欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2945-2952.doi: 10.3724/SP.J.1006.2022.13077

• 研究简报 • 上一篇    下一篇

镉胁迫对不同耐镉型玉米品种苗期根系生长的影响

曲梦雪(), 宋杰, 孙菁, 胡旦旦, 王洪章, 任昊, 赵斌, 张吉旺, 任佰朝, 刘鹏*()   

  1. 山东农业大学作物生物学国家重点实验室 / 山东农业大学农学院, 山东泰安271018
  • 收稿日期:2021-12-23 接受日期:2022-03-28 出版日期:2022-11-12 网络出版日期:2022-04-20
  • 通讯作者: 刘鹏
  • 作者简介:第一作者联系方式: E-mail: 1053149706@qq.com
  • 基金资助:
    本研究由山东省重点研发计划项目(LJNY202103);山东省现代农业产业技术体系建设项目(SDAIT-02-08)

Effects of cadmium stress on root growth of maize (Zea mays L.) varieties with different cadmium-tolerant at seedling stage

QU Meng-Xue(), SONG Jie, SUN Jing, HU Dan-Dan, WANG Hong-Zhang, REN Hao, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng*()   

  1. State Key Laboratory of Crop Biology / College of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong, China
  • Received:2021-12-23 Accepted:2022-03-28 Published:2022-11-12 Published online:2022-04-20
  • Contact: LIU Peng
  • Supported by:
    The Shandong Provincial Key Research and Development Project(LJNY202103);The Shandong Agriculture Research System(SDAIT-02-08)

摘要:

土壤镉污染严重威胁农作物生产, 选用耐镉性能差异的玉米品种为试验材料, 研究其对玉米苗期根系生长发育的影响, 对耐镉玉米新品种选育及镉污染地块玉米栽培具有重要意义。以耐镉型品种鑫瑞57 (Xinrui 57, XR57)和镉敏感型品种立原296 (Liyuan 296, LY296)为试验材料, 采用水培方式, 设置不同镉浓度处理(0 mg L-1、10 mg L-1), 研究镉胁迫后2个品种苗期根系形态、生理特性和根系呼吸的差异。结果表明, 镉胁迫后2类型玉米品种根系均积累过量的镉, 严重影响根系生长, 其中LY296单株根系镉积累量达到1219.77 μg, 较XR57提高16.17%, 导致其根系各指标较其对照均显著降低, 表现为总根长、总根表面积、总根体积、根干重以及节根的侧根密度, 分别下降43.92%、40.84%、39.34%、33.33%和62.54%。镉胁迫后2品种的细胞保护酶活性变化趋势不同, XR57和LY296根系的SOD活性均显著降低, 与各自对照相比分别下降43.05%和57.54%, XR57的POD和CAT活性显著上升, 分别为其对照的1.26倍和1.58倍; 而LY296的POD和CAT活性则呈下降趋势, 导致其H2O2含量显著上升, 氧化胁迫加重。镉胁迫显著增加了XR57根中可溶性蛋白和脯氨酸含量, 而LY296二者含量无显著变化。2类型玉米品种根系呼吸速率受镉胁迫抑制, 其中XR57的降幅较大, XR57还通过增大交替氧化酶(alternative oxidase, AOX)呼吸途径所占比例, 进一步增强其抗氧化能力。综合分析可知, 根系积累的过量镉显著抑制玉米苗期根系生长, 但是低镉积累的耐镉型玉米品种可以通过调控根系生理特性的变化和改变根系呼吸链传递途径来缓解镉毒害, 还可以通过更低的呼吸消耗减少代谢成本, 维持植株生长发育, 而镉敏感型玉米品种则无此优势。

关键词: 镉胁迫, 玉米, 根系形态, 抗氧化酶, 根系呼吸

Abstract:

Cadmium pollution in soil is a serious threat to crop production, and it is of great significance for the breeding of new cadmium-tolerant maize varieties. To study the effects on the growth and development of maize roots at seeding stage, the maize varieties with different cadmium tolerance performance were selected as experimental materials. Using cadmium-tolerant variety Xinrui 57 (XR57) and cadmium-sensitive variety Liyuan 296 (LY296) as experimental materials, the differences of root morphology, root respiration, and physiological characteristics between two varieties were investigated by hydroponic culture with different cadmium concentrations (0 mg L-1 and 10 mg L-1). The results indicated that the root of the two types of maize varieties accumulated excessive cadmium, which seriously affected the root growth. The cadmium accumulation in the root of LY296 reached 1219.77 μg plant-1, which was 16.17% higher than that of XR57, indicating the root indexes significantly lower than control. The total root length, total root surface area, total root volume, root dry weight, and lateral root density of nodal root in cadmium stress were decreased by 43.92%, 40.84%, 39.34%, 33.33%, and 62.54%, respectively. After cadmium stress, the variations of cytoprotective enzymes of the two varieties were different. The activities of SOD decreased significantly, XR57 and LY296 decreased by 43.05% and 57.54%, respectively, while the activities of POD and CAT in XR57 both increased significantly, which were 1.26 and 1.58 times higher than control, respectively. The activities of POD and CAT in LY296 had a downward trend, resulting in a significant increase in H2O2 content and aggravating oxidative stress. The contents of soluble protein and proline were increased significantly in XR57 roots after cadmium treatment, but LY296 had no significant change. The root respiration rate of both varieties were inhibited by cadmium stress, and the suppression was more pronounced in XR57, which was conducive to reducing the decrease of root biomass. XR57 also further enhanced the antioxidant capacity by increasing the proportion of alternative oxidase respiratory pathway. In conclusion, the cadmium accumulation of root significantly inhibited the growth of maize root at seedling stage, but low cadmium accumulation of the cadmium-tolerant maize variety can regulate the change of root physiological characteristics and the change of root respiration chain transfer pathway to alleviate cadmium poisoning, and it can also breathe through lower consumption by metabolic cost, maintain plant growth and development, while the cadmium-sensitive maize variety had no these advantages.

Key words: cadmium stress, maize, root morphology, antioxidant enzymes, root respiration

表1

镉胁迫后不同耐镉型玉米品种植株的镉积累量"

处理
Treatment
镉积累量 Cd amount (μg plant-1)
根系 Root 地上部 Shoot 植株 Plant
鑫瑞57 XR57 1049.96±16.39 b 570.82±17.27 b 1626.18±9.04 b
立原296 LY296 1219.77±19.91 a 634.29±11.37 a 1854.06±12.51 a

表2

镉胁迫对不同耐镉型玉米品种根系形态的影响"

处理
Treatment
根系干重
Root dry weight
(g plant-1)
总根长
Total root length
(cm plant-1)
总根表面积
Total root surface area
(cm2 plant-1)
总根体积
Total root volume
(cm3 plant-1)
鑫瑞57-CK XR57-CK 0.63±0.041 a 4326.06±247.62 a 464.21±28.49 a 4.79±0.25 a
鑫瑞57-Cd XR57-Cd 0.55±0.036 b 2667.61±148.07 b 324.89±13.55 b 3.74±0.20 b
立原296-CK LY296-CK 0.75±0.017 a 5335.16±294.61 a 549.92±40.06 a 5.49±0.34 a
立原296-Cd LY296-Cd 0.50±0.026 b 2992.03±186.44 b 325.36±28.87 b 3.33±0.19 b

图1

镉胁迫对不同耐镉型玉米品种侧根密度的影响 处理同表2。误差线表示标准差。不同小写字母表示同一品种处理间差异显著(P < 0.05)。"

图2

镉胁迫下不同耐镉型玉米品种根系生理指标的变化 处理同表2。误差线表示标准差。不同小写字母表示同一品种处理间差异显著(P < 0.05)。"

图3

镉胁迫对不同耐镉型玉米品种根系呼吸速率以及AOX途径占比的影响 处理同表2。误差线表示标准差。不同小写字母表示同一品种处理间差异显著(P < 0.05)。"

图4

镉胁迫对不同耐镉型玉米品种植株干物质积累和根冠比的影响 处理同表2。误差线表示标准差。不同小写字母表示同一品种处理间差异显著(P < 0.05)。"

[1] Zhang Z, Liu C F, Wang X M, Shi G R. Cadmium-induced alterations in morpho-physiology of two peanut cultivars differing in cadmium accumulation. Acta Phys Plant, 2013, 35: 2105-2112.
[2] 刘倩.山东省J县农田土壤与农作物重金属污染分析. 山东农业大学硕士学位论文, 山东泰安, 2019.
Liu Q. Analysis of Heavy Metal Pollution in Farmland Soil and Crops in J County of Shandong Province. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2019. (in Chinese with English abstract)
[3] Vasileios A, Efi L, Sabry M S, Yong S O, Abin S, Christel B, Majeti N V P, Walter W W, Jörg R. Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation: a review. Earth-Sci Rev, 2017, 171: 621-645.
doi: 10.1016/j.earscirev.2017.06.005
[4] Li C, Liu Y, Tian J, Zhu Y S, Fan J J. Changes in sucrose metabolism in maize varieties with different cadmium sensitivities under cadmium stress. PLoS One, 2020, 15: e0243835.
doi: 10.1371/journal.pone.0243835
[5] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50: 1941-1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017, 50: 1941-1959. (in Chinese with English abstract)
[6] 王世玉, 吴文勇, 刘菲, 赵漫, 邱建强, 仵军军. 典型污灌区土壤与作物中重金属健康风险评估. 中国环境科学, 2018, 38: 1550-1560.
Wang S Y, Wu W Y, Liu F, Zhao M, Qiu J Q, Wu J J. Assessment of human health risks of heavy metals in the typical sewage irrigation areas. China Environ Sci, 2018, 38: 1550-1560. (in Chinese with English abstract)
[7] 周艳, 万金忠, 李群, 黄剑波, 张胜田, 龙涛, 邓绍坡. 铅锌矿区玉米中重金属污染特征及健康风险评价. 环境科学, 2020, 41: 4733-4739.
pmid: 33124407
Zhou Y, Wan J Z, Li Q, Huang J B, Zhang S T, Long T, Deng S P. Heavy metal contamination and health risk assessment of corn grains from a Pb-Zn mining area. Environ Sci, 2020, 41: 4733-4739. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.202004139 pmid: 33124407
[8] 管伟豆, 郭堤, 王萍, 张增强, 李荣华. 北方农田镉污染土壤玉米生产阈值及产区划分初探. 环境科学, 2021, 42: 5958-5966.
Guan W D, Guo T, Wang P, Zhang Z Z, Li R H. Investigations on the derivation of safe maize-producing threshold of soil Cd content and on classification of Cd contaminated maize-producing areas in northern China. Environ Sci, 2021, 42: 5958-5966. (in Chinese with English abstract)
doi: 10.1021/es703118s
[9] Anjum S A, Tanveer M, Hussain S, Bao M C, Wang L C, Khan I, Ullah E, Tung S A, Samad R A, Shahzad B. Cadmium toxicity in maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res, 2015, 22: 17022-17030.
doi: 10.1007/s11356-015-4882-z
[10] Sun G Y, Meng Y, Wang Y, Zhao M, Wei S, Gu W R. Exogenous hemin optimized maize leaf photosynthesis, root development, grain filling, and resource utilization on alleviating cadmium stress under field condition. J Soil Sci Plant Nutr, 2021, 22: 631-646.
doi: 10.1007/s42729-021-00674-y
[11] 王学华, 戴力. 作物根系镉滞留作用及其生理生化机制. 中国农业科学, 2016, 49: 4323-4341.
Wang X H, Dai L. Immobilization effect and its physiology and biochemical mechanism of the cadmium in crop roots. Sci Agric Sin, 2016, 49: 4323-4341. (in Chinese with English abstract)
[12] 束红梅, 郭书巧, 巩元勇, 倪万潮, 沈新莲, 张香桂, 徐鹏. 盐胁迫对作物根系的影响及基因工程改良. 分子植物育种, 2013, 11: 657-662.
Shu H M, Guo S Q, Gong Y Y, Ni W C, Shen X L, Zhang X G, Xu P. The influence of salt stress on crop root and its genetic improvement. Mol Plant Breed, 2013, 11: 657-662. (in Chinese with English abstract)
[13] 彭鸥, 刘玉玲, 铁柏清, 董思俊, 魏祥东, 刘孝利, 周细红. 施硅对镉胁迫下水稻镉吸收和转运的调控效应. 生态学杂志, 2019, 38: 1049-1056.
Peng O, Liu Y L, Tie B Q, Dong S J, Wei X D, Liu X L, Zhou X H. Effects of silicon application on cadmium uptake and translocation of rice under cadmium stress. Chin J Ecol, 2019, 38: 1049-1056. (in Chinese with English abstract)
[14] Zhang L G, Zhang C, Du B Y, Lu B X, Zhou D M, Zhou J, Zhou J. Effects of node restriction on cadmium accumulation in eight Chinese wheat (Triticum turgidum) cultivars. Sci Total Environ, 2020, 725: 138358-138366.
doi: 10.1016/j.scitotenv.2020.138358
[15] Javed M T, Akram M S, Tanwir K, Chaudhary H J, Ali Q, Stoltz E, Lindberg S. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars. Ecotoxic Environ Saf, 2017, 141: 216-225.
doi: 10.1016/j.ecoenv.2017.03.027
[16] Ghulam H A, Javaid A, Muhammad A, Waqas M, Shafaqat A, Chen Z H, Zhang G P. Morpho-physiological and micrographic characterization of maize hybrids under NaCl and Cd stress. Plant Growth Regul, 2015, 75: 115-122.
doi: 10.1007/s10725-014-9936-6
[17] 邵小杰, 杨洪强, 乔海涛, 张龙, 由淑贞. 氯化镉对葡萄根系线粒体特性与根系活力的影响. 应用生态学报, 2009, 20: 1390-1394.
Shao X J, Yang H Q, Qiao H T, Zhang L, You S Z. Effects of CdCl2 on grape root mitochondrial characteristic sand root activity. Chin J Appl Ecol, 2009, 20: 1390-1394. (in Chinese with English abstract)
[18] Srivastava R K, Rajpoot R, Pandey P, Rani A, Dubey R S. Cadmium alters mitochondrial membrane potential, inhibits electron transport chain activity and induces callose deposition in rice seedlings. J Plant Growth Regul, 2018, 37: 335-344.
doi: 10.1007/s00344-017-9726-2
[19] 杨兰芳, 蔡祖聪, 祁士华. 氮肥用量对玉米不同生育期光合产物运往地下的影响. 作物学报, 2006, 32: 1802-1808.
Yang L F, Cai Z C, Qi S H. Effects of nitrogen rate on assimilate transportation to underground at different maize growing stages. Acta Agron Sin, 2006, 32: 1802-1808. (in Chinese with English abstract)
[20] 曹樱迪.镉对玉米富友9和沈玉33萌发期生理代谢特征的影响. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2020.
Cao Y D. Effects of Cadmium on Physiological and Metabolic Characteristics of Fuyou 9 and Shenyu 33 Maize During Germination. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2020. (in Chinese with English abstract)
[21] Lynch J P. Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture. Plant Cell Environ, 2015, 38: 1775-1784.
doi: 10.1111/pce.12451
[22] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 164-167, 184, 258-260.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 164-167, 184, 258-260. (in Chinese)
[23] 陈顺钰.长汀稀土矿废弃地植被恢复优势树种种子萌发对镉和酸胁迫的响应. 福建农林大学硕士学位论文, 福建福州, 2019.
Chen S Y. Response of Seed Germination of Dominant Tree Species to Cd and Acid Stress in Wasteland of Changting Rare Earth Mine. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China 2019. (in Chinese with English abstract)
[24] 夏雪姣, 菅明阳, 韩玉翠, 翟晓光, 赵丹阳, 朱婷, 辛芳, 曹冠男, 丁勤, 马翎健. 镉胁迫对小麦形态发育及生理代谢的影响. 农业生物技术学报, 2018, 26: 1494-1503.
Xia X J, Jian M Y, Han Y C, Zhai X G, Zhao D Y, Zhu T, Xin F, Cao G N, Ding Q, Ma L J. Effects of cadmium stress on morphological development and physiological metabolism in wheat (Triticum aestivum). J Agric Biotechnol, 2018, 26: 1494-1503. (in Chinese with English abstract)
[25] 张玲, 李俊梅, 王焕校. 镉胁迫下小麦根系的生理生态变化. 土壤通报, 2002, 33: 61-65.
Zhang L, Li J M, Wang H X. Physiological and ecological responses of wheat (Triticum aestivum L.) root to cadmium stress. Chin J Soil Sci, 2002, 33: 61-65. (in Chinese with English abstract)
[26] Fan X Y, Wen X H, Huang F, Cai Y X, Cai K Z. Effects of silicon on morphology, ultrastructure and exudates of rice root under heavy metal stress. Acta Physiol Plant, 2016, 38: 197.
doi: 10.1007/s11738-016-2221-8
[27] 孟瑶.氯化血红素(Hemin)增强玉米耐镉胁迫的生理生态机制及其大田验证研究. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2020.
Meng Y.Mitigation Effect and Physiological and Ecological Regulation Mechanism of Exogenous Hemin on Maize Seedling under Cadmium Stress. PhD Dissertation of Northeast Agricultural University, Harbin, Heilongjiang, China, 2020. (in Chinese with English abstract)
[28] 张金尧.活性氧介导缺锌胁迫下玉米根系生长发育的研究. 华中农业大学博士学位论文, 湖北武汉, 2019.
Zhang J Y.Study on Involment of Reactive Oxygen Species in Root Development of Maize under Zinc Deficiency. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2019. (in Chinese with English abstract)
[29] Potters G, Pasternak T P, Guisez Y, Jansen M A K. Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell Environ, 2009, 32: 158-169.
doi: 10.1111/j.1365-3040.2008.01908.x
[30] 曹莹, 周国驰, 王晓旭, 于慧佳. 生物炭对镉胁迫下花生根系形态学特性及根镉含量的影响. 土壤通报, 2018, 49: 197-203.
Cao Y, Zhou G C, Wang X X, Yu H J. Effects of biochar on root morphology and cadmium content in peanut under cadmium stress. Chin J Soil Sci, 2018, 49: 197-203. (in Chinese with English abstract)
doi: 10.1046/j.1365-2389.1998.00149.x
[31] Bahn M, Lattanzi F A, Hasibeder R, Wild B, Koranda M, Danese V, Brüggemann N, Schmitt M, Siegwolf R, Richter A. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland. New Phytol, 2013, 198: 116-126.
doi: 10.1111/nph.12138
[32] 何俊瑜, 任艳芳, 王阳阳, 李兆君. 不同耐性水稻幼苗根系对镉胁迫的形态及生理响应. 生态学报, 2011, 31: 522-528.
He J Y, Ren Y F, Wang Y Y, Li Z J. Root morphological and physiological responses of rice seedings with different tolerance to cadmium stress. Acta Ecol Sin, 2011, 31: 522-528. (in Chinese with English abstract)
[33] 吕冬梅, 朱广龙, 王玥, 施雨, 卢发光, 任桢, 刘昱茜, 顾立峰, 卢海潼, Irshad A, 焦秀荣, 孟天瑶, 周桂生. 苗期重金属胁迫下蓖麻生长、生理和重金属积累效应. 作物学报, 2021, 47: 728-737.
doi: 10.3724/SP.J.1006.2021.04146
Lyu D M, Zhu G L, Wang Y, Shi Y, Lu F G, Ren Z, Liu Y Q, Gu L F, Lu H T, Irshad A, Jiao X R, Meng T Y, Zhou G S. Growth, physiological, and heavy metal accumulation traits at seedling stage under heavy metal stress in castor (Ricinus communis L.). Acta Agron Sin, 2021, 47: 728-737. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04146
[34] 刘彩凤, 史刚荣, 余如刚, 张铮. 硅缓解植物镉毒害的生理生态机制. 生态学报, 2017, 37: 7799-7810.
Liu C F, Shi G R, Yu R G, Zhang Z. Ecophysiological mechanisms of silicon-induced alleviation of cadmium toxicity in plants: a review. Acta Ecol Sin, 2017, 37: 7799-7810. (in Chinese with English abstract)
[35] 李志霞, 秦嗣军, 吕德国, 聂继云. 植物根系呼吸代谢及影响根系呼吸的环境因子研究进展. 植物生理学报, 2011, 47: 957-966.
Li Z X, Qi S J, Lyu D G, Nie J Y. Research progress in root respiratory metabolism of plant and the environmental influencing factors. Plant Physiol J, 2011, 47: 957-966. (in Chinese with English abstract)
[36] 詹洁, 寇瑞杰, 李创珍, 何虎翼, 何龙飞. 铝胁迫对花生根尖线粒体膜生理特性的影响. 作物学报, 2009, 35: 1059-1067.
Zhan J, Kou R J, Li C Z, He H Y, He L F. Effects of aluminum on physiological characteristics of mitochondrial membrane in peanut root tips. Acta Agron Sin, 2009, 35: 1059-1067. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.01059
[37] Astolfi S, Zuchi S, Passera C. Effect of cadmium on H+ ATPase activity of plasma membrane vesicles isolated from roots of different S-supplied maize (Zea mays L.) plants. Plant Sci, 2005, 169: 361-368.
doi: 10.1016/j.plantsci.2005.03.025
[38] Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 2001, 212: 475-486.
pmid: 11525504
[39] 谢佳佳.交替呼吸途径在环境胁迫下通过调节抗氧化防御水平来维持PSII的运行. 西北师范大学硕士学位论文, 甘肃兰州, 2018.
Xie J J. Alternative Respiratory Pathways Maintain PSII Function by Regulating Antioxidant Defenses under Environmental Stress. MS Thesis of Northwest Normal University, Lanzhou, Gansu, China, 2018. (in Chinese with English abstract)
[40] Garmash E V, Golovko T K. Effect of cadmium on growth and respiration of barley plants grown under two temperature regimes. Russian J Plant Physiol, 2009, 56: 343-347.
doi: 10.1134/S1021443709030066
[1] 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析[J]. 作物学报, 2022, 48(9): 2155-2167.
[2] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[3] 王权, 王乐乐, 朱铁忠, 任浩杰, 王辉, 陈婷婷, 金萍, 武立权, 杨茹, 尤翠翠, 柯健, 何海兵. 离体饲养下HgCl2影响水稻叶片光合特性及其生理机制研究[J]. 作物学报, 2022, 48(9): 2377-2389.
[4] 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8): 1871-1883.
[5] 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006.
[6] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027.
[7] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[8] 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850.
[9] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[10] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[11] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[12] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[13] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[14] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[15] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[4] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[5] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[6] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[7] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 张书标;杨仁崔. e-杂交稻若干生物学特性研究[J]. 作物学报, 2003, 29(06): 919 -924 .
[10] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .