欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (07): 1056-1063.doi: 10.3724/SP.J.1006.2015.01056

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用酵母双杂交系统筛选花生AhCaM相互作用蛋白

杨莎1,李燕1,郭峰1,张佳蕾1,孟静静1,李萌2,万书波1,*,李新国1,*   

  1. 1山东省农业科学院生物技术研究中心 / 山东省作物遗传改良与生态生理重点实验室, 山东济南 250100; 2山东省农业科学院人事处, 山东济南 250100
  • 收稿日期:2014-11-06 修回日期:2015-05-04 出版日期:2015-07-12 网络出版日期:2015-05-15
  • 通讯作者: 万书波, E-mail: wansb@saas.ac.cn; 李新国, E-mail: lixinguo@tom.com
  • 基金资助:

    本研究由国家科技支撑计划项目(2014BAD11B04), 山东省农业重大应用技术创新项目, 山东省自主创新成果转化重大专项(2012ZHZXIA0418), 山东省自然科学基金项目(ZR2011CQ042), 山东省农业科学院科技创新重点项目(2014CXZ06-6), 国家现代农业产业技术体系建设专项(CARS-14), 山东省良种产业化工程项目和国家国际科技合作专项(2015DFA31190)资助。

Screening of AhCaM-Interactive Proteins in Peanuts Using Yeast Two Hybrid System

YANG Sha1,LI Yan1,GUO Feng1,ZHANG Jia-Lei1,MENG Jing-Jing1,LI Meng2,WAN Shu-Bo1,*,LI Xin-Guo1,*   

  1. 1 Biotechnology Research Center of Shandong Academy of Agricultural Sciences / Shandong Provincial key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Ji’nan 250100, China; 2 Human Resources Department of Shandong Academy of Agricultural Sciences Ji’nan 250100, China
  • Received:2014-11-06 Revised:2015-05-04 Published:2015-07-12 Published online:2015-05-15
  • Contact: 万书波, E-mail: wansb@saas.ac.cn; 李新国, E-mail: lixinguo@tom.com

摘要:

CaM是目前已知的胞内Ca2+受体蛋白中最重要的一种, 参与了多种生理活动的调节。为深入研究CaM蛋白的作用机制,探索其在花生钙信号途径中的作用靶点,用花生CaM基因构建了既无自激活性又无毒性的pGBKT7-AhCaM诱饵表达载体;同时从花生叶片组织中提取总RNA,分离得到mRNA,利用SMART技术合成并纯化双链cDNA后建立花生叶片cDNA文库;通过共转化法筛选与CaM相互作用的蛋白,并对阳性克隆分析和鉴定,筛选到5个与AhCaM互作的蛋白,其中NAD激酶是已知能与钙调素互作的蛋白;而泛素能与AhCaM互作,说明AhCaM在花生发育及抗逆方面起作用。通过分析这些靶蛋白的已知功能,为研究AhCaM的未知生物学功能提供了重要信息。

关键词: 花生叶片cDNA文库, AhCaM, 泛素, 酵母双杂交系统, 蛋白质相互作用

Abstract:

Calmodulin is the most important known receptor of intracellular Ca2+, which is involved in regulation of many physiological activities. To further study the mechanism of CaM, we isolated and identified proteins that interact with AhCaM by yeast two-hybrid system. The pGBKT7-AhCaM bait vector without toxicity or auto-activation was firstly constructed with the peanut CaM gene. Then, the total RNA of peanut leaf was extracted and the mRNA was isolated, purified to be used as the templates to synthesize ds-cDNA by SMART technology. Ds-cDNA was amplified by long distance PCR. At last, the CaM interaction proteins were screened through co-transformation with bait vector and cDNA prey library. In the peanut cDNA library, five proteins interacting with AhCaM were identified. Among them, NAD kinase was a well-known protein to interact with CaM protein, and ubiquitin could interact with AhCaM, playing a role in development and stress resistance. The significant functional correlation between AhCaM and its interacting proteins peanut will help to elucidate the possible mechanisms of AhCaM in improving the tolerance of transgenic plants.

Key words: cDNA library of peanut leaf, AhCaM, Ubiquitin, Yeast two hybrid system, Protein interaction

[1]Hepler P K. Calcium: A central regulator of plant growth and development. Plant Cell, 2005, 17: 2142–2155



[2]张海平. 钙调控花生(Arachis hypogaea L.)生长发育的细胞生理机制研究. 福建农业大学硕士论文, 福建福州, 2003



Zhang H P. Study on Physiology and Eytology Mechanism of Peanut (Arachis hypogaea L.) Growth and Development Regulated by Calcium. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, China, 2003 (in Chinese with English abstract)



[3]Snedden W A, Fromm H. Calmpdulin as a versatile calcium signal transducer in plants. New Phytol, 2001, 151: 35–66



[4]Krebs J, Heizmann C W. Calcium-binding proteins and the EF-hand principle. New Compr Biochem, 2007, 41: 51–93



[5]Vetter S W, Leclerc E. Novel aspects of calmodulin target recognition and activation. Eur J Biochem, 2003, 270: 404–414



[6]Shimoda Y, Han L, Yamazaki T. Rhizobial and fungal symbioses show different requirements for calmodulin binding to calcium calmodulin-dependent protein kinase in lotus japonicus. Plant Cell, 2012, 24: 304–321



[7]韦慧彦, 郭振清, 崔素娟. 钙不依赖性钙调素结合蛋白的研究进展. 生物化学与生物物理进展, 2007, 34: 124–131



Wei H Y, Guo Z Q, Cui S J. Aro calmodulin and Ca-independent calmodulin-binding proteins. Prog Biochem Biophys, 2007, 34: 124–131 (in Chinese with English abstract)



[8]Ranty B, Aldon D, Galaud J P. Plant calmodulins and calmodulin-related proteins. Plant Signal Behav, 2006, 1: 96–104



[9]Liu H T, Li G L, Chang H, Sun D Y, Zhou R G, Li B. Calmodulin-binding protein phosphatase PP7 is involved in thermo-tolerance in Arabidopsis. Plant Cell Environ, 2007, 30: 156–164



[10]Bouche N, Yellin A, Snedden W A, Fromm H. Plant-special calmodulin-binding preteins. Annu Rev Plant Biol, 2005, 56: 435–466



[11]Yoo J H, Park C Y, Kim J C. Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem, 2005, 280: 435–466



[12]Yang T B, Chaudhuri S, Yang L H, Du L Q, Poovaiah B W. A calcium/calmodulin regulated member of the receptor-like kinase family confers cold tolerance in plants. J Biol Chem, 2010, 285: 7119–7126



[13]Yang T B, Shad Ali G, Yang L H, Du L Q, Reddy A S N, Poovaiah B W. Calcium/ calmodulin regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants. Plant Signal Behav, 2010, 5: 991–994



[14]Yang S, Wang F, Guo F, Meng J J, Li X G, Dong S T, Wan S B. Exogenous calcium alleviates photoinhibition of PSII by improving the xanthophyll cycle in peanut (Arachis Hypogaea) leaves during heat stress under high irradiance. PLOS One, 2013, 8: e71214



[15]郭佳岩, 宋婀莉, 马素参, 高友鹤. 快速LacZ检测法提高酵母双杂交试验的敏感度. 生物技术, 2004, 11(4): 31–33



Guo J Y, Song E L, Ma S S, Gao Y H. Rapid LacZ screening method increases the sensitivity of yeast two-hybrid screening. Biotechnology, 2004, 11(4): 31–33 (in Chinese with English abstract)



[16]孟玉环, 单世华, 李春娟, 庄伟建, 蔡宁波. 花生(Arachis hypogaea L.) CaM基因克隆与序列分析. 花生学报, 2007, 36(2): 11–15



Meng Y H, Shan S H, Li C J, Zhuang W J, Cai N B. Cloning of two genomics genes and sequence analysis encoding calmodulin from peanut (Arachis hypogaea L.). J Peanut Sci, 2007, 36(2): 11–15 (in Chinese with English abstract)



[17]韩亮, 张新军, 黄世思, 翟永功, 常智杰. 黑色素瘤相关抗原MAAT1 p15与LRP6的相互作用及其对Wnt信号通路的调控. 中国生物化学与分子生物学报. 2004, 20: 827–832



Han L, Zhang X J, Huang S S, Zhai Y G, Cahng Z J. MAAT1 p15 interacts with LRP6 and regulates Wnt signaling pathway. Chin J Biochem Mol Biol, 2004, 20: 827–832 (in Chinese with English abstract)



[18]Yin Y, Vafeados D, Tao Y. A new class of transcription factors mediates brassino steroid-regulated gene expression in Arabidopsis. Cell, 2005, 120: 249–259



[19]Roberts D M. Calcium-modulated proteins: targets of intracellular calcium signals in higher plant. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 3753–414



[20]Jarrett H W, Brown C J, Black C C, Cormiergy M J. Evidence that calmodulin is in the chloroplast of peas and serves as regulatory role in photosynthesis. J Biol Chem, 1982, 257: 13795–13804



[21]Newmeyer D D, Ferguson-Miller S. Mitochondria: Releasing power for life and unleashing the machineries of death. Cell, 2003, 112: 481–490



[22]Lemasters J J, Qian T, Bradham C A, Brenner D A, Cascio W E, Trost L C, Nishimura Y. Mitochondrial dysfunction in the pathogenesis of necrotic and apoptotic cell death. J Bioenerg Biomembr, 1999, 31: 305–319



[23]Hajnoczky G, Csordas G, Yi M. Old players in a new role: mitochondria-associate membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium, 2002, 32: 363–377



[24]Smalle J, Kurepa J, Yang P, Emborg T J, Babiychuk E, Kushnir S, Vierstra R D. The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling. Plant Cell, 2003, 15: 965–980



[25]Belknap W R, Garbarino J E. The role of ubiquitin in plant senescence and stress responses. Trends Plant Sci, 1996, 1: 331–335



[26]Patrick G N, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai L H. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 1999, 402: 615–622



[27]Abdel-Hamid M I, Khairou K S, Hassan R M. Kinetics and mechanism of permanganate oxidation of pectin in acid perchlorate media. Eur Polymer J, 2003, 39: 381–387



[28]Tanaka K. Proteasome: structure and biology. J Biochem, 1998, 123: 195–204



[29]Boyes D C, Nam J, Dangl J L. The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA, 1998, 95: 15849–15854



[30]Fu Q T, Li S J, Yu D Q. Identification of an Arabidopsis Nodulin-related protein in heat stress. Mol Cells, 2010, 29: 77–84

[1] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[2] 张小红,许鹏博,郭萌萌,徐兆师,李连城,陈明,马有志. 拟南芥G蛋白α亚基GPA1互作蛋白铜离子结合蛋白AtBCB的鉴定及功能分析[J]. 作物学报, 2013, 39(11): 1952-1961.
[3] 蔺芳芳,杨旭,武小翠,刘晓梅,葛荣朝,赵宝存. 利用分裂泛素酵母双杂交技术钓取小麦TaSC互作蛋白质[J]. 作物学报, 2013, 39(03): 423-430.
[4] 蒋春苗,黄兴奇,付坚,余腾琼,钟巧芳,李定琴,殷富有,张敦宇,王玲仙,程在全. 疣粒野生稻泛素结合酶基因的全长cDNA序列克隆与分析[J]. 作物学报, 2012, 38(05): 808-813.
[5] 杨昆, 张贺翠, Richard CONVERSE, 朱利泉, 杨永军, 薛丽琰, 罗兵, 常登龙, 高启国, 王小佳. 甘蓝自交不亲和信号转导元件ARC1与EXO70A1的相互作用[J]. 作物学报, 2011, 37(12): 2136-2144.
[6] 邱志刚, 徐兆师, 郑天慧, 李连城, 陈明, 马有志. 小麦ERF转录因子W17互作蛋白的筛选和解析[J]. 作物学报, 2011, 37(05): 803-810.
[7] 陆月赏,刘颖慧,张登峰,石云素,宋燕春,王天宇,杨德光,黎裕. 玉米泛素延伸蛋白基因ZmERD16的克隆、序列特征和表达分析[J]. 作物学报, 2010, 36(07): 1075-1083.
[8] 于月华;陈明;李连城;徐兆师;刘阳娜;曲延英;曹新有;马有志. 大豆(Glycine max) GmDREB5互作蛋白GmGβ1的筛选及鉴定[J]. 作物学报, 2008, 34(10): 1688-1695.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!