欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (01): 40-51.doi: 10.3724/SP.J.1006.2019.94066

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析

晁毛妮1,胡海燕1,*(),王润豪1,陈煜2,付丽娜1,刘庆庆1,王清连1   

  1. 1 河南科技学院/现代生物育种河南省协同创新中心, 河南新乡 453003
    2 山东棉花研究中心, 山东济南 250100
  • 收稿日期:2019-04-25 接受日期:2019-08-09 出版日期:2020-01-12 网络出版日期:2020-03-04
  • 通讯作者: 胡海燕
  • 作者简介:E-mail: chaomaoni@126.com
  • 基金资助:
    本研究由国家自然科学基金项目(31601347);河南省博士后科学基金项目(1902042);河南省科技攻关计划项目(192102110030);河南省高等学校重点科研计划项目资助(19A210013)

Cloning and functional analysis of promoter of potassium transporter gene GhHAK5 in upland cotton (Gossypium hirsutum L.)

Mao-Ni CHAO1,Hai-Yan HU1,*(),Run-Hao WANG1,Yu CHEN2,Li-Na FU1,Qing-Qing LIU1,Qing-Lian WANG1   

  1. 1 Henan Institute of Science and Technology/Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang 453003, Henan, China
    2 Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
  • Received:2019-04-25 Accepted:2019-08-09 Published:2020-01-12 Published online:2020-03-04
  • Contact: Hai-Yan HU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31601347);Henan Postdoctoral Science Foundation(1902042);Henan Scientific and Technological Research Program(192102110030);Key Research Projects of Henan Higher Education Institutions(19A210013)

摘要:

KUP/HAK/KT钾转运体基因的转录调控是植物响应低钾胁迫的一项重要机制。克隆和分析棉花钾转运体基因的启动子, 不仅有助于了解其表达模式及调控机制, 对于改良棉花的钾吸收特性也具有重要意义。陆地棉钾转运体基因GhHAK5是一个在根中特异性高表达的基因, 其表达受低钾胁迫诱导, 目前关于该基因启动子的功能还不清楚。本研究以陆地棉品种百棉1号为材料, 通过PCR方法对GhHAK5上游2000 bp启动子片段(pGhHAK5)进行克隆, 并通过转化拟南芥、GUS组织定位和低钾诱导表达特性分析来研究其功能。结果表明, pGhHAK5除具有TATA-box和CAAT-box等基本顺式作用元件外, 还含有多个响应于光、逆境胁迫、植物激素和生物钟等的顺式作用元件。pGhHAK5与雷蒙德氏棉pGrHAK5在重要调控元件的数量和位置分布上具有较高的一致性, 均具有5个参与根特异性表达调控的元件(ATAAAAT)和1个参与低钾条件下转录调控的ARF转录因子结合位点(TGTCNN)。GUS组织化学染色结果显示, 转基因拟南芥幼苗的叶脉和胚轴维管束组织染色较深, 根系染色较浅; 成熟期转基因拟南芥植株的根、叶脉和花萼维管束组织染色较深, 茎和荚皮染色较浅, 表明pGhHAK5驱动的GUS主要在拟南芥成熟的根和地上部维管束组织中表达。进一步低钾诱导表达特性分析表明, PGhHAK5驱动的GUS在拟南芥幼苗幼嫩根中的表达很弱, 且其表达不受低钾胁迫诱导而增强, 表明PGhHAK5可能是一个主要在成熟根中具有功能的低钾诱导型启动子。转录组分析和荧光定量PCR结果表明, GhHAK5主要在成熟的根中表达, 且其表达受发育时期的影响, 该结果与pGhHAK5驱动的GUS在拟南芥根中的表达结果一致。本研究结果有助于深入了解GhHAK5表达调控的分子机制, 并为棉花钾吸收效率的提高及钾高效棉花品种的培育提供理论依据。

关键词: 启动子, 维管束组织, 钾转运体, 低钾, 陆地棉

Abstract:

Transcriptional regulation of KUP/HAK/KT potassium transporter gene is an important mechanism of plant response to low potassium stress. Cloning and analysis of promoter of potassium transporter gene in cotton is not only helpful to understand its expression pattern and regulation mechanism, but also important to improve the potassium absorption in cotton. Potassium transporter gene GhHAK5 is a highly expressed in roots and induced by low potassium stress in upland cotton, but the function of its promoter is still unclear. In this study, the 2000 bp promoter fragment of GhHAK5 was cloned from upland cotton variety Baimian 1 by using PCR amplification, and its function was analyzed by GUS histochemical staining and induced expression analysis of GUS under low potassium in pGhHAK5 transgenic Arabidopsis thaliana. In addition to TATA-box, CAAT-box and other basic cis-acting elements, pGhHAK5 also contained a number of cis-acting elements responsive to light, stress, phytohormone and circadian. pGhHAK5 was highly consistent with pGrHAK5 in the number and location of important regulatory elements, and had five root-specific expression regulatory elements (ATAAAAT) and an ARF transcription factor binding site (TGTCNN) involved in transcription regulation under low potassium conditions. GUS histochemical staining of transgenic Arabidopsis thaliana seedlings showed that the leaf veins and vascular tissue of hypocotyl were deeply stained, and the roots were shallowly stained. For mature Arabidopsis thaliana plants, enhanced GUS staining was observed in roots, leaf veins and the vascular tissue of calyx, and weakened GUS staining was observed in stem and pod skin, suggesting that pGhHAK5-driven GUS was mainly expressed in mature roots and vascular tissue of shoots. Induced expression analysis of GUS under low potassium in pGhHAK5 transgenic Arabidopsis thaliana showed that the expression of GUS driven by pGhHAK5 was weak in young roots of Arabidopsis thaliana seedlings, and its expression was not enhanced by low potassium stress. These results suggest that pGhHAK5 might be a potassium-deficient inducible promoter mainly in mature roots. Transcriptome and quantitative real-time PCR analysis showed that GhHAK5 expression in roots was affected by developmental stages, which was consistent with the results of GUS expression driven by pGhHAK5 in Arabidopsis thaliana. These results are helpful to understand the molecular mechanism of GhHAK5 expression regulation, and provide theoretical basis for improving potassium uptake efficiency and breeding potassium efficient varieties in cotton.

Key words: promoter, vascular tissues, potassium transporter, low potassium, upland cotton

图1

陆地棉GhHAK5启动子序列的扩增 1: GhHAK5启动子PCR扩增产物; 2: DNA分子量标准(DL2000)。"

表1

GhHAK5启动子区包含的顺式作用元件"

元件类型
Element type
名称
Name
拷贝数
Copy number
基序
Motif sequence
功能
Function
基础元件
Basal
element
5UTR Py-rich stretch 1 TTTCTTCTCT 高转录水平顺式作用元件
cis-acting element conferring high transcription levels
TATA-box 61 TATA/ATATAT/TTTTA 转录起始位点-30核心启动子元件 Core promoter element around -30 of transcription start
CAAT-box 18 CAATT/CAAT/CCAAT 启动子和增强子区的一般顺式作用元件 Common cis-acting element in promoter and enhancer regions

Light
Box I 1 TTTCAAA 光响应元件 Light responsive element
I-box 1 ATGATATGA 部分光响应元件 Part of a light responsive element
G-Box 1 CACGTT 光响应顺式作用调控元件 cis-acting regulatory element involved in light responsiveness
AT1-motif 1 ATTAATTTTACA 部分光响应模块 Part of a light responsive module
Box II 1 GTGGATATTATAT 部分光响应元件 Part of a light responsive element
生物钟
Circadian
Circadian 1 CAANNNNATC 昼夜节律顺式作用调控元件 cis-acting regulatory element involved in circadian control
植物激素
Phytohormone
CGTCA-motif 1 CGTCA 茉莉酸响应顺式作用元件 cis-acting regulatory element involved in the MeJA-responsiveness
TCA-element 1 GAGAAGAATA 水杨酸响应顺式作用元件 cis-acting element
involved in salicylic acid responsiveness
TGA-element 1 AACGAC 生长素响应元件 Auxin-responsive element
ERE 1 ATTTCAAA 乙烯响应元件 Ethylene-responsive element
逆境胁迫
Stress
Box-W1 1 TTGACC 真菌诱导子响应元件
Fungal elicitor responsive element
HSE 4 AAAAAATTTC 热胁迫响应顺式作用元件 cis-acting element
involved in heat stress responsiveness
其他
Other
Skn-1_motif 4 GTCAT 胚乳表达相关顺式调控元件 cis-acting regulatory element required for endosperm expression
AT-rich element 1 ATAGAAATCAA AT-rich DNA结合蛋白的结合位点(ATBP-1)
Binding site of AT-rich DNA binding protein
Root-specific motif 5 ATAAAAT 根特异性表达响应元件
Root-specific responsive element

图2

GhHAK5启动子的序列分析 核苷酸的+1位置指的是起始密码子ATG中的A的位置, ATG用红色表示。部分预测的顺式作用元件在图中用灰色阴影表示。1个ARF转录因子结合位点(TGTCNN)在图中用红色加下画线表示。5个根特异性表达元件(ATAAAAT)在图中用红色加粗表示。"

图3

GhHAK5同源基因启动序列的比较分析 加粗的为棉属4个种钾转运体基因HAK5的启动子。"

图4

T1代转基因拟南芥植株的PCR检测 M: marker; 1: 野生型拟南芥(阴性对照); 2: 表达载体pCAMBIA1381Z-pGhHAK5质粒(阳性对照); 3~8转基因拟南芥。"

图5

转pGhHAK5拟南芥植株的GUS组织化学染色 A: 野生型拟南芥; B: 转pGhHAK5拟南芥; 1~4: 拟南芥幼苗(1)及其叶片(2)、胚轴(3)和根(4)对应位置放大图; 5~12: 成熟期拟南芥植株的叶片(5)、茎(6)、花(7)、花对应位置放大图(8)、荚(9)、荚对应位置放大图(10)、根(11)和根对应位置放大图(12)。"

图6

转pGhHAK5拟南芥幼苗对低钾胁迫的响应 WT: 野生型拟南芥; HK: 正常钾; LK: 低钾。a: 拟南芥幼苗; b: 叶对应位置放大图; c: 根对应位置放大图。"

图7

陆地棉GhHAK5基因的时空表达特性分析 A: 陆地棉GhHAK5基因时空表达特性的转录组分析; B: 陆地棉GhHAK5基因时空表达特性的荧光定量PCR分析; C: 不同发育时期棉花根系形态的比较; **表示在0.01水平上差异显著。"

[1] 张志勇, 王清连, 李召虎, 段留生, 田晓莉 . 缺钾对棉花幼苗根系生长的影响及其生理机制. 作物学报, 2009,35:718-723.
doi: 10.3724/SP.J.1006.2009.00718
Zhang Z Y, Wang Q L, Li Z H, Duan L S, Tian X L . Effect of potassium deficiency on root growth of cotton (Gossypium hirsutum L.) seedlings and its physiological mechanisms involved. Acta Agron Sin, 2009,35:718-723 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.00718
[2] 鲁如坤 . 我国土壤氮、磷、钾的基本状况. 土壤学报, 1989,26:280-286.
Lu R K . General status of nutrients (N, P, K) in soils of china. Acta Pedol Sin, 1989,26:280-286 (in Chinese with English abstract).
[3] 孔祥强, 罗振, 李存东, 董合忠 . 棉花早衰的分子机理研究进展. 棉花学报, 2015,27:71-79.
doi: Y2015/V27/I1/71
Kong X Z, Luo Z, Li C D, Dong H Z . Molecular mechanisms of premature senescence in cotton. Cotton Sci, 2015,27:71-79 (in Chinese with English abstract).
doi: Y2015/V27/I1/71
[4] 刘冬青, 刘锐 . 转基因抗虫棉早衰与土壤肥力的相关性分析. 中国土壤与肥料, 2002, (6):41-42.
Liu D Q, Liu R . Correlation analysis between soil fertility and premature senescence of transgenic cotton. China Soils Fert, 2002, (6):41-42 (in Chinese with English abstract).
[5] Pettigrew W T, Meredithjr W R . Dry matter production, nutrient uptake, and growth of cotton as affected by potassium fertilization. J Plant Nutr, 1997,20:531-548.
doi: 10.1080/01904169709365272
[6] 李书田, 邢素丽, 张炎, 崔荣宗 . 钾肥用量和施用时期对棉花产量品质和棉田钾素平衡的影响. 植物营养与肥料学报, 2016,22:111-121.
doi: 10.11674/zwyf.14565
Liu S T, Xing S L, Zhang Y, Cui R Z . Application rate and time of potash for high cotton yield, quality and balance of soil potassium. Plant Nutr Fert Sci, 2016,22:111-121 (in Chinese with English abstract).
doi: 10.11674/zwyf.14565
[7] 宋美珍, 毛树春 . 钾素对棉花光合产物的积累及产量形成的影响. 棉花学报, 1994,6(增刊):52-57.
Song M Z, Mao S C . Effects of potassium on photosynthetic matter accumulation and yield. Acta Gossyp Sin, 1994,6(suppl):52-57 (in Chinese with English abstract).
[8] 房慧勇, 张桂寅, 马峙英 . 转基因抗虫棉抗黄萎病鉴定及黄萎病发生规律. 棉花学报, 2003,15:210-214.
Fang H Y, Zhang G Y, Ma Z Y . Disease dynamic and resistance identification to Verticillium wilt of transgenic cotton. Cotton Sci, 2003,15:210-214 (in Chinese with English abstract ).
[9] 陈光, 高振宇, 徐国华 . 植物响应缺钾胁迫的机制及提高钾利用效率的策略. 植物学报, 2017,52:89-101.
doi: 10.11983/CBB16231
Chen G, Gao Z Y, Xu G H . Adaption of plants to potassium deficiency and strategies to improve potassium use efficiency. Bull Bot, 2017,52:89-101 (in Chinese with English abstract).
doi: 10.11983/CBB16231
[10] Maathuis F J M, Sanders D . Regulation of K+ absorption in plant root cells by external K+: interplay of different plasma membrane K+ transporters. J Exp Bot, 1997,48:451-458.
doi: 10.1093/jxb/48.Special_Issue.451 pmid: 21245224
[11] Maathuis F J, Sanders D . Mechanism of high-affinity potassium uptake in roots ofArabidopsis thaliana. Proc Natl Acad Sci USA, 1994,91:9272-9276.
doi: 10.1073/pnas.91.20.9272 pmid: 7937754
[12] Ahn S J, Shin R, Schachtman D P . Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol, 2004,134:1135-1145.
doi: 10.1104/pp.103.034660 pmid: 14988478
[13] Véry A A, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H . Molecular biology of K+ transport across the plant cell membrane: What do we learn from comparison between plant species? J Plant Physiol, 2014,171:748-769.
doi: 10.1016/j.jplph.2014.01.011
[14] Zhao S, Zhang M L, Ma T L, Wang Y . Phosphorylation of ARF2 relieves its repression of transcription of the K+ transporter gene HAK5 in response to low potassium stress. Plant Cell, 2016,28:3005-3019.
doi: 10.1105/tpc.16.00684 pmid: 27895227
[15] Kim M J, Ruzicka D, Shin R, Schachtman D P . TheArabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant, 2012,5:1042-1057.
doi: 10.1093/mp/sss003
[16] Ragel P, Ródenas R, García-Martín E, Andrés Z, Villalta I, Nieves-Cordones M, Rivero R M, Martínez V, Pardo J M, Quintero F J, Rubio F . CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiol, 2015,169:2863-2873.
doi: 10.1104/pp.15.01401 pmid: 26474642
[17] Rushton P. J . Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell, 2002,14:749-762.
doi: 10.1105/tpc.010412 pmid: 11971132
[18] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连 . 陆地棉钾转运体基因GhHAK5的序列特征及表达分析. 作物学报, 2018,44:236-244.
doi: 10.3724/SP.J.1006.2018.00236
Chao M N, Wen Q Y, Zhang Z Y, Hu G H, Zhang J B, Wang G, Wang Q L . Sequence characteristics and expression analysis of potassium transporter gene GhHAK5 in upland cotton(Gossypium hirsutum L.). Acta Agron Sin, 2018,44:236-244 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00236
[19] Zhang Z, Chao M, Wang S, Bu J, Tang J, Li F, Wang Q, Zhang B . Proteome quantification of cotton xylem sap suggests the mechanisms of potassium-deficiency-induced changes in plant resistance to environmental stresses. Sci Rep, 2016,6:21060.
doi: 10.1038/srep21060 pmid: 26879005
[20] Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride R C, Chen X, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen Z J . Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015,33:531-537.
doi: 10.1038/nbt.3207 pmid: 25893781
[21] Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L . Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010,28:511-515.
doi: 10.1038/nbt.1621 pmid: 20436464
[22] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods, 2001,25:40 2-408.
doi: 10.1006/meth.2001.1262
[23] Clough S J, Bent A F . Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thalian. Plant J, 1998,16:735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[24] 李红 . 拟南芥转运蛋白NRT1.5/NPF7.3调控K+在木质部装载的分子机制研究. 中国农业大学博士学位论文, 北京, 2016.
Li H . Mechanism Analyses of NRT1.5/NPF7.3-Mediated K+ Realase into the Xylem in Arabidopsis. PhD Dissertation of China Agricultural University, Beijing, China, 2016 (in Chinese with English abstract).
[25] Jefferson R A, Kavanagh T A, Bevan M W . GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J, 1987,6:3901-3907.
pmid: 3327686
[26] Christ A, Maegele I, Ha N, Hong H N, Crespi M D, Maizel A . In silico identification and in vivo validation of a set of evolutionary conserved plant root-specificcis-regulatory elements. Mech Develop, 2013,130:70-81.
doi: 10.1016/j.mod.2012.03.002
[27] Costa C S, Bravo J P, Ribeiro C L, Soprano A S, Sassaki F T, Maia I G . Vascular expression driven by the promoter of a gene encoding a high-affinity potassium transporter HAK5 fromEucalyptus grandis. Plant Cell Tiss Org, 2017,131:1-10.
doi: 10.1007/s11240-017-1256-x
[28] 王毅, 武维 . 植物钾营养高效分子遗传机制. 植物学报, 2009,44:27-36.
Wang Y, Wu W . Molecular genetic mechanism of high efficient potassium uptake in plants. Bull Bot, 2009,44:27-36 (in Chinese with English abstract).
[29] Gierth M, Schroeder J I . The Potassium Transporter AtHAK5 Functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol, 2005,137:1105-1114.
doi: 10.1104/pp.104.057216 pmid: 15734909
[30] Santa-María G E, Rubio F, Dubcovsky J, Rodríguez-Navarro A . TheHAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell, 1997,9:2281-2289.
doi: 10.1105/tpc.9.12.2281 pmid: 9437867
[31] Wang Y H, Garvin D F, Kochian L V . Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol, 2002,130:1361-1370.
doi: 10.1104/pp.008854 pmid: 12428001
[32] Bañuelos M A, Garciadeblas B, Cubero B, Rodríguez-Navarro A . Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol, 2002,130:784-795.
doi: 10.1104/pp.007781 pmid: 12376644
[33] 张彦桃, 王欣, 祁智, 亢燕 . 拟南芥高亲和性钾转运体AtHAK5参与植物根对盐胁迫及ABA的反应. 华北农学报, 2014,29(6):214-219.
doi: 10.7668/hbnxb.2014.06.036
Zhang Y T, Wang X, Qi Z, Kang Y . Arabidopsis thaliana high-affinity potassium transporter AtHAK5 participated in the response to salt stress and ABA in the plant root. Acta Agric Boreali-Sin, 2014,29(6):214-219 (in Chinese with English abstract).
doi: 10.7668/hbnxb.2014.06.036
[34] Rubio F, Fon M, Ródenas R, Nieves-Cordones M, Alemán F, Rivero R M, Martínez V . A low K+ signal is required for functional high-affinity K+ uptake through HAK5 transporters. Physiol Plant, 2015,152:558-570.
doi: 10.1111/ppl.12205 pmid: 24716623
[35] Ashley M K, Grant M, Grabov A . Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot, 2006,57:425-436.
doi: 10.1093/jxb/erj034 pmid: 16364949
[36] Wang Y, Wu W H . Potassium transport and signaling in higher plants. Annu Rev Plant Biol, 2013,64:451-476.
doi: 10.1146/annurev-arplant-050312-120153 pmid: 23330792
[37] Chérel I, Lefoulon C, Boeglin M, Sentenac H . Molecular mechanisms involved in plant adaptation to low K+ availability. J Exp Bot, 2014,65:833-848.
doi: 10.1093/jxb/ert402
[38] Hong J, Takeshi Y, Kondou Y, Schachtman D P, Matsui M, Shin R . Identification and characterization of transcription factors regulatingArabidopsis HAK5. Plant Cell Physiol, 2013,54:1478-1490.
doi: 10.1093/pcp/pct094
[39] Kim M J, Ruzicka D, Shin R, Schachtman D P . TheArabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant, 2012,5:1042-1057.
doi: 10.1093/mp/sss003
[40] Li W, Xu G, Abdel A, Yu L . Plant HAK/KUP/KT K+ transporters: function and regulation. Semin Cell Dev Biol, 2018,74:133-141.
doi: 10.1016/j.semcdb.2017.07.009 pmid: 28711523
[41] Druka A, Potokina E, Luo Z, Jiang N, Chen X, Kearsey M, Waugh R . Expression quantitative trait loci analysis in plants. Plant Biotechnol J, 2010,8:10-27.
doi: 10.1111/j.1467-7652.2009.00460.x pmid: 20055957
[1] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[2] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[3] 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081.
[4] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[5] 王小纯, 王露露, 张志勇, 秦步坛, 于美琴, 韦一昊, 马新明. 小麦谷氨酰胺合成酶同工酶转录特点及其启动子序列分析[J]. 作物学报, 2021, 47(4): 761-769.
[6] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[7] 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209.
[8] 王珍, 张晓莉, 孟晓静, 姚梦楠, 缪文杰, 袁大双, 朱冬鸣, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜丝裂原活化蛋白激酶7基因(BnMAPK7)上游调控因子的鉴定[J]. 作物学报, 2021, 47(12): 2379-2393.
[9] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[10] 常建忠,董春林,张正,乔麟轶,杨睿,蒋丹,张彦琴,杨丽莉,吴佳洁,景蕊莲. 小麦抗逆相关基因TaSAP1的5′非翻译区内含子功能分析[J]. 作物学报, 2019, 45(9): 1311-1318.
[11] 张晓红,胡根海,王寒涛,王聪聪,魏恒玲,付远志,喻树迅. 棉花中GhTFL1aGhTFL1c基因的表达及启动子分析[J]. 作物学报, 2019, 45(3): 469-476.
[12] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[13] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
[14] 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392.
[15] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!