欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (01): 20-30.doi: 10.3724/SP.J.1006.2020.92007

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

过表达OsMPK17激酶蛋白质增强了水稻的耐旱性

马金姣1,兰金苹1,2,张彤1,陈悦1,郭亚璐1,3,刘玉晴1,燕高伟1,魏健1,窦世娟1,杨明1,李莉云1,刘国振1,*()   

  1. 1 河北农业大学生命科学学院, 河北保定 071001
    2 河北北方学院生命科学研究中心, 河北张家口 075000
    3 中国农业科学院农业基因组研究所, 广东深圳518116
  • 收稿日期:2019-02-26 接受日期:2019-08-09 出版日期:2020-01-12 网络出版日期:2019-09-04
  • 通讯作者: 刘国振
  • 作者简介:E-mail: majinjiao_mbb@126.com
  • 基金资助:
    本研究由国家自然科学基金项目资助(31171528)

Overexpression of OsMPK17 protein enhances drought tolerance of rice

MA Jin-Jiao1,LAN Jin-Ping1,2,ZHANG Tong1,CHEN Yue1,GUO Ya-Lu1,3,LIU Yu-Qing1,YAN Gao-Wei1,WEI Jian1,DOU Shi-Juan1,YANG Ming1,LI Li-Yun1,LIU Guo-Zhen1,*()   

  1. 1 College of Life Sciences, Hebei Agricultural University, Baoding 071001, Hebei, China
    2 Research Center for Life Sciences, Hebei North University, Zhangjiakou 075000, Hebei, China
    3 Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, Guangdong, China
  • Received:2019-02-26 Accepted:2019-08-09 Published:2020-01-12 Published online:2019-09-04
  • Contact: Guo-Zhen LIU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31171528)

摘要:

促分裂原活化蛋白质激酶(mitogen-activated protein kinase, MAPK)在真核生物中高度保守, 在水稻逆境应答反应中也发挥着重要作用。本研究表达纯化了水稻OsMPK17蛋白质, 制备了特异性抗体, 对多种非生物逆境胁迫下的蛋白质样品进行免疫印迹分析, 发现OsMPK17蛋白质在干旱胁迫下诱导表达, 提示该蛋白质在干旱胁迫应答中发挥作用。对脱落酸和茉莉酸甲酯处理的离体叶片蛋白质分析发现, OsMPK17蛋白质表达丰度下降, 提示该蛋白质的功能发挥可能受激素调控。为此, 构建了过表达OsMPK17蛋白质的载体, 转化水稻后筛选获得了OsMPK17蛋白质过表达的纯合株系。田间种植鉴定结果表明, 转基因株系的株高变矮、穗长变短、结实率降低。种子萌发期拟旱(PEG-6000)处理条件下, 过表达OsMPK17株系的种子长势明显比野生型好, 根长与芽长均显著大于野生型。幼苗期失水试验表明, 转基因植株的失水率低于野生型。在土培干旱胁迫后恢复浇水的试验中, 过表达OsMPK17蛋白质的转基因水稻生长也好于野生型。综上, 过表达OsMPK17蛋白质提高了水稻的耐旱性。本研究增进了对水稻OsMPK17基因功能的了解。

关键词: 水稻, MAPK蛋白质, 免疫印迹, 逆境胁迫, 过表达, 基于抗体的蛋白质组学

Abstract:

Mitogen-activated protein kinase (MAPK) highly conserved in eukaryotes plays important roles in stress responses in plant. In this study, full-length OsMPK17 gene was cloned and fusion protein was expressed. The purified protein was used as immunogen to generate monoclonal antibody. Western blot (WB) analyses were carried out for protein samples isolated from tissues under different abiotic stresses. The expression of OsMPK17 was induced by drought stress, suggesting that the OsMPK17 protein may play a role in drought stress response. Proteins isolated from leaves treated with abscisic acid (ABA) or methylene jasminate acid (MeJA) demonstrated a decrease of OsMPK17 protein abundance, suggesting that hormones may be involved in the function of the protein. The overexpression vector of OsMPK17 protein was established and transformed into TP309 via Agrobacteria-mediated protocol. Homozygous transgenic lines for overexpression of OsMPK17 protein were obtained. In the field planting experiment, the plant height and the spike length of transgenic lines shortened and the seed setting rate decreased. At seed germination stage, under the condition of PEG-6000 treatment, the seeds of overexpressed OsMPK17 protein lines grew better and the length of root and shoot was significantly longer than those of the wild type. At seedling stage, transgenic plants showed lower water loss rate when exposed in the air. The transgenic rice with overexpressed OsMPK17 protein grew better than the wild type in the experiment with soil drought stress and re-watering then. In conclusion, the overexpressed OsMPK17 protein enhances drought tolerance of rice. This study enhances the understanding for the function of OsMPK17 protein.

Key words: rice, MAPK protein, Western blot, stress, overexpression, antibody-based proteomics

图1

水稻OsMPK17基因的克隆与融合蛋白质表达 A: 水稻OsMPK17基因的PCR扩增: 以带有OsMPK17全长序列的质粒DNA为模板, 用上游引物5′-GCGGTACCATGGG CGGCCGCGCCCGCTC-3′, 下游引物5′-GCGAGCTCGGTTTTC AGTTGAGCAAC-3′, 扩增OsMPK17基因。B: pET30a-MPK17重组质粒的双酶切验证: 将PCR产物与pET30a用Kpn I+ Sac I双酶切, 连接后转化克隆菌DH5α, 提取质粒后再进行双酶切鉴定。C: 融合蛋白质OsMPK17的诱导表达及考染检测: 取pET30a-MPK17酶切验证的质粒进行测序再验证, 将测序正确的质粒转化表达菌Codon plus诱导表达。在含50 μg mL-1卡那霉素的LB液体培养基中诱导表达, 振荡培养至OD600为0.6~0.8, 加入IPTG, 25°C过夜培养, 收菌后超声破碎, 离心取上清液(S)和沉淀(P), 0: 0时间点培养物, 用10% SDS-PAGE分离、考染。M为分子量标记; PCR为扩增产物; K+S为Kpn I+ Sac I双酶切产物。"

图2

水稻OsMPK17蛋白质的表达特征分析 A: 干旱胁迫: 发芽后生长5 d的水稻幼苗在20% PEG-6000中水培, 分别于胁迫处理的0、1 h、2 h、4 h、8 h、12 h、1 d 、2 d和3 d取地上部样品, 提取总蛋白质后进行免疫印迹(Western blot, WB)分析。CK: 对照; Drought: PEG-6000胁迫处理。HSP: 以HSP82抗体检测的信号作为上样内参。B: 激素处理: 剪下水稻幼苗叶片在培养皿中培养, 分别添加100 μmol L-1 ABA或100 μmol L-1 MeJA进行激素处理, 取材时间点为0、6 h、12 h、1 d、2 d、3 d、4 d、5 d和6 d, 以水培为CK, 提取叶片样品总蛋白质进行WB分析。HSP: 以HSP82抗体检测的信号作为上样内参。"

图3

水稻OsMPK17基因过表达载体的构建与鉴定 A: 水稻OsMPK17基因的PCR扩增; B: Hind III + Xba I双酶切鉴定pEASY-MPK17-3HA重组质粒; C: Kpn I+ Spel I双酶切鉴定pUBI-C4300-MPK17重组质粒。以带有目的基因cDNA的质粒为模板, 用上游引物5′-GCGGTACCATGGGCGGCCGCGCCC GCTC-3′ (下画线为Kpn I限制性内切酶位点)和下游引物5′-GCGAGCTCGGTTTTCAGTTGAGCAAC-3′ (下画线为Sac I限制性内切酶位点)进行PCR扩增。将扩增的OsMPK17片段插入中间载体pEASYT1-3HA, 双酶切验证。将测序正确的中间载体切胶回收目的片段, 再用Kpn I+Spel I双酶切插入转化载体pUBI-C4300, 获得重组质粒DNA双酶切验证。M: 分子量标记; PCR: 扩增产物; H+X: Hind III+ Xba I双酶切; K+S: Kpn I+ Spel I双酶切。"

图4

过表达OsMPK17蛋白质转基因水稻筛选与鉴定 上部: PCR结果; 中部: WB检测转基因水稻中OsMPK17蛋白质; 下部: HSP检测的信号为上样参照。WT: 野生型; A202、A204、A210和A 212为不同的转基因株系; 1、2、3、4、5、6、7、8和9为同一株系内不同的单株; PCR: PCR产物; MPK17-OX: 过表达的OsMPK17蛋白质; MPK17-Native: 水稻中原来的OsMPK17蛋白质。"

图5

过表达OsMPK17对水稻表型及农艺性状的影响 上部照片: 4个转基因株系(A202、A204、A210和A212)及对照水稻成熟期整株和穗部照片; 下部柱状图: 4个转基因株系及对照的株高、穗长、结实率和分蘖数的柱状图。每个指标测量5个以上单株, 计算平均值和方差。"

图6

过表达OsMPK17蛋白质水稻发芽期耐旱性鉴定 A: 水稻种子萌发照片。上部: 对照(水); 下部: 干旱胁迫(20% PEG-6000)。B: 水稻种子萌发的根长和芽长柱状图。WT为野生型; A202、A204、A210和A212为4个转基因株系。试验重复3次, 计算平均值和方差。*表示在0.05水平差异显著; **表示在0.01水平差异显著。"

图7

过表达OsMPK17蛋白质植株的失水率鉴定 WT为野生型; A202、A204、A210和A212为4个转基因株系。在水稻幼苗四叶期剪取3 cm左右叶片, 在室温下(30°C), 每30 min称重1次, 试验重复3次, 计算平均值和方差。"

图8

过表达OsMPK17蛋白质转基因水稻苗期耐旱性鉴定 水稻苗期干旱胁迫及恢复浇水试验, 照片分别为0时间点、干旱胁迫8 d和恢复浇水3 d时。WT为野生型, A202和A212为过表达OsMPK17的转基因株系。"

附表1

OsMPK17基因在不同组织中的转录丰度比较"

组织 Libraries FPKM
四叶期幼苗 Seedling four-leaf stage 0.640
幼苗地上部 Shoots 0.904
20 d的叶片 20-day leaves 0.637
抽穗前花序 Pre-emergence inflorescence 3.036
抽穗后花序 Post-emergence inflorescence 6.281
花药 Anther 169.643
雌蕊 Pistil 2.371
开花后5 d种子 5 DAP seed 5.971
开花后10 d种子 10 DAP seed 10.372
开花后25 d幼胚 25 DAP embryo 7.719
开花后25 d胚乳 25 DAP endosperm 7.230
[1] Johnson G L, Lapadat R . Mitogen-activated protein kinase pathways mediated by ERK, JNK and p38 protein kinases. Science, 2002,298:1911-1912.
doi: 10.1126/science.1072682 pmid: 12471242
[2] Widmann C, Gibson S, Jarpe M B, Johnson G L . Mitogen-activated protein kinase: conservation of a three kinase module from yeast to human. Physiol Rev, 1999,79:143-180.
doi: 10.1152/physrev.1999.79.1.143 pmid: 9922370
[3] Bogre L, Meskiene I , Heberle-bors E, Hirt H. Stressing the role of MAP kinases in mitogenic stimulation. Plant Mol Biol, 2000,43:705-718.
doi: 10.1023/A:1006301614690
[4] Roberts C J, Nelson B, Marton M J, Stoughton R, Meyer M R, Bennett H A, He Y, Dai H, Walker W L, Hughes T R, Tyers M, Boone C, Friend S H . Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science, 2000,287:873-880.
doi: 10.1126/science.287.5454.873 pmid: 10657304
[5] Cristina M, Petersen M, Mundy J . Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol, 2010,61:621-649.
doi: 10.1146/annurev-arplant-042809-112252 pmid: 20441529
[6] He C, Fong S H, Yang D, Wang G L . BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol Plant-Microbe Interact, 1999,12:1064-1073.
doi: 10.1094/MPMI.1999.12.12.1064 pmid: 10624015
[7] Agrawal G K, Agrawal S K, Shibato J, Iwahashi H, Rakwal R . Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Biophys Res Commun, 2003,300:775-783.
doi: 10.1016/s0006-291x(02)02868-1 pmid: 12507518
[8] Shi B, Ni L, Liu Y . OsDMI3-mediated activation of OsMPK1 regulates the activities of antioxidant enzymes in abscisic acid signaling in rice. Plant Cell Environ, 2014,37:341-352.
doi: 10.1111/pce.12154
[9] Xie G, Kato H, Imai R . Biochemical identification of the OsMKK6-OsMPK3 signaling pathway for chilling stress tolerance in rice. Biochem J, 2012,443:95-102.
doi: 10.1042/BJ20111792 pmid: 22248149
[10] Xiong L, Yang Y . Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 2003,15:745-759.
doi: 10.1105/tpc.008714 pmid: 12615946
[11] Zhang Z, Li J, Li F, Liu H, Yang W, Chong K, Xu Y . OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate, OsTPP1, and enhances rice chilling tolerance. Dev Cell, 2017,43:731-743.
doi: 10.1016/j.devcel.2017.11.016 pmid: 29257952
[12] Wang F, Jing W, Zhang W . The mitogen-activated protein kinase cascade MKK1-MPK4 mediates salt signaling in rice. Plant Sci, 2014,227:181-189.
doi: 10.1016/j.plantsci.2014.08.007
[13] Hu J, Zhou J, Peng X, Xu H, Liu C, Du B, Yuan H, Zhu L, He G . The Bphi008a gene interacts with the ethylene pathway and transcriptionally regulates MAPK genes in the response of rice to brown planthopper feeding. Plant Physiol, 2011,156:856-872.
doi: 10.1104/pp.111.174334
[14] Xu R, Duan P, Yu H, Zhou Z, Zhang B, Wang R, Li J, Zhang G, Zhuang S, Lyu J, Li N, Chai T, Tian Z, Yao S, Li Y . Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice. Mol Plant, 2018,11:860-873.
doi: 10.1016/j.molp.2018.04.004 pmid: 29702261
[15] Wen J Q, Oono K, Imai R . Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol, 2002,129:1880-1891.
doi: 10.1104/pp.006072 pmid: 12177502
[16] 石佳, 杨丹丹, 葛慧雯 . 水稻OsMPK15的cDNA克隆和转录水平分析. 生物技术通报, 2018, (6):66-72.
Shi J, Yang D D, Ge H W . cDNA cloning and transcriptional level analysis of OsMPK15 in rice (Oryza sativa L.). Biotechnol Bull, 2018, (6):66-72 (in Chinese with English abstract).
[17] Lee S K, Kim B G, Kwon T R, Jeong M J, Park S R, Lee J W, Byun M O, Kwon H B, Matthews B F, Hong C B, Park S C . Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (Oryza sativa L.). J Biosci, 2011,36:139-151.
doi: 10.1007/s12038-011-9002-8 pmid: 21451255
[18] Liu G Z, Pi L Y, Walker J C, Ronald P C, Song W Y . Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21. J Biol Chem, 2002,277:20264-20269.
doi: 10.1074/jbc.M110999200 pmid: 11927577
[19] Cao Y, Sun J, Zhu J, Li L, Liu G . Primer C E: designing primers for cloning and gene expression. Mol Biotechnol, 2010,46:113-117.
doi: 10.1007/s12033-010-9276-3
[20] 郭亚璐, 马晓飞, 史佳楠, 张柳, 张剑硕, 黄腾, 武鹏程, 康昊翔, 耿广荟, 陈浩, 魏健, 窦世娟, 李莉云, 尹长城, 刘国振 . 转基因水稻中CAS9蛋白质的免疫印迹检测. 中国农业科学, 2017,50:3631-3639.
doi: 10.3864/j.issn.0578-1752.2017.19.001
Guo Y L, Ma X F, Shi J N, Zhang L, Zhang J S, Huang T, Wu P C, Kang H X, Geng G H, Chen H, Wei J, Dou S J, Li L Y, Yin C C, Liu G Z . Western blot detection of CAS9 protein in transgenic rice . Sci Agric Sin, 2017,50:3631-3639 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.19.001
[21] Li X, Bai H, Wang X, Li L, Cao Y, Wei J, Liu Y, Liu L, Gong X, Wu L, Liu S, Liu G . Identification and validation of rice reference proteins for Western blotting. J Exp Bot, 2011,62:4763-4772.
doi: 10.1093/jxb/err084
[22] 牛东东, 郝育杰, 荣瑞娟, 韦汉福, 兰金苹, 史佳楠, 魏健, 李雪姣, 杨烁, 奚文辉 . 转基因水稻中GUS蛋白质的检测及其表达特征. 中国农业科学, 2014,47:2715-2722.
doi: 10.3864/j.issn.0578-1752.2014.14.002
Niu D D, Hao Y J, Rong R J, Wei H F, Lan J P, Shi J N, Wei J, Li X J, Yang S, Xi W H . Detection and expression of GUS protein in transgenic rice. Sci Agric Sin, 2014,47:2715-2722 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2014.14.002
[23] 张剑硕, 马金姣, 张彤, 陈悦, 魏健, 张柳, 史佳楠, 徐珊, 燕高伟, 杜铁民, 窦世娟, 李莉云, 刘丽娟, 刘国振 . 水稻蛋白质样品资源库RiceS-A300的建立与应用. 中国农业科学, 2018,51:3625-3638.
doi: 10.3864/j.issn.0578-1752.2018.19.001
Zhang J S, Ma J J, Zhang T, Chen Y, Wei J, Zhang L, Shi J N, Xu S, Yan G W, Du T M, Dou S J, Li L Y, Liu L J, Liu G Z . Establishment and application of RiceS-A300 for rice protein sample library. Sci Agric Sin, 2018,51:3625-3638 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.19.001
[24] Agrawal G K, Jwa N S, Rakwal R . A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem Biophys Res Commun, 2000,274:157-165.
doi: 10.1006/bbrc.2000.3114 pmid: 10903912
[25] 兰金苹 . MAPK基因在Xa21介导的水稻白叶枯病抗性反应中的功能研究. 河北农业大学博士学位论文, 河北保定, 2015.
Lan J P . Function of MAPK Gene in Xa21 Mediated Resistance to Bacterial Blight in Rice. PhD Dissertation of Hebei Agricultural University, Baoding, Hebei, China, 2015 (in Chinese with English abstract).
[26] Nishimura A, Aichi I, Matsuoka M . A protocol for agrobacterium-mediated transformation in rice. Nat Prot, 2006,1:2796-2802.
doi: 10.1002/cpmb.89 pmid: 31237422
[27] Duan Y B, Zhai C Y, Li H, Li J, Mei W Q, Gui H P, Ni D H, Song F S, Li L, Zhang W G, Yang J B . An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in MeJA ponica rice (Oryza sativa L.). Plant Cell Rep, 2012,31:1611-1624.
doi: 10.1007/s00299-012-1275-3
[28] 刘巧泉, 张景六, 王宗阳, 洪孟民, 顾铭洪 . 根癌农杆菌介导的水稻高效转化系统的建立. 植物生理学报, 1998,24:259-271.
Liu Q Q, Zhang J L, Wang Z Y, Hong M M, Gu M H . Establishment of efficient transformation system of rice mediated by Agrobacterium tumefaciens. Acta Phytophysiol Sin, 1998,24:259-271 (in Chinese).
[29] Dansana P K, Kothari K S, Vij S, Tyagi A K . OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Plant Cell Rep, 2014,33:1425-1440.
doi: 10.1007/s00299-014-1626-3
[30] Lou D, Wang H, Liang G, Yu D . OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci, 2017,8:993.
doi: 10.3389/fpls.2017.00993 pmid: 28659944
[31] Chang Y, Nguyen B H, Xie Y, Xiao Y, Tang N, Zhu W, Mou T, Xiong L . Co-overexpression of the constitutively active form of OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and temperature stress resistance in rice. Front Plant Sci, 2017,8:1102.
doi: 10.3389/fpls.2017.01102 pmid: 28694815
[32] 刘国振, 刘斯奇, 吴琳, 徐宁志 . 基于抗体的水稻蛋白质组学——开端与展望. 中国科学: 生命科学, 2011,41(3):173-177.
Liu G Z, Liu S Q, Wu L, Xu N Z . Antibody-based rice proteomics-beginning and prospect. Chin Sci: Life Sci, 2011,41(3):173-177 (in Chinese).
[33] Bailey T A, Zhou X J, Chen J P, Yang Y N. Role of ethylene, abscisic acid and MAP kinase pathways in rice blast resistance. In: Wang G L, Valent B, eds. Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer, Dordrecht, 2009. pp 185-190.
[34] De V D, Yang Y, Cruz C V, Hofte M . Abscisic acid-induced resistance against the brown spot pathogenCochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol, 2010,152:2036-2052.
doi: 10.1104/pp.109.152702 pmid: 20130100
[35] Fu S F, Chou W C, Huang D D, Huang H H . Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol, 2002,43:958-963.
doi: 10.1093/pcp/pcf111 pmid: 12198199
[36] Kurusu T, Yagala T, Miyao A, Miyao A, Hirochika H, Kuchitsu K . Identification of a putative voltage-gated Ca 2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice . Plant J, 2005,42:798-809.
doi: 10.1111/j.1365-313X.2005.02415.x pmid: 15941394
[37] Finkelstein R, Reeves W, Ariizumi T, Steber C . Molecular aspects of seed dormancy. Annu Rev Plant Biol, 2008,59:387-415.
doi: 10.1146/annurev.arplant.59.032607.092740 pmid: 18257711
[38] Kim J A, Agrawal G K, Rakwal R, Han K S, Kim K N, Yun C H, Heu S, Park S Y, Lee Y H, Jwaa N S . Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis At EDR1, reveal its role in defense/stress signalling pathways and development. Biochem Biophys Res Commun, 2003,300:868-876.
doi: 10.1016/s0006-291x(02)02944-3 pmid: 12559953
[39] Hoth S, Morgante M, Sanchez J P, Hanafey M K, Tingey S V, Chua N H . Genome-wide gene expression profiling inArabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J Cell Sci, 2002,115:4891-4900.
doi: 10.1242/jcs.00175 pmid: 12432076
[40] Nemhauser J L, Hong F, Chory J . Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell, 2006,126:467-475.
doi: 10.1016/j.cell.2006.05.050 pmid: 16901781
[41] Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Shinozaki K Y, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K . Monitoring the expression pattern of around 7,000Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics, 2002,2:282-291.
doi: 10.1007/s10142-002-0070-6 pmid: 12444421
[42] Finkelstein R R, Gampala S S, Rock C D . Abscisic acid signaling in seeds and seedlings. Plant Cell Online, 2002,14(S1):S15-S45.
doi: 10.1021/acschembio.9b00453 pmid: 31497942
[43] Hetherington A M . Guard cell signaling. Cell, 2001,107:711-714.
doi: 10.1016/s0092-8674(01)00606-7 pmid: 11747807
[44] Zhang A, Zhang J, Ye N, Cao J, Tan M, Zhang J H, Jiang M G . ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defence in leaves of maize. J Exp Bot, 2010,61:4399-4411.
doi: 10.1093/jxb/erq243 pmid: 20693409
[45] Xing Y, Jia W S, Zhang J H . At MKK1 mediates ABA-induced CAT1 expression and H2O2 production via At MPK6-coupled signaling inArabidopsis. Plant J, 2008,54:440-451.
doi: 10.1111/j.1365-313X.2008.03433.x pmid: 18248592
[46] Jammes F, Song C, Shin D, Munemasab S, Takedaa K, Gua D, Choa D, Leea S, Giordoa R, Sritubtimd S, Leonhardte N, Ellisd B E, Muratab Y, Kwaka J M . MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA, 2009,106:20520-20525.
doi: 10.1073/pnas.0907205106 pmid: 19910530
[47] Zong X, Li D, Gu L . Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta, 2009,229:485-495.
doi: 10.1007/s00425-008-0848-4
[48] Zhang S, Klessig D F . Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell, 1997,9:809-824.
doi: 10.1105/tpc.9.5.809 pmid: 9165755
[49] Seo S, Katou S, Seto H, Gomi K, Ohashi Y . The mitogen-activated protein kinases WIPK and SIPK regulate the levels of MeJAsmonic and salicylic acids in wounded tobacco plants. Plant J, 2007,49:899-909.
doi: 10.1111/j.1365-313X.2006.03003.x pmid: 17253983
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!