钧. 拟南芥H+-焦磷酸化酶AVP1互作小GTP结合蛋白AtRAB的特性鉴定与功能分析[J]. 作物学报, 2014, 40(10): 1756-1766.
[13] 张宏根,孙一标,封智蔷,钱凯,裴艳,李闯,汤述翥,梁国华,顾铭洪. 豫粳6号B与TR2604间杂种花粉不育基因的定位[J]. 作物学报, 2014, 40(08): 1380-1385.
[14] 许俊强,孙梓健,刘智宇,杨朴丽,汤青林,王志敏,宋明,王小佳. 结球甘蓝雌蕊调控因子SPT与HEC1的克隆及相互作用分析[J]. 作物学报, 2014, 40(06): 1011-1019.
[15] 张祖建,王晴晴,郎有忠,王春哥,朱庆森,杨建昌. 水稻抽穗期高温胁迫对不同品种受粉和受精作用的影响[J]. 作物学报, 2014, 40(02): 273-282.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[2] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[3] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[4] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[5] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[6] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .
[7] 黄策;王天铎. 水稻群体物质生产过程的计算机模拟[J]. 作物学报, 1986, (01): 1 -8 .
[8] 张文静;胡宏标;陈兵林;王友华;周治国. 棉花季节桃加厚发育生理特性的差异及与纤维比强度的关系[J]. 作物学报, 2008, 34(05): 859 -869 .
[9] 张鹏;张海洋;郭旺珍;郑永战;魏利斌;张天真. 以SRAP和EST-SSR标记分析芝麻种质资源的遗传多样性[J]. 作物学报, 2007, 33(10): 1696 -1702 .
[10] 王才斌;吴正锋;成波;郑亚萍;万书波;郭峰;陈殿绪. 连作对花生光合特性和活性氧代谢的影响[J]. 作物学报, 2007, 33(08): 1304 -1309 .