作物学报 ›› 2020, Vol. 46 ›› Issue (01): 9-19.doi: 10.3724/SP.J.1006.2020.94056
WANG Cun-Hu,LIU Dong,XU Rui-Neng,YANG Yong-Qing(),LIAO Hong
摘要:
叶柄角是大豆株型的重要构成因素, 影响大豆冠层结构、光合作用效率以及最终产量。解析大豆叶柄角的遗传基础对提升大豆产量具有重要意义。本研究以2个叶柄角具有显著差异的亲本BLA和SLA以及它们衍生的RIL群体为材料, 构建高密度的遗传图谱, 对大豆不同部位的叶柄角进行QTL分析, 并利用近等基因系验证部分QTL。遗传分析结果显示, 叶柄角呈连续正态分布, 符合数量性状遗传特征。利用GBS技术构建了包含859个Bin标记的大豆高密度遗传图谱, 总遗传长度为2326.9 cM, 标记间平均距离为2.763 cM; 共检测到14个调控叶柄角的QTL, LOD值在2.58~4.80之间, 可解释遗传变异范围在6.9%~12.4%之间, 其中5个QTL定位在第12染色体上且成簇存在; 构建的qLA12和qLA18的近等基因系表型结果显示, 叶柄角在同一对近等基因家系间差异显著, 表明qLA12和qLA18是2个可信的QTL。本研究为进一步克隆调控叶柄角功能基因奠定了基础, 为大豆理想株型育种提供了遗传材料。
[1] |
Reinhardt D, Kuhlemeier C . Plant architecture. EMBO Rep, 2002,3:846-851.
doi: 10.1093/embo-reports/kvf177 pmid: 12223466 |
[2] |
Wilcox J R, Sediyama T . Interrelationships among height, lodging and yield in determinate and indeterminate soybeans. Euphytica, 1981,30:323-326.
doi: 10.1007/BF00033993 |
[3] |
Wang D, Graef G L, Procopiuk A M, Diers B W . Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet, 2004,108:458-467.
doi: 10.1007/s00122-003-1449-z |
[4] |
Gowda C L L, Upadhyaya H D, Dronavalli N, Singh S . Identification of large-seeded high-yielding stable Kabuli chickpea germplasm lines for use in crop improvement. Crop Sci, 2011,51:198-209.
doi: 10.2135/cropsci2010.01.0078 |
[5] | 王昱, 范杰英, 王玮, 姜晓丽, 张世忠 . 不同密度对大豆生理特性的影响. 黑龙江农业科学, 2012, (8):38-40. |
Wang Y, Fan J Y, Wang W, Jiang X L, Zhang S Z . Effect of different density on the soybean physiological characteristics. Heilongjiang Agric Sci, 2012, (8):38-40 (in Chinese). | |
[6] | 刘岩, 周勋波, 陈雨海, 齐林, 崔兆韵, 杨荣光, 徐德力 . 底墒和种植方式对夏大豆光合特性及产量的影响. 生态学报, 2010,31:3478-3487. |
Liu Y, Zhou X B, Chen Y H, Qin L, Cui Z Y, Yang R G, Xu D L . Effects of pre-sowing soil moisture and planting patterns on photosynthetic characteristics and yield of summer soybean. Acta Ecol Sin, 2011,31:3478-3487. | |
[7] | 刘春全, 毕一立, 王孝忠 . 大豆农艺性状与籽粒产量关系研究进展. 现代农业科技, 2009, (23):39-40. |
Liu C Q, Bi Y L, Wang X Z . Advances in the relationship between agronomic traits and grain yield of soybean. Modern Agric Sci Technol, 2009, (23):39-40 (in Chinese). | |
[8] | 董丽华 . 大豆产量构成因素及其相互关系. 大豆科技, 1996, (1):15. |
Dong L H . Factors affecting soybean yield and their relationships. Soybean Bull, 1996, (1):15 (in Chinese). | |
[9] | 杜维广, 盖钧镒 . 大豆超高产育种研究进展的讨论. 土壤与作物, 2014,3(3):81-92. |
Du W G, Gai J Y . A discussion on advances in breeding for super high-yielding soybean cultivars. Soil Crop, 2014,3(3):81-92 (in Chinese with English abstract). | |
[10] |
Lu M, Zhou F, Xie C X, Li M S, Xu Y B, Marilyn W, Zhang S H . Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Hereditas, 2007,29:1131-1138.
doi: 10.1360/yc-007-1131 pmid: 17855265 |
[11] |
Ning J, Zhang B C, Wang N L, Zhou Y H, Xiong L Z . Increased leaf angle1, a raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. Plant Cell, 2011,23:4334-4347.
doi: 10.1105/tpc.111.093419 |
[12] | 廖慧敏, 张启军, 秦海龙, 夏士健, 宗寿余, 高艳红 . 一个籼稻叶夹角新基因的激素敏感性分析和基因定位. 江苏农业学报, 2014,30:1198-1203. |
Liao H M, Zhang Q J, Qin H L, Xia S J, Zong S Y, Gao Y H . Hormone sensitivity and genetic mapping of a new leaf angle gene in rice. Jiangsu J Agric Sci, 2014,30:1198-1203 (in Chinese with English abstract). | |
[13] | 李登海, 张永慧, 杨今胜, 柳京国 . 育种与栽培相结合紧凑型玉米创高产. 玉米科学, 2004,12(1):69-71. |
Li D H, Zhang Y H, Yang J S, Liu J G . Combination of breeding and cultivation, compact corn, high yield. J Maize Sci, 2004,12(1):69-71 (in Chinese with English abstract). | |
[14] | 徐庆章, 王庆成, 牛玉贞, 王忠孝, 张军 . 玉米株型与群体光合作用的关系研究. 作物学报, 1995,21:492-496. |
Xu Q Z, Wang Q C, Niu Y Z, Wang Z X, Zhang J . Study on the relationship between maize plant type and population photosynthesis. Acta Agron Sin, 1995,21:492-496 (in Chinese with English abstract). | |
[15] |
王吴彬, 何庆元, 杨红燕, 向仕华, 赵团结, 邢光南, 盖钧镒 . 大豆分枝数和叶柄夹角的相关野生片段分析. 中国农业科学, 2012,45:4749-4758.
doi: 10.3864/j.issn.0578-1752.2012.23.001 |
Wang W B, He Q Y, Yang H Y, Xiang S H, Zhao T J, Xing G N, Gai J Y . Detection of wild segments associated with number of branches on main stem and leafstalk angle in soybean. Sci Agric Sin, 2012,45:4749-4758 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2012.23.001 |
|
[16] |
Gao J S, Yang S X, Cheng W, Fu Y F, Leng J T, Yuan X H, Jiang N, Ma J X, Feng X Z . GmILPA1, Encoding an APC8-like protein, Controls leaf petiole angle in soybean. Plant Physiol, 2017,174:1167-1176.
doi: 10.1104/pp.16.00074 pmid: 28336772 |
[17] |
Elshire R J, Glaubitz J C, Sun Q . A Robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 2011,6:e19379.
doi: 10.1371/journal.pone.0019379 pmid: 21573248 |
[18] |
Huang X, Feng Q, Qian Q . High-throughput genotyping by whole-genome resequencing. Genome Res, 2009,19:1068-1076.
doi: 10.1101/gr.089516.108 pmid: 19420380 |
[19] |
Meng L, Li H H, Zhang L Y, Wang J K . QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283.
doi: 10.1016/j.cj.2015.01.001 |
[20] | Van Ooijen J W . Map QTL 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, Netherlands: Kyazma B V, 2009. |
[21] |
McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M . Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
doi: 10.1007/s10142-013-0328-1 pmid: 23813016 |
[22] | Chang J H, Lee W S . A sliding window method for finding recently frequent itemsets over online data streams. J Inf Sci Eng, 2004,20:753-762. |
[23] | 蔡星星, 张盛, 王欢, 吕锐玲, 李兴华, 周强 . 水稻株型基因的研究现状及应用前景. 分子植物育种, 2017,15:2809-2814. |
Cai X X, Zhang S, Wang H, Lyu R L, Li X H, Zhou Q . The present research situation and application prospect of rice plant type genes. Mol Plant Breed, 2017,15:2809-2814 (in Chinese with English abstract). | |
[24] | 李灿东, 赵建有, 郭泰, 王志新, 郑伟, 张振宇, 郭美玲, 刘忠堂 . 不同密度下主茎亚有限型大豆株型及产量的变化规律. 中国农学通报, 2014,30(30):164-167. |
Li C D, Zhao J Y, Guo T, Wang Z X, Zheng W, Zhang Z Y, Guo M L, Liu Z T . Effects of planting density on plant type and yield of main emi-determinate soybean. Chin Agric Sci Bull, 2014,30(30):164-167 (in Chinese with English abstract). | |
[25] | 胡霞 . 利用回交导入系剖析水稻产量与品质QTL及其表达的遗传背景效应. 中国农业科学院博士学位论文, 北京, 2011. |
Hu X . Dissection of QTLs for Yield and Grain Quality and Genetic Background Effect on Their Expression Using Backcross Introgression Lines of Rice. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2011 (in Chinese with English abstract). | |
[26] |
Cao Y L, Ding X H, Cai M, Zhao J, Lin Y J, Li X H, Xu C G, Wang S P . The expression pattern of a rice disease resistance genexa3/xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics, 2007,177:523-533.
doi: 10.1534/genetics.107.075176 pmid: 17720929 |
[27] |
Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H M, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S . QTL × environment interactions in rice: I. Heading date and plant height. Theor Appl Genet, 2003,108:141-153.
doi: 10.1007/s00122-003-1401-2 |
[28] | Zhuang J Y, Lin H X, Qian G R, Hittalmani S, Huang N, Zheng K L . Analysis of QTL × environment interaction for yield components and plant height in rice. Thero Appl Genet, 1997,95:799-808. |
[29] | Shen X H, Cao L Y, Shao G S, Zhan X D, Chen S G, Wu W M, Cheng S H . QTL Mapping for the content of five trace elements in brown rice. Mol Plant Breed, 2008,6:1061-1067. |
[30] |
张坤普, 徐宪斌, 田纪春 . 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009,35:270-278.
doi: 10.3724/SP.J.1006.2009.00270 |
Zhang K P, Xu X B, Tian J C . QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin, 2009,35:270-278 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.00270 |
[1] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[2] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[3] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[4] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[5] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[6] | 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461. |
[7] | 郭清云, 蒯婕, 汪波, 刘芳, 张椿雨, 李根泽, 张云云, 傅廷栋, 周广生. 感抗油菜近等基因系混播对根肿病发病率的影响[J]. 作物学报, 2020, 46(9): 1408-1415. |
[8] | 郭清云, 汪波, 蒯婕, 张椿雨, 李根泽, 康惠仙, 傅廷栋, 周广生. 油菜感抗品种混播对根肿病防控效果的影响[J]. 作物学报, 2020, 46(5): 725-733. |
[9] | 刘代铃,谢俊锋,何乾瑞,陈四维,胡跃,周佳,佘跃辉,刘卫国,杨文钰,武晓玲. 净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析[J]. 作物学报, 2020, 46(3): 341-353. |
[10] | 吴海涛, 张勇, 苏伯鸿, Lamlom F Sobhi, 邱丽娟. 大豆分枝数相关分子标记开发及qBN-18位点精细定位[J]. 作物学报, 2020, 46(11): 1667-1677. |
[11] | 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61. |
[12] | 王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(01): 140-146. |
[13] | 魏丽娟,刘瑞影,张莉,陈志友,杨鸿,霍强,李加纳. 甘蓝型油菜茎高QTL定位及株高相关位点整合[J]. 作物学报, 2019, 45(6): 818-828. |
[14] | 闫超,郑剑,段文静,南文斌,秦小健,张汉马,梁永书. 越冬栽培稻产量性状相关QTL定位[J]. 作物学报, 2019, 45(4): 522-537. |
[15] | 张春宵,李淑芳,金峰学,刘文平,李万军,刘杰,李晓辉. 用3种方法定位玉米萌发期和苗期的耐盐和耐碱相关性状QTL[J]. 作物学报, 2019, 45(4): 508-521. |
|