作物学报 ›› 2020, Vol. 46 ›› Issue (01): 31-39.doi: 10.3724/SP.J.1006.2020.94036
摘要:
大豆是重要的植物蛋白作物和粮豆间作作物, 挖掘大豆的生物固氮潜力, 对推动生态农业的可持续发展具有深远意义。大豆结瘤因子受体蛋白GmNFR1α (Nod Factor Receptor)对结瘤至关重要, 但其具体调控机制尚不明确。本研究以大豆mRNA为模板, 利用RT-PCR方法扩增到GmNFR1α蛋白的激酶结构域(GmNFR1α-pk), 构建了pGBKT7-GmNFR1α-pk诱饵表达载体, 通过酵母双杂交技术, 筛选大豆根瘤AD-cDNA文库, 从文库中分离到与GmNFR1α-pk相互作用的71个阳性克隆, 经测序和同源性分析筛选到12种与GmNFR1α-pk互作的蛋白, 包括钙离子结合手性蛋白、豆血红蛋白、结瘤素Nod44等蛋白。以大豆豆血红蛋白GmLbc2为例, 回转酵母以及烟草体内BiFC验证其与诱饵蛋白的相互作用, 对其进行同源蛋白比对及系统进化树分析, 并利用百脉根毛根转化技术鉴定GmLbc2在结瘤过程中的生物学功能。研究结果进一步补充和完善了GmNFR1α介导的结瘤信号传递途径, 为大豆与根瘤菌共生互作机制提供了新的分子证据。
[1] |
Giles E D, Oldroyd G E, Downie J A . Calcium, kinases and nodulation signalling in legumes. Nature, 2004,5:566-576.
doi: 10.7554/eLife.33506 pmid: 29957177 |
[2] |
Oldroyd G E, Downie J A . Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol, 2008,59:519-546.
doi: 10.1146/annurev.arplant.59.032607.092839 pmid: 18444906 |
[3] |
Oldroyd G E . Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol, 2013,11:252-263.
doi: 10.1038/nrmicro2990 |
[4] |
Radutoiu S, Madsen L H, Madsen E B, Felle H H, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougarrd J . Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 2003,425:569-570.
doi: 10.1038/425569a pmid: 14534570 |
[5] |
Masdsen E B, Madsen L H, Radutoiu S . A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature, 2003,425:637-640.
doi: 10.1038/nature02045 pmid: 14534591 |
[6] |
Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R . LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science, 2003,302:630-633.
doi: 10.1126/science.1090074 pmid: 12947035 |
[7] |
Arrighi J F, Barre A, Ben Amor B, Bersoult A, Soriano L C, Mirabella R, de Carvalho-Niebel F, Journet E P, Ghérardi M, Huguet T, Geurts R, Dénarié J, Rougé P, Gough C . The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol, 2006,142:265-279.
doi: 10.1104/pp.106.084657 pmid: 16844829 |
[8] |
Smit P, Limpens E, Geurts R, Fedorova E, Dolgikh E, Gough C, Bisseling T . Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. Plant Physiol, 2007,145:183-191.
doi: 10.1104/pp.107.100495 pmid: 17586690 |
[9] |
Madsen E B, Antolin-Llovera M, Grossmann C, Ye J, Vieweg S, Broghammer A, Krusell L, Radutoiu S, Jensen O N, Stougaard J, Parniske M . Autophosphorylation is essential for the in vivo function of theLotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5. Plant J, 2011,65:404-417.
doi: 10.1111/j.1365-313X.2010.04431.x |
[10] |
Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan J T, Maolanon N, Vinther M, Lorentzen A, Madsen E B, Jensen K J, Roepstorff P, Thirup S, Ronson C W, Thygesen M B, Stougaard J . Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc Natl Acad Sci USA, 2012,109:13859-13864.
doi: 10.1073/pnas.1205171109 pmid: 22859506 |
[11] |
Sørensen K K, Simonsen J B, Maolanon N N, Stougaard J, Jensen K J . Chemically synthesized 58-mer lysM domain binds lipochitin oligosaccharide. Chembiochem, 2014,15:2097-2105.
doi: 10.1002/cbic.201402125 |
[12] |
Mbengue M, Camut S, de Carvalho-Niebel F, Deslandes L, Froidure S, Klaus-Heisen D, Moreau S, Rivas S, Timmers T, Hervé C, Cullimore J, Lefebvre B . The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. Plant Cell, 2010,22:474-488.
doi: 10.1104/pp.15.01694 pmid: 26839127 |
[13] |
Tsikou D, Ramirez E E, Psarrakou I S, Wong J E, Jensen D B, Isono E, Radutoiu S, Papadopoulou K K . ALotus japonicus E3 ligase interacts with the Nod Factor Receptor 5 and positively regulates nodulation. BMC Plant Biol, 2018,18:217.
doi: 10.1186/s12870-018-1425-z pmid: 30285618 |
[14] |
Lefebvre B, Timmers T, Mbengue M, Moreau S, Hervé C, Tóth K, Bittencourt-Silvestre J, Klaus D, Deslandes L, Godiard L, Murray J D, Udvardi M K, Raffaele S, Mongrand S, Cullimore J, Gamas P, Niebel A, Ott T . A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci USA, 2010,107:2343-2348.
doi: 10.1073/pnas.0913320107 pmid: 20133878 |
[15] |
Tóth K, Stratil T F, Madsen E B, Ye J, Popp C, Antolín-Llovera M, Grossmann C, Jensen O N, Schüssler A, Parniske M, Ott T . Functional domain analysis of the Remorin protein LjSYMREM1 inLotus japonicus. PLoS One, 2012,7:e30817.
doi: 10.1371/journal.pone.0030817 pmid: 22292047 |
[16] |
Ke D X, Fang Q, Chen C F, Zhu H, Chen T, Chang X J, Yuan S L, Kang H, Ma L, Hong Z L, Zhang Z M . The small GTPase Rop6 interacts with NFR5 and is involved in nodule formation inLotus japonicus. Plant Physiol, 2012,159:131-143.
doi: 10.1104/pp.112.197269 |
[17] | 柯丹霞, 李祥永 . 结瘤信号途径中相关调控蛋白的研究进展. 信阳师范学院学报(自然科学版), 2015,28:621-626. |
Ke D X, Li X Y . Research progress of key regulatory proteins in nodulation pathway. J Xinyang Nor Univ (Nat Sci Edn), 2015,28:621-626 (in Chinese with English abstract). | |
[18] |
Duan L J, Pei J Q, Ren Y P, Li H, Zhou X Z, Zhu H, Duanmu D Q, Wen J Q, Mysore K S, Cao Y R, Zhang Z M . A dihydroflavonol-4-reductase-like protein interacts with NFR5 and regulates rhizobial infection inLotus japonicus. Mol Plant Microbe Int, 2018,32:401-412.
doi: 10.1094/MPMI-04-18-0104-R pmid: 30295579 |
[19] |
Indrasumunar A, Searle I, Lin M H, Kereszt A, Men A, Carroll B J, Gresshoff P M . Nodulation factor receptor kinase 1α controls nodule organ number in soybean (Glycine max L. Merr). Plant J, 2011,65:39-50.
doi: 10.1111/j.1365-313X.2010.04398.x |
[20] | 柯丹霞, 熊文真, 彭昆鹏, 李祥永 . 抗盐基因Gm01g04890大豆子叶节遗传转化研究. 信阳师范学院学报(自然科学版), 2017,30:46-51. |
Ke D X, Xiong W Z, Peng K P, Li X Y . Study on genetic transformation of salt resistant gene Gm01g04890 in soybean. J Xinyang Nor Univ (Nat Sci Edn), 2017,30:46-51 (in Chinese with English abstract). | |
[21] |
Choudhury S R, Pandey S . Specific subunits of heterotrimeric G proteins play important roles during nodulation in soybean. Plant Physiol, 2013,162:522-533.
doi: 10.1104/pp.113.215400 |
[22] |
Choudhury S R, Pandey S . Phosphorylation-dependent regulation of G-protein cycle during nodule formation in soybean. Plant Cell, 2015,27:3260-3276.
doi: 10.1105/tpc.15.00517 pmid: 26498905 |
[23] |
Yin Y, Vafeados D, Tao Y . A new class of transcription factors mediates brassino steroid-regulated gene expression inArabidopsis. Cell, 2005,120:249-259.
doi: 10.1016/j.cell.2004.11.044 pmid: 15680330 |
[24] |
Navascués J, Pérez-Rontomé C, Gay M, Marcos M, Yang F, Walker F A, Desbois A, Abián J, Becana M . Leghemoglobin green derivatives with nitrated hemes evidence production of highly reactive nitrogen species during aging of legume nodules. Proc Natl Acad Sci USA, 2012,109:2660-2665.
doi: 10.1073/pnas.1116559109 pmid: 22308405 |
[25] |
Sainz M, Calvo-Begueria L, Pérez-Rontomé C, Wienkoop S, Abián J, Staudinger C, Bartesaghi S, Radi R, Becana M . Leghemoglobin is nitrated in functional legume nodules in a tyrosine residue within the heme cavity by a nitrite/peroxide-dependent mechanism. Plant J, 2015,81:723-735.
doi: 10.1111/tpj.12762 pmid: 25603991 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[15] | 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702. |
|