作物学报 ›› 2021, Vol. 47 ›› Issue (12): 2379-2393.doi: 10.3724/SP.J.1006.2021.04280
王珍1,2(), 张晓莉1,2(), 孟晓静1,2, 姚梦楠1,2, 缪文杰1,2, 袁大双1,2, 朱冬鸣1,2, 曲存民1,2, 卢坤1,2, 李加纳1,2,*(), 梁颖1,2,*()
WANG Zhen1,2(), ZHANG Xiao-Li1,2(), MENG Xiao-Jing1,2, YAO Meng-Nan1,2, MIU Wen-Jie1,2, YUAN Da-Shuang1,2, ZHU Dong-Ming1,2, QU Cun-Min1,2, LU Kun1,2, LI Jia-Na1,2,*(), LIANG Ying1,2,*()
摘要:
丝裂原活化蛋白激酶(Mitogen-activated protein kinases, MAPKs)级联途径在植物的生长发育、分裂分化、细胞凋亡以及抗逆等多种生命过程中发挥着极其重要的作用。本研究从甘蓝型油菜中分离克隆了1个C族BnMAPK7基因的启动子, 序列长度为1612 bp, 命名为ProBnMAPK7。启动子分析工具PlantCARE预测结果表明, ProBnMAPK7含有大量响应光照、激素、防御和损伤等相关顺式作用元件, 包括ACE、MRE、ABRE、TGACG-motif和TC-rich repeats等。同时, 我们对拟南芥及甘蓝型油菜MAPK7基因的表达模式进行分析发现, MAPK7对生长发育以及生物和非生物胁迫应答过程具有重要调控意义。将ProBnMAPK7逐步分段连接至pCambia1305.1-GUS表达载体筛选启动子的核心区段, GUS组织化学染色分析显示该启动子的核心区段定位于-467~ -239 bp (ProBnMAPK7-rPE)。将核心区段3拷贝串联重复后整合至Y1H gold基因组, 并进行AbA背景测试, 结果显示AbA浓度为500 ng mL-1时, ProBnMAPK7-rPE×3在酵母细胞中的本底表达被完全抑制。利用酵母单杂交技术对BnMAPK7的上游调控因子进行文库筛选, 获得3个候选因子BnNAD1B (NADH dehydrogenase 1B)、BnERD6 (early response to dehydration 6)和BnPIG3 (quinone oxidoreductase PIG3-like)。表明BnNAD1B、BnERD6及BnPIG3蛋白可能通过结合ProBnMAPK7-rPE区段调控BnMAPK7的转录, 使得BnMAPK7参与光合作用以及逆境胁迫应答等生物学过程, 为进一步阐明甘蓝型油菜BnMAPK7基因的功能奠定了基础, 也为MAPKs级联的研究提供了新的思路。
[1] | 王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010, 32:300-302. |
Wang H Z. Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010, 32:300-302 (in Chinese with English abstract). | |
[2] | 王爱凡, 康雷, 李鹏飞, 李再云. 我国甘蓝型油菜远缘杂交和种质创新研究进展. 中国油料作物学报, 2016, 38:691-698. |
Wang A F, Kang L, Li P F, Li Z Y. Review on new germplasm development in Brassica napus through wide hybridizations in China. Chin J Oil Crop Sci, 2016, 38:691-698 (in Chinese with English abstract). | |
[3] | 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41:485-489. |
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41:485-489 (in Chinese with English abstract). | |
[4] | 范成明, 田建华, 胡赞民, 王钰, 吕慧颖, 葛毅强, 魏珣, 邓向东, 张蕾颖, 杨维才. 油菜育种行业创新动态与发展趋势. 植物遗传资源学报, 2018, 19:447-454. |
Fan C M, Tian J H, Hu Z M, Wang Y, Lyu H Y, Ge Y Q, Wei X, Deng X D, Zhang L Y, Yang W C. Advances of oilseed rape breeding. J Plant Genet Res, 2018, 19:447-454 (in Chinese with English abstract). | |
[5] |
Kelkar N, Gupta S, Dickens M, Davis R J. Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol Cell Biol, 2000, 20:1030-1043.
doi: 10.1128/MCB.20.3.1030-1043.2000 pmid: 10629060 |
[6] |
Hamel L P, Nicole M C, Duplessis S, Ellis B E. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell, 2012, 24:1327-1351.
doi: 10.1105/tpc.112.096156 |
[7] |
Pitzschke A, Schikora A, Hirt H. MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol, 2009, 12:421-426.
doi: 10.1016/j.pbi.2009.06.008 pmid: 19608449 |
[8] |
Neill S, Desikan R, Hancock J. Hydrogen peroxide signalling. Curr Opin Plant Biol, 2002, 5:388-395.
doi: 10.1016/S1369-5266(02)00282-0 |
[9] |
Popescu S C, Popescu G V, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar S P. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev, 2009, 23:80-92.
doi: 10.1101/gad.1740009 |
[10] |
Andreasson E, Ellis B. Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci, 2010, 15:106-113.
doi: 10.1016/j.tplants.2009.12.001 pmid: 20047850 |
[11] |
Moustafa K, AbuQamar S, Jarrar M, Al-Rajab A J, Trémouillaux-Guiller J. MAPK cascades and major abiotic stresses. Plant Cell Rep, 2014, 33:1217-1225.
doi: 10.1007/s00299-014-1629-0 pmid: 24832772 |
[12] |
Zhang M, Su J, Zhang Y, Xu J, Zhang S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol, 2018, 45:1-10.
doi: 10.1016/j.pbi.2018.04.012 |
[13] |
Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J, 2008, 413:217-226.
doi: 10.1042/BJ20080625 pmid: 18570633 |
[14] |
Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C, Heberle-Bors E, Ellis B E, Morris P C, Innes R W, Ecker J R, Scheel D, Klessig D F, Machida Y, Mundy J, Ohashi Y, Walker J C. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7:301-308.
doi: 10.1016/S1360-1385(02)02302-6 |
[15] |
Taj G, Agarwal P, Grant M, Kumar A. MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav, 2010, 5:1370-1378.
doi: 10.4161/psb.5.11.13020 |
[16] |
Chardin C, Schenk S T, Hirt H, Colcombet J, Krapp A. Review: mitogen-activated protein kinases in nutritional signaling in Arabidopsis. Plant Sci, 2017, 260:101-108.
doi: 10.1016/j.plantsci.2017.04.006 |
[17] |
Ortiz-Masia D, Perez-Amador M A, Carbonell J, Marcote M J. Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis. FEBS Lett, 2007, 581:1834-1840.
pmid: 17433310 |
[18] |
Dóczi R, Brader G, Pettkó-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell, 2007, 19:3266-3279.
doi: 10.1105/tpc.106.050039 |
[19] |
Danquah A, Zélicourt A D, Boudsocq M, Neubauer J, Frey N F D, Leonhardt N, Pateyron S, Gwinner F, Tamby J P, Ortiz-Masia D, Marcote M J, Hirt H, Colcombet J. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant J, 2015, 82:232-244.
doi: 10.1111/tpj.2015.82.issue-2 |
[20] |
Zong X J, Li D P, Gu L K, Li D Q, Liu L X, Hu X L. Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta, 2009, 229:485-495.
doi: 10.1007/s00425-008-0848-4 |
[21] |
Shi J, An H L, Zhang L, Gao Z, Guo X Q. GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development. Plant Mol Biol, 2010, 74:1-17.
doi: 10.1007/s11103-010-9661-0 |
[22] |
Wang C, Lu W J, He X W, Wang F, Zhou Y L, Guo X L, Guo X Q. The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant Cell Physiol, 2016, 57:1629-1642.
doi: 10.1093/pcp/pcw090 |
[23] | 朱斌, 陆俊杏, 彭茜, 翁昌梅, 王淑文, 余浩, 李加纳, 卢坤, 梁颖. 甘蓝型油菜MAPK7基因家族及其启动子的克隆与表达分析. 作物学报, 2013, 39:789-805. |
Zhu B, Lu J X, Peng Q, Weng C M, Wang S W, Yu H, Li J N, Lu K, Liang Y. Cloning and analysis of MAPK7 gene family and their promoters from Brassica napus. Acta Agron Sin, 2013, 39:789-805 (in Chinese with English abstract). | |
[24] |
Kõressaar T, Lepamets M, Kaplinski L, Raime K, Andreson R, Remm M. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics, 2018, 34:1937-1938.
doi: 10.1093/bioinformatics/bty036 pmid: 29360956 |
[25] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer Y V D, Rouzé P, Rombauts S. PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30:325-327.
doi: 10.1093/nar/30.1.325 |
[26] |
Zhang H, Zhang F, Yu Y, Feng L, Jia J, Liu B, Li B, Guo H, Zhai J. A comprehensive online database for exploring ~20,000 public Arabidopsis RNA-Seq libraries. Mol Plant, 2020, 13:1231-1233.
doi: S1674-2052(20)30257-4 pmid: 32768600 |
[27] |
Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H, Cheng F, Zhang K, Du H, Cheng X, Qu C, Qian W, Liu L, Wang R, Zou Q, Ying J, Xu X, Mei J, Liang Y, Chai Y, Tang Z, Wan H, Ni Y, He Y, Lin N, Fan Y, Sun W, Li N, Zhou G, Zheng H, Wang X, Paterson A H, Li J. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019, 10:1154.
doi: 10.1038/s41467-019-09134-9 |
[28] | 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选. 作物学报, 2020, 46:1312-1321. |
Wang Z, Yao M N, Zhang X L, Qu C M, Lu K, Li J N, Liang Y. Prokaryotic expression, subcellular localization and yeast two-hybrid library screening of BnMAPK1 in B. napus. Acta Agron Sin, 2020, 46:1312-1321 (in Chinese with English abstract). | |
[29] | 靳义荣, 宋毓峰, 白岩, 张良, 董连红, 刘朝科, 冯祥国, 胡晓明, 王倩, 刘好宝. 林烟草钾离子通道基因NKT6的克隆与表达定位分析. 作物学报, 2013, 39:1602-1611. |
Jin Y R, Song Y F, Bai Y, Zhang L, Dong L H, Liu C K, Feng X G, Hu X M, Wang Q, Liu H B. Molecular cloning and expression analysis of potassium channel gene NKT6 in Nicotiana sylvestris. Acta Agron Sin, 2013, 39:1602-1611 (in Chinese with English abstract). | |
[30] | Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, Zhou X, Chen Q. Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J Vis Exp, 2013, 77:e50521. |
[31] |
Rushton P J, Reinstädler A, Lipka V, Lippok B, Somssich I E. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell, 2002, 14:749-762.
pmid: 11971132 |
[32] |
Mao X, Zhang J, Liu W, Yan S, Liu Q, Fu H, Zhao J, Huang W, Dong J, Zhang S, Yang T, Yang W, Liu B, Wang F. The MKKK62-MKK3-MAPK7/14 module negatively regulates seed dormancy in rice. Rice, 2019, 12:2.
doi: 10.1186/s12284-018-0260-z |
[33] | Keren I, Tal L, Francs-Small C C D, Araújo W L, Shevtsov S, Shaya F, Fernie A R, Small I, Ostersetzer-Biran O. NMAT1, a nuclear-encoded maturase involved in the trans-splicing of nad1 intron 1, is essential for mitochondrial complex I assembly and function. Plant J, 2012, 71:413-426. |
[34] |
Leu K C, Hsieh M H, Wang H J, Hsieh H L, Jauh G Y. Distinct role of Arabidopsis mitochondrial P-type pentatricopeptide repeat protein-modulating editing protein, PPME, in nad1 RNA editing. RNA Biol, 2016, 13:593-604.
doi: 10.1080/15476286.2016.1184384 |
[35] |
Longevialle A F D, Meyer E H, Andrés C, Taylor N L, Lurin C, Millar A H, Smalla I D. The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 intron 1 in Arabidopsis thaliana. Plant Cell, 2007, 19:3256-3265.
pmid: 17965268 |
[36] |
Wang C, Aubé F, Planchard N, Quadrado M, Dargel-Graffin C, Nogué F, Mireau H. The pentatricopeptide repeat protein MTSF2 stabilizes a nad1 precursor transcript and defines the 3′ end of its 5′-half intron. Nucleic Acids Res, 2017, 45:6119-6134.
doi: 10.1093/nar/gkx162 |
[37] |
Kiyosue T, Abe H, Yamaguchi-Shinozaki K, Shinozaki K. ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim Biophys Acta, 1998, 1370:187-191.
pmid: 9545564 |
[38] |
Yamada K, Osakabe Y, Mizoi J, Nakashima K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides. J Biol Chem, 2010, 285:1138-1146.
doi: 10.1074/jbc.M109.054288 pmid: 19901034 |
[39] |
Kotsinas A, Aggarwal V, Tan E J, Levy B, Gorgoulis V G. PIG3: a novel link between oxidative stress and DNA damage response in cancer. Cancer Lett, 2012, 327:97-102.
doi: 10.1016/j.canlet.2011.12.009 |
[40] |
Herraiz C, Calvo F, Pandya P, Cantelli G, Rodriguez-Hernandez I, Orgaz J L, Kang N, Chu T, Sahai E, Sanz-Moreno V. Reactivation of p53 by a cytoskeletal sensor to control the balance between DNA damage and tumor dissemination. J Natl Cancer Inst, 2016, 108: djv289.
doi: 10.1093/jnci/djv289 |
[41] |
Li J, Brader G, Kariola T, Palva E T. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J, 2006, 46:477-491.
doi: 10.1111/tpj.2006.46.issue-3 |
[42] |
Price A M, Orellana D F A, Salleh F M, Stevens R, Acock R, Buchanan-Wollaston V, Stead A D, Rogers H J. A comparison of leaf and petal senescence in wallflower reveals common and distinct patterns of gene expression and physiology. Plant Physiol, 2008, 147:1898-1912.
doi: 10.1104/pp.108.120402 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[4] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[5] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[6] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[7] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[8] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[9] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[10] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[11] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[12] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
[13] | 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659. |
[14] | 王小纯, 王露露, 张志勇, 秦步坛, 于美琴, 韦一昊, 马新明. 小麦谷氨酰胺合成酶同工酶转录特点及其启动子序列分析[J]. 作物学报, 2021, 47(4): 761-769. |
[15] | 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426. |
|