作物学报 ›› 2020, Vol. 46 ›› Issue (01): 20-30.doi: 10.3724/SP.J.1006.2020.92007
马金姣1,兰金苹1,2,张彤1,陈悦1,郭亚璐1,3,刘玉晴1,燕高伟1,魏健1,窦世娟1,杨明1,李莉云1,刘国振1,*()
MA Jin-Jiao1,LAN Jin-Ping1,2,ZHANG Tong1,CHEN Yue1,GUO Ya-Lu1,3,LIU Yu-Qing1,YAN Gao-Wei1,WEI Jian1,DOU Shi-Juan1,YANG Ming1,LI Li-Yun1,LIU Guo-Zhen1,*()
摘要:
促分裂原活化蛋白质激酶(mitogen-activated protein kinase, MAPK)在真核生物中高度保守, 在水稻逆境应答反应中也发挥着重要作用。本研究表达纯化了水稻OsMPK17蛋白质, 制备了特异性抗体, 对多种非生物逆境胁迫下的蛋白质样品进行免疫印迹分析, 发现OsMPK17蛋白质在干旱胁迫下诱导表达, 提示该蛋白质在干旱胁迫应答中发挥作用。对脱落酸和茉莉酸甲酯处理的离体叶片蛋白质分析发现, OsMPK17蛋白质表达丰度下降, 提示该蛋白质的功能发挥可能受激素调控。为此, 构建了过表达OsMPK17蛋白质的载体, 转化水稻后筛选获得了OsMPK17蛋白质过表达的纯合株系。田间种植鉴定结果表明, 转基因株系的株高变矮、穗长变短、结实率降低。种子萌发期拟旱(PEG-6000)处理条件下, 过表达OsMPK17株系的种子长势明显比野生型好, 根长与芽长均显著大于野生型。幼苗期失水试验表明, 转基因植株的失水率低于野生型。在土培干旱胁迫后恢复浇水的试验中, 过表达OsMPK17蛋白质的转基因水稻生长也好于野生型。综上, 过表达OsMPK17蛋白质提高了水稻的耐旱性。本研究增进了对水稻OsMPK17基因功能的了解。
[1] |
Johnson G L, Lapadat R . Mitogen-activated protein kinase pathways mediated by ERK, JNK and p38 protein kinases. Science, 2002,298:1911-1912.
doi: 10.1126/science.1072682 pmid: 12471242 |
[2] |
Widmann C, Gibson S, Jarpe M B, Johnson G L . Mitogen-activated protein kinase: conservation of a three kinase module from yeast to human. Physiol Rev, 1999,79:143-180.
doi: 10.1152/physrev.1999.79.1.143 pmid: 9922370 |
[3] |
Bogre L, Meskiene I , Heberle-bors E, Hirt H. Stressing the role of MAP kinases in mitogenic stimulation. Plant Mol Biol, 2000,43:705-718.
doi: 10.1023/A:1006301614690 |
[4] |
Roberts C J, Nelson B, Marton M J, Stoughton R, Meyer M R, Bennett H A, He Y, Dai H, Walker W L, Hughes T R, Tyers M, Boone C, Friend S H . Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science, 2000,287:873-880.
doi: 10.1126/science.287.5454.873 pmid: 10657304 |
[5] |
Cristina M, Petersen M, Mundy J . Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol, 2010,61:621-649.
doi: 10.1146/annurev-arplant-042809-112252 pmid: 20441529 |
[6] |
He C, Fong S H, Yang D, Wang G L . BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol Plant-Microbe Interact, 1999,12:1064-1073.
doi: 10.1094/MPMI.1999.12.12.1064 pmid: 10624015 |
[7] |
Agrawal G K, Agrawal S K, Shibato J, Iwahashi H, Rakwal R . Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Biophys Res Commun, 2003,300:775-783.
doi: 10.1016/s0006-291x(02)02868-1 pmid: 12507518 |
[8] |
Shi B, Ni L, Liu Y . OsDMI3-mediated activation of OsMPK1 regulates the activities of antioxidant enzymes in abscisic acid signaling in rice. Plant Cell Environ, 2014,37:341-352.
doi: 10.1111/pce.12154 |
[9] |
Xie G, Kato H, Imai R . Biochemical identification of the OsMKK6-OsMPK3 signaling pathway for chilling stress tolerance in rice. Biochem J, 2012,443:95-102.
doi: 10.1042/BJ20111792 pmid: 22248149 |
[10] |
Xiong L, Yang Y . Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 2003,15:745-759.
doi: 10.1105/tpc.008714 pmid: 12615946 |
[11] |
Zhang Z, Li J, Li F, Liu H, Yang W, Chong K, Xu Y . OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate, OsTPP1, and enhances rice chilling tolerance. Dev Cell, 2017,43:731-743.
doi: 10.1016/j.devcel.2017.11.016 pmid: 29257952 |
[12] |
Wang F, Jing W, Zhang W . The mitogen-activated protein kinase cascade MKK1-MPK4 mediates salt signaling in rice. Plant Sci, 2014,227:181-189.
doi: 10.1016/j.plantsci.2014.08.007 |
[13] |
Hu J, Zhou J, Peng X, Xu H, Liu C, Du B, Yuan H, Zhu L, He G . The Bphi008a gene interacts with the ethylene pathway and transcriptionally regulates MAPK genes in the response of rice to brown planthopper feeding. Plant Physiol, 2011,156:856-872.
doi: 10.1104/pp.111.174334 |
[14] |
Xu R, Duan P, Yu H, Zhou Z, Zhang B, Wang R, Li J, Zhang G, Zhuang S, Lyu J, Li N, Chai T, Tian Z, Yao S, Li Y . Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice. Mol Plant, 2018,11:860-873.
doi: 10.1016/j.molp.2018.04.004 pmid: 29702261 |
[15] |
Wen J Q, Oono K, Imai R . Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol, 2002,129:1880-1891.
doi: 10.1104/pp.006072 pmid: 12177502 |
[16] | 石佳, 杨丹丹, 葛慧雯 . 水稻OsMPK15的cDNA克隆和转录水平分析. 生物技术通报, 2018, (6):66-72. |
Shi J, Yang D D, Ge H W . cDNA cloning and transcriptional level analysis of OsMPK15 in rice (Oryza sativa L.). Biotechnol Bull, 2018, (6):66-72 (in Chinese with English abstract). | |
[17] |
Lee S K, Kim B G, Kwon T R, Jeong M J, Park S R, Lee J W, Byun M O, Kwon H B, Matthews B F, Hong C B, Park S C . Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (Oryza sativa L.). J Biosci, 2011,36:139-151.
doi: 10.1007/s12038-011-9002-8 pmid: 21451255 |
[18] |
Liu G Z, Pi L Y, Walker J C, Ronald P C, Song W Y . Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21. J Biol Chem, 2002,277:20264-20269.
doi: 10.1074/jbc.M110999200 pmid: 11927577 |
[19] |
Cao Y, Sun J, Zhu J, Li L, Liu G . Primer C E: designing primers for cloning and gene expression. Mol Biotechnol, 2010,46:113-117.
doi: 10.1007/s12033-010-9276-3 |
[20] |
郭亚璐, 马晓飞, 史佳楠, 张柳, 张剑硕, 黄腾, 武鹏程, 康昊翔, 耿广荟, 陈浩, 魏健, 窦世娟, 李莉云, 尹长城, 刘国振 . 转基因水稻中CAS9蛋白质的免疫印迹检测. 中国农业科学, 2017,50:3631-3639.
doi: 10.3864/j.issn.0578-1752.2017.19.001 |
Guo Y L, Ma X F, Shi J N, Zhang L, Zhang J S, Huang T, Wu P C, Kang H X, Geng G H, Chen H, Wei J, Dou S J, Li L Y, Yin C C, Liu G Z . Western blot detection of CAS9 protein in transgenic rice . Sci Agric Sin, 2017,50:3631-3639 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.19.001 |
|
[21] |
Li X, Bai H, Wang X, Li L, Cao Y, Wei J, Liu Y, Liu L, Gong X, Wu L, Liu S, Liu G . Identification and validation of rice reference proteins for Western blotting. J Exp Bot, 2011,62:4763-4772.
doi: 10.1093/jxb/err084 |
[22] |
牛东东, 郝育杰, 荣瑞娟, 韦汉福, 兰金苹, 史佳楠, 魏健, 李雪姣, 杨烁, 奚文辉 . 转基因水稻中GUS蛋白质的检测及其表达特征. 中国农业科学, 2014,47:2715-2722.
doi: 10.3864/j.issn.0578-1752.2014.14.002 |
Niu D D, Hao Y J, Rong R J, Wei H F, Lan J P, Shi J N, Wei J, Li X J, Yang S, Xi W H . Detection and expression of GUS protein in transgenic rice. Sci Agric Sin, 2014,47:2715-2722 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2014.14.002 |
|
[23] |
张剑硕, 马金姣, 张彤, 陈悦, 魏健, 张柳, 史佳楠, 徐珊, 燕高伟, 杜铁民, 窦世娟, 李莉云, 刘丽娟, 刘国振 . 水稻蛋白质样品资源库RiceS-A300的建立与应用. 中国农业科学, 2018,51:3625-3638.
doi: 10.3864/j.issn.0578-1752.2018.19.001 |
Zhang J S, Ma J J, Zhang T, Chen Y, Wei J, Zhang L, Shi J N, Xu S, Yan G W, Du T M, Dou S J, Li L Y, Liu L J, Liu G Z . Establishment and application of RiceS-A300 for rice protein sample library. Sci Agric Sin, 2018,51:3625-3638 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.19.001 |
|
[24] |
Agrawal G K, Jwa N S, Rakwal R . A novel rice (Oryza sativa L.) acidic PR1 gene highly responsive to cut, phytohormones, and protein phosphatase inhibitors. Biochem Biophys Res Commun, 2000,274:157-165.
doi: 10.1006/bbrc.2000.3114 pmid: 10903912 |
[25] | 兰金苹 . MAPK基因在Xa21介导的水稻白叶枯病抗性反应中的功能研究. 河北农业大学博士学位论文, 河北保定, 2015. |
Lan J P . Function of MAPK Gene in Xa21 Mediated Resistance to Bacterial Blight in Rice. PhD Dissertation of Hebei Agricultural University, Baoding, Hebei, China, 2015 (in Chinese with English abstract). | |
[26] |
Nishimura A, Aichi I, Matsuoka M . A protocol for agrobacterium-mediated transformation in rice. Nat Prot, 2006,1:2796-2802.
doi: 10.1002/cpmb.89 pmid: 31237422 |
[27] |
Duan Y B, Zhai C Y, Li H, Li J, Mei W Q, Gui H P, Ni D H, Song F S, Li L, Zhang W G, Yang J B . An efficient and high-throughput protocol for Agrobacterium-mediated transformation based on phosphomannose isomerase positive selection in MeJA ponica rice (Oryza sativa L.). Plant Cell Rep, 2012,31:1611-1624.
doi: 10.1007/s00299-012-1275-3 |
[28] | 刘巧泉, 张景六, 王宗阳, 洪孟民, 顾铭洪 . 根癌农杆菌介导的水稻高效转化系统的建立. 植物生理学报, 1998,24:259-271. |
Liu Q Q, Zhang J L, Wang Z Y, Hong M M, Gu M H . Establishment of efficient transformation system of rice mediated by Agrobacterium tumefaciens. Acta Phytophysiol Sin, 1998,24:259-271 (in Chinese). | |
[29] |
Dansana P K, Kothari K S, Vij S, Tyagi A K . OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. Plant Cell Rep, 2014,33:1425-1440.
doi: 10.1007/s00299-014-1626-3 |
[30] |
Lou D, Wang H, Liang G, Yu D . OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Front Plant Sci, 2017,8:993.
doi: 10.3389/fpls.2017.00993 pmid: 28659944 |
[31] |
Chang Y, Nguyen B H, Xie Y, Xiao Y, Tang N, Zhu W, Mou T, Xiong L . Co-overexpression of the constitutively active form of OsbZIP46 and ABA-activated protein kinase SAPK6 improves drought and temperature stress resistance in rice. Front Plant Sci, 2017,8:1102.
doi: 10.3389/fpls.2017.01102 pmid: 28694815 |
[32] | 刘国振, 刘斯奇, 吴琳, 徐宁志 . 基于抗体的水稻蛋白质组学——开端与展望. 中国科学: 生命科学, 2011,41(3):173-177. |
Liu G Z, Liu S Q, Wu L, Xu N Z . Antibody-based rice proteomics-beginning and prospect. Chin Sci: Life Sci, 2011,41(3):173-177 (in Chinese). | |
[33] | Bailey T A, Zhou X J, Chen J P, Yang Y N. Role of ethylene, abscisic acid and MAP kinase pathways in rice blast resistance. In: Wang G L, Valent B, eds. Advances in Genetics, Genomics and Control of Rice Blast Disease. Springer, Dordrecht, 2009. pp 185-190. |
[34] |
De V D, Yang Y, Cruz C V, Hofte M . Abscisic acid-induced resistance against the brown spot pathogenCochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol, 2010,152:2036-2052.
doi: 10.1104/pp.109.152702 pmid: 20130100 |
[35] |
Fu S F, Chou W C, Huang D D, Huang H H . Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol, 2002,43:958-963.
doi: 10.1093/pcp/pcf111 pmid: 12198199 |
[36] |
Kurusu T, Yagala T, Miyao A, Miyao A, Hirochika H, Kuchitsu K . Identification of a putative voltage-gated Ca 2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice . Plant J, 2005,42:798-809.
doi: 10.1111/j.1365-313X.2005.02415.x pmid: 15941394 |
[37] |
Finkelstein R, Reeves W, Ariizumi T, Steber C . Molecular aspects of seed dormancy. Annu Rev Plant Biol, 2008,59:387-415.
doi: 10.1146/annurev.arplant.59.032607.092740 pmid: 18257711 |
[38] |
Kim J A, Agrawal G K, Rakwal R, Han K S, Kim K N, Yun C H, Heu S, Park S Y, Lee Y H, Jwaa N S . Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis At EDR1, reveal its role in defense/stress signalling pathways and development. Biochem Biophys Res Commun, 2003,300:868-876.
doi: 10.1016/s0006-291x(02)02944-3 pmid: 12559953 |
[39] |
Hoth S, Morgante M, Sanchez J P, Hanafey M K, Tingey S V, Chua N H . Genome-wide gene expression profiling inArabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J Cell Sci, 2002,115:4891-4900.
doi: 10.1242/jcs.00175 pmid: 12432076 |
[40] |
Nemhauser J L, Hong F, Chory J . Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell, 2006,126:467-475.
doi: 10.1016/j.cell.2006.05.050 pmid: 16901781 |
[41] |
Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Shinozaki K Y, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K . Monitoring the expression pattern of around 7,000Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics, 2002,2:282-291.
doi: 10.1007/s10142-002-0070-6 pmid: 12444421 |
[42] |
Finkelstein R R, Gampala S S, Rock C D . Abscisic acid signaling in seeds and seedlings. Plant Cell Online, 2002,14(S1):S15-S45.
doi: 10.1021/acschembio.9b00453 pmid: 31497942 |
[43] |
Hetherington A M . Guard cell signaling. Cell, 2001,107:711-714.
doi: 10.1016/s0092-8674(01)00606-7 pmid: 11747807 |
[44] |
Zhang A, Zhang J, Ye N, Cao J, Tan M, Zhang J H, Jiang M G . ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2 in brassinosteroid-induced antioxidant defence in leaves of maize. J Exp Bot, 2010,61:4399-4411.
doi: 10.1093/jxb/erq243 pmid: 20693409 |
[45] |
Xing Y, Jia W S, Zhang J H . At MKK1 mediates ABA-induced CAT1 expression and H2O2 production via At MPK6-coupled signaling inArabidopsis. Plant J, 2008,54:440-451.
doi: 10.1111/j.1365-313X.2008.03433.x pmid: 18248592 |
[46] |
Jammes F, Song C, Shin D, Munemasab S, Takedaa K, Gua D, Choa D, Leea S, Giordoa R, Sritubtimd S, Leonhardte N, Ellisd B E, Muratab Y, Kwaka J M . MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci USA, 2009,106:20520-20525.
doi: 10.1073/pnas.0907205106 pmid: 19910530 |
[47] |
Zong X, Li D, Gu L . Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta, 2009,229:485-495.
doi: 10.1007/s00425-008-0848-4 |
[48] |
Zhang S, Klessig D F . Salicylic acid activates a 48-kD MAP kinase in tobacco. Plant Cell, 1997,9:809-824.
doi: 10.1105/tpc.9.5.809 pmid: 9165755 |
[49] |
Seo S, Katou S, Seto H, Gomi K, Ohashi Y . The mitogen-activated protein kinases WIPK and SIPK regulate the levels of MeJAsmonic and salicylic acids in wounded tobacco plants. Plant J, 2007,49:899-909.
doi: 10.1111/j.1365-313X.2006.03003.x pmid: 17253983 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
|