欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (06): 1011-1019.doi: 10.3724/SP.J.1006.2014.01011

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

结球甘蓝雌蕊调控因子SPT与HEC1的克隆及相互作用分析

许俊强,孙梓健,刘智宇,杨朴丽,汤青林,王志敏,宋明*,王小佳*   

  1. 西南大学园艺园林学院 / 南方山地园艺学教育部重点实验室 / 重庆市蔬菜学重点实验室, 重庆 400715
  • 收稿日期:2013-07-01 修回日期:2014-03-04 出版日期:2014-06-12 网络出版日期:2014-04-08
  • 通讯作者: 王小佳, E-mail: wxj@swu.edu.cn; 宋明,E-mail: swausongm@163.com, Tel: 023-68251093
  • 基金资助:

    本研究由国家自然科学基金项目(31071802, 31000908), 重庆市自然科学基金重点项目(2011BA1002), 中央高校基本科研业务费专项(XDJK2012B020)和国家重点基础研究发展计划(973计划)(2012CB113900)资助。

Cloning and Interaction between Transcription Factors SPT and HEC1 of Pistil of Brassica oleracea L.var. capitata L.

XU Jun-Qiang,SUN Zi-Jian,LIU Zhi-Yu,YANG Pu-Li,TANG Qing-Lin,WANG Zhi-Min,SONG Ming*,WANG Xiao-Jia*   

  1. Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education / Chongqing Key Laboratory of Olericulture / College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China?
  • Received:2013-07-01 Revised:2014-03-04 Published:2014-06-12 Published online:2014-04-08
  • Contact: 王小佳, E-mail: wxj@swu.edu.cn; 宋明,E-mail: swausongm@163.com, Tel: 023-68251093

摘要:

为研究SPT和HECs及其相互作用对甘蓝雌蕊发育的影响, 以结球甘蓝自交不亲和系E1为材料, 提取雌蕊总RNA, 根据拟南芥中SPTHEC1基因设计引物, 采用同源克隆的方法克隆SPT基因, 其序列1085 bp, 开放阅读框(ORF) 1062 bp; HEC1基因ORF 696 bp。通过cDNA推导得到的氨基酸序列表明, SPT编码353个氨基酸残基, 预测分子量为37.67 kD, pI为6.83; HEC1编码231个氨基酸残基, 预测分子量为25.26 kD, pI为10.2。分析表明, 两基因在各器官中均表达, 但SPT在果实和雌蕊中表达量最高, 而HEC1在根和花蕾中的表达量最高。为检测两者的相互作用, 构建原核表达质粒pCold I-SPT和pGEX-HEC1, Pull-down试验表明两蛋白能够在体外相互作用。同时构建pGBKT7-SPT、pGADT7-HEC1及互换载体pGBKT7-HEC1和pGADT7-SPT酵母表达载体, 分别转化酵母Y2HGold和Y187感受态细胞后均未出现自激活和毒性现象, 融合后的二倍体酵母均能在SD/–Trp–Leu–Ade–His/X-α-gal/AbA板上长出蓝色菌斑, 表明SPT和HEC1能够相互作用激活下游的HIS3AUR1-CMEL1ADE2报告基因, 酵母双杂交试验结果与Pull-down检测一致, 说明SPT和HEC1能够相互作用以调控雌蕊的发育。

关键词: 结球甘蓝, 雌蕊, SPT, HEC1, 相互作用, 酵母双杂交

Abstract:

To explore interaction of SPT and HECs in cabbage pistil development, we took stigma of self-incompatibility line E1 to obtain total RNA for first-strain cDNA synthesis, and cloned SPT gene fragment with the ORF of 1062 bp and HEC1 gene with 696bp by using primers according to SPT and HEC1 genes in Arabidopsis. Amino acid sequence analysis showed that SPT and HEC1we cloned encoded 353 and 231 amino acid residues, respectively; the predicted molecular weight of SPT protein was 37.67 kD, with pI of 6.83; the predicted molecular weight of HEC1 protein was 25.26 kD, with pI of 10.23. Relative expression of SPT was the highest in the fruit and pistil, that of HEC1 was the highest in the root and bud. Prokaryotic expression plasmids pCold I-SPT and pGEX-HEC1 were constructed and then transformed into E. coli Rosetta (DE3). The Pull-down assay showed that the two tagged expression products could interact with each other. To verify the interactions furtherly, we constructed yeast expression vectors pGBKT7-SPT, pGADT7-HEC1, and pGADT7-SPT, pGBKT7-HEC1 to transform into yeast Y2HGold and Y187 strains, respectively. Finally, diploid yeast showed positive results in SD/–Ade–Trp–Leu–His/X-α-gal/AbA synthetic dropout. It demonstrated that interaction between SPT and HEC1 can activate HIS3, AUR1-C,and ADE2 reporter genes downstream. Yeast two-hybrid experimental results as well as the pull-down assay showed that SPT and HEC1 can form heterodimer to regulate the development of pistil.

Key words: Brassica oleracea, Pistil, SPT, HEC1, Interaction, Yeast two-hybrid

[1]Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant, 2008, 133: 670–681



[2]Damon P M, Ma Q F, Rengel Z. Wheat genotypes differ in potassium accumulation and osmotic adjustment under drought stress. Crop Pasture Sci, 2011, 62: 550–555



[3]Zhang G P, Chen J X, Eshetu A T. Genotypic variation for potassium uptake and utilization efficiency in wheat. Nutr Cycl Agroecosyst, 1999, 54: 41–48



[4]Wong M T F, Corner R J, Cook S E. A decision support system for mapping the site-specific potassium requirement of wheat in the field. Aust J Exp Agric, 2001, 41: 655–661



[5]Roshania G A, Narayanasamyb G. Effects of potassium on temporal growth of root and shoot of wheat and its uptake in different soils. Int J Plant Prod, 2010, 4: 25–32



[6]凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000, pp 271–276



Lin Q H. Crop Population Quality. Shanghai: Shanghai Scientific & Technical Publishers, 2000. pp 271–276 (in Chinese)



[7]谭金芳, 介晓磊, 韩燕来, 郑义. 潮土区超高产麦田供钾特点与小麦钾素营养研究. 麦类作物学报, 2001, 21: 45–50



Tan J F, Jie X L, Han Y L, Zheng Y. Study on potassium supplying properties in super-high yield wheat field in Chao soil region and potassium nutrition characteristics of wheat. J Triticeae Crops, 2001, 21: 45–50 (in Chinese with English abstract)



[8]余松烈, 亦新华, 刘希运. 高产冬小麦对三要素的吸收和供应特点的研究. 土壤肥料, 1981, (1): 31–34



Yu S L, Yi X H, Liu X Y. Studies on absorption and supply characteristics of three elements in high-yield winter wheat. Soils Fert, 1981, (1): 31–34 (in Chinese)



[9]韩燕来, 介晓磊, 谭金芳, 郭天财, 朱云集, 王晨阳, 夏国军, 刘征. 超高产冬小麦氮麟钾吸收、分配与运转规律的研究. 作物学报, 1998, 24: 908–915



Han Y L, Jie X L, Tang J F, Guo T C, Zhu Y J, Wang C Y, Xia G J, Liu Z. Studies on absorption, distribution and translocation of N, P and K of super-high yield winter wheat. Acta Agron Sin, 1998, 24: 908–915 (in Chinese with English abstract)



[10]于振文, 田奇卓, 潘庆民, 岳寿松, 王东, 段藏禄, 段玲玲, 王志军, 牛运生. 黄淮麦区冬小麦超高产栽培的理论与实践. 作物学报, 2002, 28: 577–585



Yu Z W, Tian Q Z, Pan Q M, Yue S S, Wang D, Duan Z L, Duan L L, Wang Z J, Niu Y S. Theory and practice on cultication of super high yield of winter in the wheat fields of Yellow River and Huaihe River districts. Acta Agron Sin, 2002, 28: 577–585 (in Chinese with English abstract)



[11]王强盛, 甄若宏, 丁艳锋, 吉忠军, 曹卫星, 黄丕生. 钾肥用量对优质粳稻钾素积累利用及稻米品质的影响. 中国农业科学, 2004, 37: 1444–1450



Wang Q S, Zhen R H, Ding Y F, Ji Z J, Cao W X, Huang P S. Effects of potassium fertilizer application rates on plant potassium accumulation and grain quality of japonica rice. Sci Agric Sin, 2004, 37: 1444–1450 (in Chinese with English abstract)



[12]Zhang H M, Yang X Y, He X H, Xu M G, Huang S M, Liu H, Wang B R. Effect of long-term potassium fertilization on crop yield and potassium efficiency and balance under wheat-maize rotation in China. Pedosphere, 2011, 21: 154–163



[13]杜世州, 曹承富, 张耀兰, 赵竹, 乔玉强, 刘永华, 张四华. 氮素运筹对淮北地区超高产小麦养分吸收利用的影响. 植物营养与肥料学报, 2011, 17: 9–15



Du S Z, Cao C F, Zhang Y L, Zhao Z, Qiao Y Q, Liu Y H, Zhang S H. Effects of nitrogen application on nitrogen absorption, utilization in super-high-yielding wheat in Huaibei region. Plant Nutr Fert Sci, 2011, 17: 9–15 (in Chinese with English abstract)



[14]周玲, 赵护兵, 王朝辉, 孟晓瑜, 王建伟, 陈辉林, 李小涵. 不同产量水平旱地冬小麦品种氮磷钾养分积累与转移的差异分析. 中国生态农业学报, 2011, 19: 318-325



Zhou L, Zhao H B, Wang Z H, Meng X Y, Wang J W, Chen H L, Li X H. NPK accumulation and translocation in dryland winter wheat cultivars with different yields. Chin J Eco-Agric, 2011, 19: 318–325 (in Chinese with English abstract)



[15]Swiadera J M, Chyana Y, Freijia F G. Genotypic differences in nitrate uptake and utilization efficiency in pumpkin hybrids. J Plant Nutr, 1994, 17: 1687–1699



[16]Damon P M, Rengel Z. Wheat genotypes differ in potassium efficiency under glasshouse and field conditions. Aust J Agric Res 2007, 58: 816–825



[17]于振文, 梁晓芳, 李延奇, 王雪. 施钾量和施钾时期对小麦氮素和钾素吸收利用的影响. 应用生态学报, 2007, 18: 69–74



Yu Z W, Liang X F, Li Y Q, Wang X. Effects of potassium application rate and time on the uptake and utilization of nitrogen and potassium by winter wheat. Chin J Appl Ecol, 2007, 18: 69–74 (in Chinese with English abstract)



[18]赵俊晔, 于振文, 李延奇, 王雪. 施氮量对小麦氮磷钾养分吸收利用和产量的影响. 西北植物学报, 2006, 26: 98–103



Zhao J Y, Yu Z W, Li Y Q, Wang X. Effects of different nitrogen rates of fertilization on nitrogen, phosphorous and potassium uptakes and utilizations as well as kernel yield of wheat under high yield circumstances. Bot Boreali-Occident Sin, 2006, 26: 98–103 (in Chinese with English abstract)

[1] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[2] 陈玉婷, 刘露, 楚盼盼, 魏嘉贤, 钱慧娜, 陈华, 蔡铁城, 庄伟建, 张冲. 受青枯菌诱导的花生根酵母双杂交文库构建和AhRRS5互作蛋白的筛选[J]. 作物学报, 2021, 47(11): 2134-2146.
[3] 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321.
[4] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[5] 柯丹霞,彭昆鹏. 利用酵母双杂交系统筛选大豆结瘤因子受体NFR1α的互作蛋白[J]. 作物学报, 2020, 46(01): 31-39.
[6] 白晓璟,廉小平,王玉奎,张贺翠,刘倩莹,左同鸿,张以忠,谢琴琴,胡燈科,任雪松,曾静,罗绍兰,蒲敏,朱利泉. 甘蓝SI相关基因BoCDPK14的克隆与分析[J]. 作物学报, 2019, 45(12): 1773-1783.
[7] 蒲敏, 罗绍兰, 廉小平, 张贺翠, 白晓璟, 王玉奎, 左同鸿, 高启国, 任雪松, 朱利泉. 自花授粉诱导的甘蓝功能基因BoSPI的克隆与表达分析[J]. 作物学报, 2018, 44(02): 177-184.
[8] 董萌,高友菲,韩天富,东方阳,蒋炳军. 大豆14-3-3蛋白与转录因子蛋白GmMYB173的互作[J]. 作物学报, 2016, 42(10): 1419-1428.
[9] 杨莎,李燕,郭峰,张佳蕾,孟静静,李萌,万书波,李新国. 利用酵母双杂交系统筛选花生AhCaM相互作用蛋白[J]. 作物学报, 2015, 41(07): 1056-1063.
[10] 高启国,刘豫东,蒲全明,张林成,朱利泉,王小佳. 甘蓝BoExo70A1与BoSEC3、BoExo84蛋白相互作用的酵母双杂交检测[J]. 作物学报, 2015, 41(06): 972-978.
[11] 刘荣榜,陈明,郭萌萌,司青林,高世庆,徐兆师,李连城,马有志,尹钧. 拟南芥H+-焦磷酸化酶AVP1互作小GTP结合蛋白AtRAB的特性鉴定与功能分析[J]. 作物学报, 2014, 40(10): 1756-1766.
[12] 汪信东,陈亮,张增艳. 抗小麦黄矮病相关蛋白激酶TiDPK1与BYDV外壳蛋白的互作[J]. 作物学报, 2013, 39(10): 1720-1726.
[13] 蔺芳芳,杨旭,武小翠,刘晓梅,葛荣朝,赵宝存. 利用分裂泛素酵母双杂交技术钓取小麦TaSC互作蛋白质[J]. 作物学报, 2013, 39(03): 423-430.
[14] 宋明,许俊强,孙梓健,汤青林,王志敏,王小佳. 结球甘蓝花粉类钙调素蛋白基因BoCML49的克隆及表达分析[J]. 作物学报, 2012, 38(12): 2162-2169.
[15] 薛丽琰,罗兵,朱利泉,杨永军,张贺翠,常登龙,陈松,彭一波,杨红,曾静,杨昆,高启国,李成琼,任雪松,王小佳. 甘蓝SCR识别与结合SRK胞外域核心编码区DNA序列的酵母双杂交检测[J]. 作物学报, 2012, 38(09): 1583-1591.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!