欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (06): 1020-1026.doi: 10.3724/SP.J.1006.2014.01020

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个化学诱变的小麦斑点叶突变体的生理和遗传分析

杜丽芬1,**,李明飞1,**,刘录祥2,王超杰1,刘洋1,许喜堂1,邹淑芳1,谢彦周1,*,王成社1,*   

  1. 1西北农林科技大学旱区作物逆境生物学国家重点实验室 / 农学院, 陕西杨凌 712100;  2中国农业科学院作物科学研究所, 北京100081
  • 收稿日期:2013-10-10 修回日期:2014-03-04 出版日期:2014-06-12 网络出版日期:2014-04-08
  • 通讯作者: 谢彦周, E-mail: xieyanzhou@gmail.com;王成社, E-mail: wangcs2008@126.com
  • 基金资助:

    本研究由国家自然科学基金项目(31101139),国家高技术研究发展计划(863计划)项目(2012AA101202), 陕西省统筹项目(2011KTZB02-01-01)和西北农林科技大学博士科研启动经费(2010BSJJ035)资助。

Physiological Characteristics and Genetic Analysis on a Spotted-Leaf Wheat Derived from Chemical Mutation

DU Li-Fen1,**,LI Ming-Fei1,**,LIU Lu-Xiang2,WANG Chao-Jie1,LIU Yang1,XU Xi-Tang1,ZOU Shu-Fang1,XIE Yan-Zhou1,*,WANG Cheng-She1,*   

  1. 1 State Key Laboratory of Crop Stress Biology in Arid Areas / College of Agronomy, Northwest A&F University, Yangling 712100, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2013-10-10 Revised:2014-03-04 Published:2014-06-12 Published online:2014-04-08
  • Contact: 谢彦周, E-mail: xieyanzhou@gmail.com;王成社, E-mail: wangcs2008@126.com

摘要:

通过EMS诱变普通小麦品系H261获得一个稳定遗传的斑点叶突变体LF2010。在自然条件下, 该突变体在三叶期叶片基部开始出现黄色斑点, 随后逐步扩散到全片叶、叶鞘、颖壳和麦芒。斑点部位不存在细胞死亡, 斑点性状的表达受光照和温度诱导, 突变体的色素含量、光合速率随着斑点的出现而显著下降。突变体的株高、有效穗数、单株产量、穗长、结实率和旗叶长等农艺性状显著下降, 但是千粒重和旗叶宽却与野生型无差异。将突变体与正常绿色品系杂交, 对其F1、F2和BC1代的遗传分析表明, LF2010的突变性状由1对隐性核基因控制。

关键词: 斑点叶突变, 光合色素含量, 光合特性, 农艺性状, 遗传分析

Abstract:

A light and temperature affected spotted-leaf mutant LF2010 (Triticum aestivum L.) was obtained from a mutagenic treatment with EMS on a wheat line H261. The bright yellow spot became evident once the third leaf will expanded, then covered later leaves and leaf sheaths of the whole plant including tissues of spike. The mutant plants differed from normal plants in terms of total chlorophyll content and net photosynthetic rate once symptom appeared on the leaves. The plant height, spike length, spike number per plant, grain weight per plant, grain number per spike, seed setting rate, and flag leaf length were lower in the mutant than in the wild type. However, the 1000-grain weight and flag leaf width of the mutant had no significant difference with those of the wild type. Genetic analysis based on F1, F2, and BC1 populations revealed that the yellow spot trait was controlled by a single recessive gene.

Key words: Spotted-leaf mutant, Photosynthetic pigments, Photosynthetic characteristics, Agronomic traits, Inheritance

[1]Walls J. The Homozygous and Heterozygous Effects of an Aurea Mutation on Plastid Development in Spruce (Picea abies (L.) Karst). Stud For Suec, 1967, 60: 1-20

[2]Beale S I. Enzymes of chlorophyll biosynthesis, Photosynth Res, 1999, 60: 43–73

[3]姜卫兵, 庄猛, 韩浩章, 戴美松, 花国平. 彩叶植物呈色机理及光合特性研究进展.园艺学报, 2005, 32: 352–358

Jang W B, Zhuang M, Han H Z, Dai M S, Hua G P. Progress on color emerging mechan ism and photosynthetic characteristics of colored-leaf plants. Acta Hort Sin, 2005, 32: 352–358 (in Chinese with English abstract)

[4]Frank H A, Violettel C A, Trautman J K, Shrevez A P, Owens T G., Albrecht A C. Cartenoids in photosynthesis: structure and photochemistry. Pure Appl Chem, 1991, 63: 109–114

[5]Grimm B, Porra R J, Rüdiger W, Scheer H. Chlorophylls and Bacterio chlorophylls: Biochemistry Biophysics, Functions and Applications, Advances in Photosynthesis and Respiration, Dordrecht, the Netherlands: Springer, 2006. pp 397–412

[6]曹莉, 王辉, 孙道杰, 冯毅. 小麦黄化突变体光合作用及叶绿素荧光特性研究. 西北植物学报, 2006, 26: 2083–2087

Cao L, Wang H, Sun D J, Feng Y.  Photosynthesis and chlorophyll fluorescence characters of xantha wheat mutants. Acta Bot Boreali-Occident Sin, 2006, 26: 2083–2087 (in Chinese with English abstract)

[7]韩锁义, 杨玛丽, 陈远东,于静静, 赵团结, 盖钧镒, 喻德跃. 大豆“南农94216”突变体库的构建及部分性状分析. 核农学报, 2008, 22: 131-135

Han S Y, Yang M L, Chen Y D, Yu J J, Zhao T J, Gai J Y, Yu D Y. Construction of mutant library for soybean ‘Nannong 94-16’and analysis of some characters . J Nucl Agric Sci, 2008, 22: 131–135 (in Chinese with English abstract)

[8]赵洪兵, 郭会君, 赵林姝, 古佳玉, 赵世荣, 李军辉, 刘录祥. 作物学报, 2011, 37: 119–126

Zhao H B, Guo H J, Zhao L S, Gu J Y, Zhao S R, Li J H, Liu L X. Agronomic traits and photosynthetic characteristics of chlorophyll-deficient wheat mutant induced by spaceflight environment. Acta Agron Sin, 2011, 37: 119–126 (in Chinese with English abstract)

[9]Awan M A, Konzak C F, Rutger J N, Nilan R A. Mutagenic deflects of Sodium azide in rice. Crop Sci, 1980, 20: 663–668

[10]Takahashi A, Kawasaki T, Henmi K, Shii K, Kodama O, Satoh H, Shimamoto K. Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J, 1999, 17: 535–545

[11]Badigannavar A M, Kale D M, Eapen, Murty G S S. Inheritance of disease lesion mimic leaf trait in groundnut. J Hered, 2002,93: 50–52

[12]Hu G S, Yalpani N, Briggs S P, Johal G S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998, 10: 1095–1105

[13]Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Van Daelen R, Van der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695–705

[14]Ishikawa A, Okamoto H, Iwasaki Y, Asahi T. A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J, 2001, 27: 89-99

[15]黄奇娜, 杨杨, 施勇烽, 陈洁, 吴建利. 水稻斑点叶变异研究进展. 中国水稻科学, 2010, 24: 108–115

Huang Q N, Yang Y, Shi Y F, Chen J, Wu J L. Recent advances in research on spotted-leaf mutants of rice (Oryza sativa). Chin J Rice Sci, 2010, 24: 108–115 (in Chinese with English abstract)

[16]Neuffer M G, Calvert O H. Dominant disease lesion mimics in maize. J Hered, 1975: 66: 265–270

[17]Hu G S, Yalpani N, Briggs S P, Johal G S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998, 10: 1095–1105

[18]Nair S K, Tomar S M S. Genetical and anatomical analyses of a leaf flecking mutant in Triticum aestivum L. Euphytica, 2001,121: 53–58

[19]Kamlofski C A, Antonelli E, Bender C, Jaskelioff M., Danna C H, Ugalde R., Acevedo A. A lesion-mimic mutant of wheat with enhanced resistance to leaf rust. Plant Pathol, 2007, 56: 46–54

[20]Kamlofski C A, Acevedo A. The HLP mutation confers enhanced resistance to leafrust in different wheat genetic backgrounds. Agric Sci, 2010, 1: 56–61

[21]Luo P G, Ren Z L. Wheat leaf chlorosis controlled by a single recessive gene. J Plant Physiol Mol Biol, 2006, 32: 330–338

[22]Li T, Bai G H. Lesion mimic associates with adult plant resistance to leaf rust infection in wheat. Theor Appl Genet., 2009, 119: 13–21

[23]Yao Q, Zhou R H, Fu T H, Wu W R, Zhu Z D, Li A L, Jia J Z. Characterization and mapping of complementary lesion-mimic genes lm1 and lm2 in common wheat. Theor Appl Genet, 2009, 119: 1005–1012

[24]王建军, 朱旭东, 王林友, 张利华, 薛庆中, 何祖华. 水稻类病变突变体lrd40的抗病性与细胞学分析. 中国水稻科学, 2005, 19: 111–116

Wang J J, Zhu X D, Wang L Y, Zhang L H, Xue Q Z, He Z H. Disease resistance and cytological analyses on lesion resembling disease mutant lrd40 in Oryza sativa. Chin J Rice Sci, 2005, 19: 111–116 (in Chinese with English abstract)

[25]马健阳, 陈孙禄, 张建辉, 董彦君, 滕胜. 一个水稻类病条纹斑突变体的鉴定和遗传定位. 中国水稻科学, 2011, 25: 150–156

Ma J Y, Chen S L, Zhang J H, Dong Y J, Teng S. Identification and genetic mapping of a lesion mimic strip mutant in rice. Chin J Rice Sci , 2011, 25: 150–156 (in Chinese with English abstract)

[26]Koch E, Slusarenko A. Arabidopsis is susceptible to ilnfection by a downy mildew fungus. Plant Cell, 1990, 2: 437-445

[27]Hill C M, Pearson S A, Smith A J, Rogers L J. Inhibition of chlorophyll synthesis in Hordeum vulgare by 3-amino 2,3-dihydrobenzoic acid (gabaculin). Biosci Rep, 1985, 5: 775–781

[28]王建军, 张礼霞, 王林友, 张利华, 竺朝娜, 何祖华, 金庆生, 范宏环, 于新. 水稻类病变(lesion resembling disease)突变体对光照和温度的诱导反应. 中国农业科学, 2010, 43: 2039–2044

Wang J J, Zhang L X, Wang L Y, Zhang L H, Zhu C N, He Z H, Jin Q S, Fan H H, Yu X. Response to illumination induction and effect of temperature on lesion formation of lrd (lesion resembling disease) in rice. Sci Agric Sin, 2010, 43: 2039–2044 (in Chinese with English abstract)

[29]Hu G, Richter T E, Hulbert S H, Pryor T. Disease lesion mimicry caused by mutations in the rust resistance gene rp1. Plant Cell, 1996, 8: 1367–1376

[30]Davis M S, Forman A, Fajer J. Ligated chlorophyll cation radicals: their function in photosystem II of plant photosynthesis. Proc Natl Acad Sci USA, 1979, 76: 4170–4174

[31]汪斌, 兰涛, 吴为人, 李维明. 水稻叶绿素含量的QTL定位. 遗传学报, 2003, 30: 1127–1132

Wang B, Lan T , Wu W R, Li W M. Mapping of QTLs controlling chlorophyll content in rice. Acta Genet Sin, 2003, 30: 1127–1132 (in Chinese with English abstract)

[32]Avenson T J, Cruz J A, Kanazawa A, Kramer D M. Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA, 2005, 102: 9709–9713

[33]许大全. 光合作用气孔限制分析中的一些问题. 植物生理学通讯, 1997, 33: 241–244

Xu D Q. Some problems in stomatal analysis of phtosynthesis. Plant Physiol Commun, 1997, 33: 241–244 (in Chinese)

[34]孙艳丽, 李卓夫, 张喜君. 冬小麦主要品质性状和产量性状杂种优势及其相关性的研究. 黑龙江农业科学, 2002, (2): 13–15

Sun Y L, Li Z F, Zhang X J. Study on the coordinating activity among major agromomic traits in wheat. Heilongjiang Agric Sci, 2002, (2): 13–15

[36]Ryals J A, Neuenschwander U H, Willits M G. Systemic acquired resistance. Plant Cell, 1996, 8: 1809–1819

[35]Wu C J, Bordeos A, Madamba M R S, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 279: 605–619

[1] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[4] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[5] 赵婧, 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟, 闫晓艳. 不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应[J]. 作物学报, 2021, 47(9): 1824-1833.
[6] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[7] 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390.
[8] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[9] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[10] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[11] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响[J]. 作物学报, 2021, 47(12): 2490-2500.
[12] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响[J]. 作物学报, 2021, 47(1): 125-137.
[13] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[14] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[15] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!