欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (03): 423-430.doi: 10.3724/SP.J.1006.2013.00423

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用分裂泛素酵母双杂交技术钓取小麦TaSC互作蛋白质

蔺芳芳,杨旭,武小翠,刘晓梅,葛荣朝,赵宝存*   

  1. 河北师范大学生命科学学院,河北石家庄 050024
  • 收稿日期:2012-07-09 修回日期:2012-11-16 出版日期:2013-03-12 网络出版日期:2013-01-04
  • 通讯作者: 赵宝存, E-mail: baocunzh@126.com, Tel: 0311-80787526
  • 基金资助:

    本研究由国家自然科学基金项目(30871471), 河北省自然科学基金项目(C2011205085), 河北省自然科学基金基地项目(08B019)和河北师范大学博士基金(L2005B20)资助。

Fishing TaSC Interacting Protein in Wheat Using Split Ubiquitin Yeast Two Hybrid System

LIN Fang-Fang,YANG Xu,WU Xiao-Cui,LIU Xiao-Mei,GE Rong-Chao,ZHAO Bao-Cun*   

  1. College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
  • Received:2012-07-09 Revised:2012-11-16 Published:2013-03-12 Published online:2013-01-04
  • Contact: 赵宝存, E-mail: baocunzh@126.com, Tel: 0311-80787526

摘要:

TaSC (Triticum asetivum L. salt-tolerance related gene, GenBank 登录号为AY956330)是从小麦耐盐突变体RH8706-49 中克隆的高盐诱导表达的耐盐相关基因。以该基因编码的蛋白质TaSC 为诱饵, 运用分裂泛素酵母双杂交技术从小麦cDNA 表达文库中钓取互作蛋白质, 筛选到一个编码小麦未知功能蛋白质的基因(GenBank 登录号为AK336035), 命名为TaSCIP1 (TaSC interaction protein 1)。双分子荧光互补(BiFC)实验证实TaSCIP1 与TaSC 存在互作。该互作蛋白的分离有利于进一步研究TaSC 基因的耐盐机制。

关键词: TaSC, 小麦, cDNA表达文库, 分裂泛素酵母双杂交, 双分子荧光互补技术

Abstract:

 The TaSC (Triticum asetivum L. salt-tolerance related gene, GenBank accession number AY956330) has been cloned from wheat salt tolerant mutant RH 8706-49, which is induced by high salinity.To fish interacting proteins of this gene, we used TaSC protein as bait to hybrid with the wheat cDNA expression library using the split ubiquitin yeast two hybrid system in this experiment. A novel wheat gene (GenBank accession number AK336035) encoding a protein with unknown function was isolated, which was designated TaSCIP1 (TaSC interaction protein 1).Bimolecular fluorescence complementation (BiFC) experiment confirmed the interaction between proteins TaSCIP1 and TaSC. The separation of TaSC-interacting protein is beneficial to disclose the mechanism of salt tolerance gene TaSC.

Key words: TaSC, Triticum asetivum L., cDNA expression library, Split ubiquitin yeast two-hybrid system, BiFC

[1]Zhu M-Y(朱睦元), Huang P-Z(黄培忠). Barley Breeding and Bioengineering (大麦育种与生物工程). Shanghai: Shanghai Scientific and Technical Publishers, 1999. pp 202–210 (in Chinese)



[2]Huang G T, Ma S L, Bai L P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z F. Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep, 2012, 39: 969–987



[3]Fu J, Zhang D F, Liu Y H, Ying S, Shi Y S, Song Y C, Li Y, Wang T Y. Isolation and characterization of maize PMP3 genes involved in salt stress tolerance. PLoS One, 2012; 7(2): e31101



[4]Zhang H X, Blumwald E. Transgenic salt-tolerant tomato Plants accumulate salt in foliage but not in fruit. Nat. Biotechnol., 2001, 19: 765–768



[5]Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu J K. The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103: 18816–18821



[6]Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M. The role of tobacco Aquaporin 1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol, 2010, 152: 245–254



[7]Giri J, Vij S, Dansana P K, Tyagi A K. Rice A20/AN1 zinc-finger containing stress-associated proteins (SAP1/11) and a receptor-like cytoplasmic kinase (OsRLCK253) interact via A20 zinc-finger and confer abiotic stress tolerance in transgenic Arabidopsis plants. New Phytol, 2011, 191: 721–732



[8]Johnsson N, Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci USA. 1994, 91: 10340–10344



[9]Reinders A, Schulze W, Kühn C, Barker L, Schulz A, Ward J M, Frommer W B. Protein-protein interactions between sucrose transporters of different affinities colocalized in the same enucleate sieve element. Plant Cell, 2002, 14: 1567–1577



[10]Stagljar I, Korosotensky C, Johnsson N, te Heesen S. A genetic system based on split-ubiquitin for analysis of interacton between membrane proteins in vivo. Proc Natl Acad Sci USA, 1998, 95: 5187–5192



[11]Thaminy S, Auerbach D, Arnoldo A, Stagljar I. Identification of novel ErbB3-interacting factors using the split-ubiquitin membrane yeast two-hybrid system. Genome Res, 2003, 13: 1744–1753



[12]Wang B, Nguyen M, Breckenridge D G, Stojanovic M, Clemons P A, Kuppig S, Shore G C. Uncleaved BAP31 in association with A4 protein at the endoplasmic reticulum is an inhibitor of Fas-initiated release of cytochrome c from mitochondria. J Biol Chem, 2003, 278: 14461–14468



[13]Bracha-Drori K, Shichrur K, Katz A, Oliva M, Angelovici R, Yalovsky S, Ohad N. Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J, 2004, 40: 419–427



[14]Ge RC,Chen GP, Zhao BC, Shen YZ, Huang ZJ. Cloning and functional characterization of a wheat serine/threonine kinase gene (TaSTK) related to salt-resistance. Plant Sci, 2007, 173: 55–60



[15]Huang X, Zhang Y, Jiao B, Chen G P, Huang S H, Guo F, Shen Y Z, Huang Z J, Zhao B C. Overexpression of the wheat salt tolerance-related gene TaSC enhances salt tolerance in Arabidopsis. J Exp Bot, 2012, 63: 5463–5473



[16]Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J, 2004, 40: 428–438



[17]Wang B-S(王宝山), Zou Q(邹琦). Advances in the study on plasma membrane-bound translocating proteins and their relations with salt tolerance in plants. Chin Bull Bot (植物学通报), 2000, 17(1): 17–26 (in Chinese)



[18]Gouiaa S, Khoudi H, Leidi E O, Pardo J M, Masmoudi K. Expression of wheat Na(+)/H(+) antiporter TNHXS1 and H(+)-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol Biol, 2012, 79: 137–155



[14]Qiu Q S, Guo Y, Dietrich M A, Schumaker K S, Zhu J K. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA, 2002, 99: 8436–8441



[20]Shi H, Ishitani M, Kim C, Zhu J K. The A rabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA, 2000, 97: 6896–6901



[21]Li R, Zhang J, Wu G, Wang H, Chen Y, Wei J. HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell Environ, 2012, 35: 1582–1600



[22]Yang L, Ji W, Gao P, Li Y, Cai H, Bai X, Chen Q, Zhu Y M. GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress. PLoS One, 2012, 7: e33838

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!