欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (01): 9-19.doi: 10.3724/SP.J.1006.2020.94056

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆叶柄角的QTL定位分析

王存虎,刘东,许锐能,杨永庆(),廖红   

  1. 福建农林大学资源与环境学院/根系生物学研究中心, 福建福州 350002
  • 收稿日期:2019-04-12 接受日期:2019-08-09 出版日期:2020-01-12 网络出版日期:2019-09-12
  • 通讯作者: 杨永庆
  • 作者简介:E-mail: wcunhu@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31830083);福建农林大学科技创新专项基金项目资助(CXZX2018028)

Mapping of QTLs for leafstalk angle in soybean

WANG Cun-Hu,LIU Dong,XU Rui-Neng,YANG Yong-Qing(),LIAO Hong   

  1. College of Resources and Environment, Fujian Agriculture and Forestry University/Root Biology Center, Fuzhou 350002, Fujian, China
  • Received:2019-04-12 Accepted:2019-08-09 Published:2020-01-12 Published online:2019-09-12
  • Contact: Yong-Qing YANG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31830083);Science and Technology Innovation Fund of Fujian Agriculture and Forestry University(CXZX2018028)

摘要:

叶柄角是大豆株型的重要构成因素, 影响大豆冠层结构、光合作用效率以及最终产量。解析大豆叶柄角的遗传基础对提升大豆产量具有重要意义。本研究以2个叶柄角具有显著差异的亲本BLA和SLA以及它们衍生的RIL群体为材料, 构建高密度的遗传图谱, 对大豆不同部位的叶柄角进行QTL分析, 并利用近等基因系验证部分QTL。遗传分析结果显示, 叶柄角呈连续正态分布, 符合数量性状遗传特征。利用GBS技术构建了包含859个Bin标记的大豆高密度遗传图谱, 总遗传长度为2326.9 cM, 标记间平均距离为2.763 cM; 共检测到14个调控叶柄角的QTL, LOD值在2.58~4.80之间, 可解释遗传变异范围在6.9%~12.4%之间, 其中5个QTL定位在第12染色体上且成簇存在; 构建的qLA12qLA18的近等基因系表型结果显示, 叶柄角在同一对近等基因家系间差异显著, 表明qLA12qLA18是2个可信的QTL。本研究为进一步克隆调控叶柄角功能基因奠定了基础, 为大豆理想株型育种提供了遗传材料。

关键词: 大豆株型, 叶柄角, QTL定位, 近等基因系

Abstract:

Leafstalk angle is one of the most important elements for shoot architecture of soybean, affecting canopy architecture, photosynthetic efficiency and final grain yield. Exploring genetic basis of soybean leafstalk angle is significant to improve soybean yield. In this study, two soybean accessions BLA and SLA, contrasting in leafstalk angle, and their derived RIL population were used for high resolution genetic map construction and QTL detection for leafstalk angle, further the near-isogenic lines (NIL) were constructed to validate partial QTLs. Genetic analysis results showed that values of leafstalk angle performed serial and normal distribution which coincides with genetic characteristics of quantitative traits. Additionally, a high resolution genetic map consisting of 859 bin markers was constructed by using GBS method. The linkage map covered 2326.9 cM of genetic distance and the average distance between two markers was 2.763 cM. A total of 14 QTLs for regulating leafstalk angle were detected, with explained 6.9%-12.4% of genetic variation, and their LOD values varied from 2.58 to 4.80, and five of them were clustered together on Chromosome 12. The phenotype of the NILs for qLA12 and qLA18 revealed that leafstalk angle performed significant difference between same pair of NILs which strongly suggested that qLA12 and qLA18 are two believable QTLs. In summary, our results lay a foundation for cloning functional genes of regulating leafstalk angle and provide genetic resources for breeding elite soybean varieties with ideal shoot architecture.

Key words: soybean shoot architecture, leafstalk angle, QTL mapping, near-isogenic lines (NIL)

图1

亲本间叶柄角表型差异(A)及统计分析(B) BLA: 大叶柄角; SLA: 小叶柄角。**表示SLA和BLA的叶柄角在1% 水平上的差异显著性。LA-H、LA-M和LA-L分别表示上位、中位和下位的叶柄角。"

表1

亲本和RIL群体的表型变异和遗传分析"

性状
Trait
亲本Parents 重组自交系群体RILs 遗传力
h2b
BLA±SE SLA±SE 均值 Mean 标准差SD 变异系数
CV (%)
最小值Min. 最大值Max. 峰度
Skew.
偏度
Kurt.
LA-H 36.60±1.36 36.60±2.72 37.25 6.57 17.64 20 75 0.78 2.29 0.70
LA-M 53.30±1.36 51.67±3.60 56.61 8.82 15.58 30 85 0.56 0.52 0.72
LA-L 95.00±2.36 73.30±2.72 74.83 12.17 16.26 20 110 -1.22 3.16 0.90

表2

RIL群体中Bin标记在遗传图谱上的分布"

染色体
Chr.
遗传距离
Genetic distance (cM)
物理长度
Physical length
标记数量
Number of bin markers
平均覆盖距离
Average coverage distance (cM)
Chr01 132.25 56,510,449 45 2.94
Chr02 149.48 47,706,575 39 3.83
Chr03 82.60 45,730,193 38 2.17
Chr04 125.97 51,405,255 50 2.52
Chr05 99.11 41,919,006 34 2.91
Chr06 128.98 50,892,625 44 2.93
Chr07 113.88 43,534,570 44 2.59
Chr08 166.04 47,709,553 45 3.69
Chr09 157.61 50,173,153 32 4.93
Chr10 85.61 51,542,279 25 3.42
Chr11 158.21 34,671,664 53 2.99
Chr12 123.75 40,030,102 47 2.63
Chr13 135.19 45,514,498 45 3.00
Chr14 87.35 47,841,279 44 1.99
Chr15 106.51 51,710,377 48 2.22
Chr16 74.30 37,192,783 46 1.62
Chr17 90.05 41,348,852 45 2.00
Chr18 113.71 57,961,359 46 2.47
Chr19 103.79 50,522,110 46 2.26
Chr20 92.53 47,868,276 43 2.15
合计Total 2326.90 941,784,958 859 55.26

图2

高密度的遗传图谱 左侧比例尺代表遗传距离, 连锁群上不同的颜色表示标记密度的差异。"

表3

大豆RIL群体叶柄角的QTL定位"

性状
Trait
QTL 染色体
Chr.
标记区间
Markers interval
遗传位置
Genetic position (cM)
LOD 加性效应Add 表型变异PVE (%)
上位
LA-H
qLA12a Gm12 Chr12.3021337-Chr12.4783251 20.466 3.55 1.76 9.3
qLA12b Gm12 Chr12.6175142-Chr12.6947560 32.213 3.43 1.61 9.0
qLA12c Gm12 Chr12.2086945-Chr12.2529118 7.231 2.70 1.46 7.2
qLA01 Gm01 Chr01.55523848-Chr01.56419281 131.054 3.85 -1.67 10.1
qLA11 Gm11 Chr11.10213098-Chr11.24373759 57.808 2.58 1.55 6.9
中位LA-M qLA09 Gm09 Chr09.4074635-Chr09.4606081 34.147 3.97 -2.36 10.4
qLA12d Gm12 Chr12.1868502-Chr12.2529118 6.231 3.86 2.30 10.1
qLA12a Gm12 Chr12.3021337-Chr12.4783251 17.466 3.19 2.33 8.4
qLA14 Gm14 Chr14.6976251-Chr14.43836321 60.580 2.70 -2.70 7.2
qLA17 Gm17 Chr17.37570037-Chr17.36696957 49.792 2.62 -1.87 7.0
下位LA-L qLA18 Gm18 Chr18.46032220-Chr18.47375074 63.343 4.80 3.98 12.4
qLA06 Gm06 Chr06.11495976-Chr06.15321801 70.098 4.21 -4.69 11.0
qLA15 Gm15 Chr15.11748320-Chr15.47611763 83.523 2.94 -3.20 7.8
qLA07 Gm07 Chr07.7016819-Chr07.8103486 29.912 2.71 3.02 7.2

表4

本研究中使用的dCAPS标记"

引物编号
Primer name
SNP位点
SNP loci
内切酶
Enzyme
引物序列
Primer sequence (5°-3°)
预期片段大小
Expected product size (bp)
dCAPS-Chr12-1 3465298 Spe I F: AGTGCTAAAAACAATCCCCG 250/(226+24)
R: GAGCCCGAATGAAGTGGGTGAGGACTAG
dCAPS-Chr12-2 3513670 Bsm I F: GCATAGCCTCTCCAATCCAT 229/(198+31)
R: GCATTTGAATGAAGACTTGTGGAGGAATG
dCAPS-Chr12-3 3577958 Bmr I F: CTGAGGATGTGATCCTGAGAAATGCTACTG 194/(161+33)
R: CTCCACCCATCATCAAAATA
dCAPS-Chr12-4 3593743 Acl I F: TGCCAACATTCCCTCATCAG 186/(160+26)
R: TTAGATGAAGCAAATGATTCAAATAACGT
dCAPS-Chr12-5 3953314 SnaB I F: CTTAAACCACCCGGTGTCTCTTGCGGTACG 234/(205+29)
R: GTGTGTTACTATCTCTCTCT
dCAPS-Chr12-6 4183623 Bsm I F: GGAAACTTGGTTAATAGCTAAGATCCTTGA 215/(183+32)
R: GATTGGAGGAAAGTGGAAGA
dCAPS-Chr12-7 4546007 Sma I F: ACTCCCTTCTTGTTGCCTTG 169/(141+28)
R: AATTGCTTGATAAGGTCCTGCTAGGCCCG
dCAPS-Chr18-1 45231954 Taq I F: CTCTCATCTCAAACAAGTCT 209/(181+28)
R: GAGTTAATCCTAGTTTAAAATGTCATTTCG
dCAPS-Chr18-2 46986384 Sna I F: GAAGTAACAACAGACTACGACGGTTGTAT 230/(205+25)
R: CTAAGACGGACCTACAAAGC
dCAPS-Chr18-3 47034338 Asu I F: GTAGACACCGGCGATCGGGGACTTTGGTC 204/(181+23)
R: CAGCAAGTCCACCAGCATCT
引物编号
Primer name
SNP位点
SNP loci
内切酶
Enzyme
引物序列
Primer sequence (5°-3°)
预期片段大小
Expected product size (bp)
dCAPS-Chr18-4 48080921 Taq II F: GTCGTGAAATTTGAGCACCACGTTCGCCA 247/(221+26)
R: TATCTCGCAAATCCCAACGT
dCAPS-Chr18-5 48514645 Mnl I F: TGGTTGTTCTGTTTTTCTTTGTTCTACCT 244/(215+29)
R: GTCGACTTCTATCTACAAAC
dCAPS-Chr18-6 50618122 Xmn I F: CTATACTCGGTCACTTATTG 195/(167+28)
R: CTTCTTAGTAACCCTTTCCAAGTGAAAACA
dCAPS-Chr18-7 51595218 Dpn I F: GGTCACGTTGTTTTGTAAGAATGTTCCGA 242/(213+29)
R: AACCACAAGCGTAATGAGAT

图3

qLA12近等基因系间的叶柄角表型差异(A)及统计分析(B) 花盆上相同的黄色字母表示来源于同一个F5:6家系的1对近等基因。红色方框和弧形箭头表示观测点。"

图4

qLA18近等基因系间的叶柄角表型差异(A)及统计分析(B) 花盆上相同的黄色字母表示来源于同一个F5:6家系的1对近等基因。红色方框和弧形箭头表示观测点。"

[1] Reinhardt D, Kuhlemeier C . Plant architecture. EMBO Rep, 2002,3:846-851.
doi: 10.1093/embo-reports/kvf177 pmid: 12223466
[2] Wilcox J R, Sediyama T . Interrelationships among height, lodging and yield in determinate and indeterminate soybeans. Euphytica, 1981,30:323-326.
doi: 10.1007/BF00033993
[3] Wang D, Graef G L, Procopiuk A M, Diers B W . Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet, 2004,108:458-467.
doi: 10.1007/s00122-003-1449-z
[4] Gowda C L L, Upadhyaya H D, Dronavalli N, Singh S . Identification of large-seeded high-yielding stable Kabuli chickpea germplasm lines for use in crop improvement. Crop Sci, 2011,51:198-209.
doi: 10.2135/cropsci2010.01.0078
[5] 王昱, 范杰英, 王玮, 姜晓丽, 张世忠 . 不同密度对大豆生理特性的影响. 黑龙江农业科学, 2012, (8):38-40.
Wang Y, Fan J Y, Wang W, Jiang X L, Zhang S Z . Effect of different density on the soybean physiological characteristics. Heilongjiang Agric Sci, 2012, (8):38-40 (in Chinese).
[6] 刘岩, 周勋波, 陈雨海, 齐林, 崔兆韵, 杨荣光, 徐德力 . 底墒和种植方式对夏大豆光合特性及产量的影响. 生态学报, 2010,31:3478-3487.
Liu Y, Zhou X B, Chen Y H, Qin L, Cui Z Y, Yang R G, Xu D L . Effects of pre-sowing soil moisture and planting patterns on photosynthetic characteristics and yield of summer soybean. Acta Ecol Sin, 2011,31:3478-3487.
[7] 刘春全, 毕一立, 王孝忠 . 大豆农艺性状与籽粒产量关系研究进展. 现代农业科技, 2009, (23):39-40.
Liu C Q, Bi Y L, Wang X Z . Advances in the relationship between agronomic traits and grain yield of soybean. Modern Agric Sci Technol, 2009, (23):39-40 (in Chinese).
[8] 董丽华 . 大豆产量构成因素及其相互关系. 大豆科技, 1996, (1):15.
Dong L H . Factors affecting soybean yield and their relationships. Soybean Bull, 1996, (1):15 (in Chinese).
[9] 杜维广, 盖钧镒 . 大豆超高产育种研究进展的讨论. 土壤与作物, 2014,3(3):81-92.
Du W G, Gai J Y . A discussion on advances in breeding for super high-yielding soybean cultivars. Soil Crop, 2014,3(3):81-92 (in Chinese with English abstract).
[10] Lu M, Zhou F, Xie C X, Li M S, Xu Y B, Marilyn W, Zhang S H . Construction of a SSR linkage map and mapping of quantitative trait loci (QTL) for leaf angle and leaf orientation with an elite maize hybrid. Hereditas, 2007,29:1131-1138.
doi: 10.1360/yc-007-1131 pmid: 17855265
[11] Ning J, Zhang B C, Wang N L, Zhou Y H, Xiong L Z . Increased leaf angle1, a raf-like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice. Plant Cell, 2011,23:4334-4347.
doi: 10.1105/tpc.111.093419
[12] 廖慧敏, 张启军, 秦海龙, 夏士健, 宗寿余, 高艳红 . 一个籼稻叶夹角新基因的激素敏感性分析和基因定位. 江苏农业学报, 2014,30:1198-1203.
Liao H M, Zhang Q J, Qin H L, Xia S J, Zong S Y, Gao Y H . Hormone sensitivity and genetic mapping of a new leaf angle gene in rice. Jiangsu J Agric Sci, 2014,30:1198-1203 (in Chinese with English abstract).
[13] 李登海, 张永慧, 杨今胜, 柳京国 . 育种与栽培相结合紧凑型玉米创高产. 玉米科学, 2004,12(1):69-71.
Li D H, Zhang Y H, Yang J S, Liu J G . Combination of breeding and cultivation, compact corn, high yield. J Maize Sci, 2004,12(1):69-71 (in Chinese with English abstract).
[14] 徐庆章, 王庆成, 牛玉贞, 王忠孝, 张军 . 玉米株型与群体光合作用的关系研究. 作物学报, 1995,21:492-496.
Xu Q Z, Wang Q C, Niu Y Z, Wang Z X, Zhang J . Study on the relationship between maize plant type and population photosynthesis. Acta Agron Sin, 1995,21:492-496 (in Chinese with English abstract).
[15] 王吴彬, 何庆元, 杨红燕, 向仕华, 赵团结, 邢光南, 盖钧镒 . 大豆分枝数和叶柄夹角的相关野生片段分析. 中国农业科学, 2012,45:4749-4758.
doi: 10.3864/j.issn.0578-1752.2012.23.001
Wang W B, He Q Y, Yang H Y, Xiang S H, Zhao T J, Xing G N, Gai J Y . Detection of wild segments associated with number of branches on main stem and leafstalk angle in soybean. Sci Agric Sin, 2012,45:4749-4758 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2012.23.001
[16] Gao J S, Yang S X, Cheng W, Fu Y F, Leng J T, Yuan X H, Jiang N, Ma J X, Feng X Z . GmILPA1, Encoding an APC8-like protein, Controls leaf petiole angle in soybean. Plant Physiol, 2017,174:1167-1176.
doi: 10.1104/pp.16.00074 pmid: 28336772
[17] Elshire R J, Glaubitz J C, Sun Q . A Robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 2011,6:e19379.
doi: 10.1371/journal.pone.0019379 pmid: 21573248
[18] Huang X, Feng Q, Qian Q . High-throughput genotyping by whole-genome resequencing. Genome Res, 2009,19:1068-1076.
doi: 10.1101/gr.089516.108 pmid: 19420380
[19] Meng L, Li H H, Zhang L Y, Wang J K . QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283.
doi: 10.1016/j.cj.2015.01.001
[20] Van Ooijen J W . Map QTL 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, Netherlands: Kyazma B V, 2009.
[21] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M . Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
doi: 10.1007/s10142-013-0328-1 pmid: 23813016
[22] Chang J H, Lee W S . A sliding window method for finding recently frequent itemsets over online data streams. J Inf Sci Eng, 2004,20:753-762.
[23] 蔡星星, 张盛, 王欢, 吕锐玲, 李兴华, 周强 . 水稻株型基因的研究现状及应用前景. 分子植物育种, 2017,15:2809-2814.
Cai X X, Zhang S, Wang H, Lyu R L, Li X H, Zhou Q . The present research situation and application prospect of rice plant type genes. Mol Plant Breed, 2017,15:2809-2814 (in Chinese with English abstract).
[24] 李灿东, 赵建有, 郭泰, 王志新, 郑伟, 张振宇, 郭美玲, 刘忠堂 . 不同密度下主茎亚有限型大豆株型及产量的变化规律. 中国农学通报, 2014,30(30):164-167.
Li C D, Zhao J Y, Guo T, Wang Z X, Zheng W, Zhang Z Y, Guo M L, Liu Z T . Effects of planting density on plant type and yield of main emi-determinate soybean. Chin Agric Sci Bull, 2014,30(30):164-167 (in Chinese with English abstract).
[25] 胡霞 . 利用回交导入系剖析水稻产量与品质QTL及其表达的遗传背景效应. 中国农业科学院博士学位论文, 北京, 2011.
Hu X . Dissection of QTLs for Yield and Grain Quality and Genetic Background Effect on Their Expression Using Backcross Introgression Lines of Rice. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2011 (in Chinese with English abstract).
[26] Cao Y L, Ding X H, Cai M, Zhao J, Lin Y J, Li X H, Xu C G, Wang S P . The expression pattern of a rice disease resistance genexa3/xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics, 2007,177:523-533.
doi: 10.1534/genetics.107.075176 pmid: 17720929
[27] Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H M, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S . QTL × environment interactions in rice: I. Heading date and plant height. Theor Appl Genet, 2003,108:141-153.
doi: 10.1007/s00122-003-1401-2
[28] Zhuang J Y, Lin H X, Qian G R, Hittalmani S, Huang N, Zheng K L . Analysis of QTL × environment interaction for yield components and plant height in rice. Thero Appl Genet, 1997,95:799-808.
[29] Shen X H, Cao L Y, Shao G S, Zhan X D, Chen S G, Wu W M, Cheng S H . QTL Mapping for the content of five trace elements in brown rice. Mol Plant Breed, 2008,6:1061-1067.
[30] 张坤普, 徐宪斌, 田纪春 . 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009,35:270-278.
doi: 10.3724/SP.J.1006.2009.00270
Zhang K P, Xu X B, Tian J C . QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin, 2009,35:270-278 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.00270
[1] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[2] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[3] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[4] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[5] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[6] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[7] 郭清云, 蒯婕, 汪波, 刘芳, 张椿雨, 李根泽, 张云云, 傅廷栋, 周广生. 感抗油菜近等基因系混播对根肿病发病率的影响[J]. 作物学报, 2020, 46(9): 1408-1415.
[8] 郭清云, 汪波, 蒯婕, 张椿雨, 李根泽, 康惠仙, 傅廷栋, 周广生. 油菜感抗品种混播对根肿病防控效果的影响[J]. 作物学报, 2020, 46(5): 725-733.
[9] 刘代铃,谢俊锋,何乾瑞,陈四维,胡跃,周佳,佘跃辉,刘卫国,杨文钰,武晓玲. 净作和套作下大豆贮藏蛋白11S、7S组分相对含量的QTL分析[J]. 作物学报, 2020, 46(3): 341-353.
[10] 吴海涛, 张勇, 苏伯鸿, Lamlom F Sobhi, 邱丽娟. 大豆分枝数相关分子标记开发及qBN-18位点精细定位[J]. 作物学报, 2020, 46(11): 1667-1677.
[11] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[12] 王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(01): 140-146.
[13] 魏丽娟,刘瑞影,张莉,陈志友,杨鸿,霍强,李加纳. 甘蓝型油菜茎高QTL定位及株高相关位点整合[J]. 作物学报, 2019, 45(6): 818-828.
[14] 闫超,郑剑,段文静,南文斌,秦小健,张汉马,梁永书. 越冬栽培稻产量性状相关QTL定位[J]. 作物学报, 2019, 45(4): 522-537.
[15] 张春宵,李淑芳,金峰学,刘文平,李万军,刘杰,李晓辉. 用3种方法定位玉米萌发期和苗期的耐盐和耐碱相关性状QTL[J]. 作物学报, 2019, 45(4): 508-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!