作物学报 ›› 2023, Vol. 49 ›› Issue (9): 2485-2497.doi: 10.3724/SP.J.1006.2023.24233
莫广玲1(), 余陈静3, 梁艳兰1, 周定港4, 罗俊1, 王莫1, 阙友雄1, 黄宁2,*(), 凌辉2,*()
MO Guang-Ling1(), YU Chen-Jing3, LIANG Yan-Lan1, ZHOU Ding-Gang4, LUO Jun1, WANG Mo1, QUE You-Xiong1, HUANG Ning2,*(), LING Hui2,*()
摘要:
bHLH转录因子是植物体内重要的调节因子, 对植物的生长发育、次生代谢以及花青素生物合成等方面具有调节作用。本研究以高粱bHLH13 (XM_002440799.2)为探针序列, 从甘蔗中通过RT-PCR克隆获得一个ScbHLH13基因, 并对其在不同胁迫响应转录组数据中进行表达模式分析, 同时对该基因及其所编码蛋白进行了理化性质预测以及系统进化、原生质体亚细胞定位和实时荧光定量PCR表达量分析。结果显示, ScbHLH13所编码蛋白包含586个氨基酸残基, 以无规则卷曲和α螺旋为主, 亲水且不稳定, 呈弱碱性; 具有典型核定位信号, 无跨膜结构; 其序列内包括bHLH-MYC、HLH 2个典型保守结构域, 属于bHLH超家族成员。在系统进化中ScbHLH13属于III (d+e)类组, 与高粱亲缘关系最近。在转录组数据中, ScbHLH13的表达在甘蔗品种ROC22上受低氮胁迫和黑穗病菌侵染抑制, 轻微受高粱花叶病毒侵染诱导; 而在Badila受低氮、在YC05-179受甘蔗黑穗病菌侵染诱导。亚细胞定位结果显示, 在烟草表皮细胞中瞬时表达ScbHLH13定位于细胞核和细胞膜, 在甘蔗原生质体瞬时表达ScbHLH13则定位于细胞核。qRT-PCR分析表明, ScbHLH13在甘蔗原生质体中过表达并不能诱导花青素合成代谢通路上主要基因的表达, 说明ScbHLH13与甘蔗中花青素合成相关下游基因表达调控相关性较低。本研究借助甘蔗原生质体瞬时表达系统上对ScbHLH13进行了初步的表达调控探究, 为进一步研究甘蔗功能基因研究以及bHLH基因家族的结构与功能研究奠定了一定的基础。
[45] | 赵鑫, 李建民, 朱雪冰, 郑旭莹, 宗渊, 刘宝龙. 黑果枸杞中调控花青素合成代谢的bHLH基因克隆与序列分析. 分子植物育种, 2018, 16: 6616-6623. |
Zhao X, Li J M, Zhu X B, Zheng X Y, Zong Y, Liu B L. Cloning and sequence analysis of bHLH gene regulating anthocyanin biosynthesis and metabolism in the Lycium ruthenicum. Mol Plant Breed, 2018, 16: 6616-6623 (in Chinese with English abstract). | |
[46] |
Rajani S, Sundaresan V. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr Biol, 2001, 11: 1914-1922.
doi: 10.1016/s0960-9822(01)00593-0 pmid: 11747817 |
[47] |
Wang L, Ran L, Hou Y, Tian Q, Li C, Liu R, Fan D, Luo K. The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar. New Phytol, 2017, 215: 351-367.
doi: 10.1111/nph.14569 pmid: 28444797 |
[48] |
Li H, Sun J, Xu Y, Jiang H, Wu X, Li C. The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol Biol, 2007, 65: 655-665.
doi: 10.1007/s11103-007-9230-3 |
[49] |
Bai Q, Duan B, Ma J, Fen Y, Sun S, Long Q, Lyu J, Wan D. Coexpression of PalbHLH1 and PalMYB90 genes from Populus alba enhances pathogen resistance in poplar by increasing the flavonoid content. Front Plant Sci, 2019, 10: 1772.
doi: 10.3389/fpls.2019.01772 |
[50] |
Wang L, Xiang L, Hong J, Xie Z, Li B. Genome-wide analysis of bHLH transcription factor family reveals their involvement in biotic and abiotic stress responses in wheat (Triticum aestivum L.). 3 Biotech, 2019, 9: 236.
doi: 10.1007/s13205-019-1742-4 |
[51] |
Liu R, Wang Y, Tang S, Cai J, Liu S, Zheng P, Sun B. Genome-wide identification of the tea plant bHLH transcription factor family and discovery of candidate regulators of trichome formation. Sci Rep, 2021, 11: 10764.
doi: 10.1038/s41598-021-90205-7 pmid: 34031482 |
[52] | 王建军, 徐园园, 刘同坤, 侯喜林. 紫菜薹BrbHLH49基因克隆与功能分析. 南京农业大学学报, 2021, 44: 421-427. |
Wang J J, Xu Y Y, Liu T K, Hou X L. Cloning and function analysis of BrbHLH49 gene in purple tsai-tai. J Nanjing Agric Univ, 2021, 44: 421-427. (in Chinese with English abstract) | |
[53] | Zheng L, Yao J, Gao F, Chen L, Zhang C, Lian L, Xie L, Wu Z, Xie L. The subcellular localization and functional analysis of fibrillarin2, a nucleolar protein in Nicotiana benthamiana. Biomed Res Int, 2016, 2016: 2831287. |
[54] |
He F, Chen S, Ning Y, Wang G L. Rice (Oryza sativa) protoplast isolation and its application for transient expression analysis. Curr Protoc Plant Biol, 2016, 1: 373-383.
doi: 10.1002/cppb.20026 pmid: 30775867 |
[55] | Jia X, Zhang X, Qu J, Rong H. Optimization conditions of wheat mesophyll protoplast isolation. Agric Sci, 2016, 7: 850-858. |
[56] |
Xiong L, Li C, Li H, Lyu X, Zhao T, Liu J, Zuo Z, Liu B. A transient expression system in soybean mesophyll protoplasts reveals the formation of cytoplasmic GmCRY1 photobody-like structures. Sci China Life Sci, 2019, 62: 1070-1077.
doi: 10.1007/s11427-018-9496-5 pmid: 30929191 |
[57] |
Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007, 2: 1565-1572.
doi: 10.1038/nprot.2007.199 |
[58] |
Cao J, Yao D, Lin F, Jiang M. PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: a valuable tool for signal transduction study in maize. Acta Physiol Plant, 2014, 36: 1271-1281.
doi: 10.1007/s11738-014-1508-x |
[59] | 余春梅, 杨艳萍, 刘鑫燕, 周蓉, 华梁, 魏贺, 丁胜杰, 王道文. 普通小麦中双脱氢抗坏血酸还原酶(TaDHAR)基因的克隆与生化特性分析. 生物工程学报, 2009, 25: 1483-1489. |
Yu C M, Yang Y P, Liu X Y, Zhou R, Hua L, Wei H, Ding S J, Wang D W. Molecular and biochemical analysis of two genes encoding dehydroascorbate reductase in common wheat. Chin J Biotechnol, 2009, 25: 1483-1489 (in Chinese with English abstract). | |
[60] |
Bai Y, Han N, Wu J, Yang Y, Wang J, Zhu M, Bian H. A transient gene expression system using barley protoplasts to evaluate microRNAs for post-transcriptional regulation of their target genes. Plant Cell Tissue Organ Cult, 2014, 119: 211-219.
doi: 10.1007/s11240-014-0527-z |
[61] |
Liu C, Chen S, Wang S, Zhao X, Li K, Chen S, Qu G Z. A genome wide transcriptional study of Populus alba × P. tremula var. glandulosa in response to nitrogen deficiency stress. Physiol Mol Biol Plants, 2021, 27: 1277-1293.
doi: 10.1007/s12298-021-01012-3 |
[62] |
Zhang G, Cui X, Niu J, Ma F, Li P. Visible light regulates anthocyanin synthesis via malate dehydrogenases and the ethylene signaling pathway in plum (Prunus salicina L.). Physiol Plant, 2021, 172: 1739-1749.
doi: 10.1111/ppl.v172.3 |
[63] | 贾赵东, 马佩勇, 边小峰, 杨清, 郭小丁, 谢一芝. 植物花青素合成代谢途径及其分子调控. 西北植物学报, 2014, 34: 1496-1506. |
Jia Z D, Ma P Y, Bian X F, Yang Q, Guo X D, Xie Y Z. Biosynthesis metabolic pathway and molecular regulation of plants anthocyanin. Acta Bot Boreali-Occident Sin, 2014, 34: 1496-1506. (in Chinese with English abstract) | |
[64] |
Sun X, Zhang Z, Chen C, Wu W, Ren N, Jiang C, Yu J, Zhao Y, Zheng X, Yang Q, Zhang H, Li J, Li Z. The C-S-A gene system regulates hull pigmentation and reveals evolution of anthocyanin biosynthesis pathway in rice. J Exp Bot, 2018, 69: 1485-1498.
doi: 10.1093/jxb/ery001 |
[65] | 杨鹏程, 周波, 李玉花. 植物花青素合成相关的bHLH转录因子. 植物生理学报, 2012, 48: 747-758. |
Yang P C, Zhou B, Li Y H. The bHLH transcription factors involved in anthocyanin biosynthesis in plants. Plant Physiol J, 2012, 48: 747-758. (in Chinese with English abstract)
doi: 10.1104/pp.48.6.747 |
|
[66] |
Borevitz J O, Xia Y, Blount J, Dixon R A, Lamb C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell, 2000, 12: 2383-2394.
doi: 10.1105/tpc.12.12.2383 pmid: 11148285 |
[67] |
Kastell A, Smetanska I, Ulrichs C, Cai Z, Mewis I. Effects of phytohormones and jasmonic acid on glucosinolate content in hairy root cultures of Sinapis alba and Brassica rapa. Appl Biochem Biotechnol, 2013, 169: 624-35.
doi: 10.1007/s12010-012-0017-x pmid: 23269631 |
[68] | 梁立军, 杨祎辰, 王二欢, 邢丙聪, 梁宗锁. 植物花青素生物合成与调控研究进展. 安徽农业科学, 2018, 46(21): 18-24. |
Liang L J, Yang Y C, Wang R H, Xing B C, Liang Z S. Research progress on biosynthesis and regulation of plant anthocyanin. J Anhui Agric Sci, 2018, 46(21): 18-24. (in Chinese with English abstract) | |
[1] |
Robinson K A, Lopes J M. SURVEY AND SUMMARY: Saccharomyces cerevisiae basic helix-loop-helix proteins regulate diverse biological processes. Nucleic Acids Res, 2000, 28: 1499-1505.
pmid: 10710415 |
[2] | 孙鹤, 郎志宏, 朱莉, 黄大昉. 玉米、小麦、水稻原生质体制备条件优化. 生物工程学报, 2013, 29: 224-234. |
Sun H, Lang Z H, Zhu L, Huang D F. Optimized condition for protoplast isolation from maize, wheat and rice leaves. Chin J Biotechnol, 2013, 29: 224-234 (in Chinese with English abstract). | |
[3] |
Hernandez J M, Feller A, Morohashi K, Frame K, Grotewold E. The basic helix loop helix domain of maize R links transcriptional regulation and histone modifications by recruitment of an EMSY-related factor. Proc Natl Acad Sci USA, 2007, 104: 17222-17227.
doi: 10.1073/pnas.0705629104 pmid: 17940002 |
[4] |
Arai H, Yanagiura K, Toyama Y, Morohashi K. Genome-wide analysis of MpBHLH12, a IIIf basic helix-loop-helix transcription factor of Marchantia polymorpha. J Plant Res, 2019, 132: 197-209.
doi: 10.1007/s10265-019-01095-w |
[5] | 张全琪, 朱家红, 倪燕妹, 张治礼. 植物bHLH转录因子的结构特点及其生物学功能. 热带亚热带植物学报, 2011, 19(1): 84-90. |
Zhang Q Q, Zhu J H, Ni Y M, Zhang Z L. The structure and function of plant bHLH transcription factors. J Trop Subtrop Bot, 2011, 19(1): 84-90. (in Chinese with English abstract) | |
[6] |
Albert N W, Lewis D H, Zhang H, Irving L J, Jameson P E, Davies K M. Light-induced vegetative anthocyanin pigmentation in Petunia. J Exp Bot, 2009, 60: 2191-2202.
doi: 10.1093/jxb/erp097 pmid: 19380423 |
[7] |
Goodrich J, Carpenter R, Coen E S. A common gene regulates pigmentation pattern in diverse plant species. Cell, 1992, 68: 955-964.
doi: 10.1016/0092-8674(92)90038-e pmid: 1547495 |
[8] | Qiu Z, Wang X, Gao J, Guo Y, Huang Z, Du Y. The tomato Hoffman’s Anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures. PLoS One, 2016, 11: e0151067. |
[9] |
Tao R, Yu W, Gao Y, Ni J, Yin L, Zhang X, Li H, Wang D, Bai S, Teng Y. Light-Induced Basic/Helix-Loop-Helix64 Enhances anthocyanin biosynthesis and undergoes CONSTITUTIVELY PHOTOMORPHOGENIC1-mediated degradation in pear. Plant Physiol, 2020, 184: 1684-1701.
doi: 10.1104/pp.20.01188 pmid: 33093233 |
[10] | 高艳. 低氮胁迫诱导海棠花花青素积累及其基因与代谢分析. 西北农林科技大学硕士学位论文, 陕西杨陵, 2014. |
Gao Y. Ammonium-Stress Enhances Biosynthesis of Anthocyanin in Apple (Malus spectabilis). MS Thesis of Northwest University of Agriculture and Forestry Science and Technology, Yangling, Shaanxi, China, 2014. (in Chinese with English abstract) | |
[11] |
Feller A, Machemer K, Braun E L, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J, 2011, 66: 94-116.
doi: 10.1111/tpj.2011.66.issue-1 |
[12] | 宋建辉. bHLH113调控拟南芥开花和花青素合成的分子机制研究. 浙江农林大学硕士学位论文, 浙江杭州, 2020. |
Song J H. The Molecular Regulatory Mechanism of Flowering and Anthocyanin by bHLH113 in Arabidopsis. MS Thesis of Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China, 2020. (in Chinese with English abstract) | |
[13] |
Xie X B, Li S, Zhang R F, Zhao J, Chen Y C, Zhao Q, Yao Y X, You C X, Zhang X S, Hao Y J. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ, 2012, 35: 1884-1897.
doi: 10.1111/j.1365-3040.2012.02523.x |
[14] |
Xi H, He Y, Chen H. Functional characterization of SmbHLH13 in anthocyanin biosynthesis and flowering in eggplant. Hortic Plant J, 2021, 7: 73-80.
doi: 10.1016/j.hpj.2020.08.006 |
[15] |
Ludwig S R, Wessler S R. Maize R gene family: tissue-specific helix-loop-helix proteins. Cell, 1990, 62: 849-851.
pmid: 2203535 |
[16] |
Gould K S. Nature’s Swiss Army Knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechnol, 2004, 2004: 314-320.
doi: 10.1155/S1110724304406147 |
[17] |
Paiva D. Special review issue on plant biochemistry: stress-induced phenylpropanoid metabolism. Plant Cell, 1995, 7: 1085-1097.
doi: 10.2307/3870059 |
[18] |
Chen X R, Wang Y, Zhao H H, Zhang X Y, Wang X B, Li D W, Yu J L, Han C G. Brassica yellows virus’ movement protein upregulates anthocyanin accumulation, leading to the development of purple leaf symptoms on Arabidopsis thaliana. Sci Rep, 2018, 8: 16273.
doi: 10.1038/s41598-018-34591-5 |
[19] |
Maritim T K, Masand M, Seth R, Sharma R K. Transcriptional analysis reveals key insights into seasonal induced anthocyanin degradation and leaf color transition in purple tea (Camellia sinensis (L.) O. Kuntze). Sci Rep, 2021, 11: 1244.
doi: 10.1038/s41598-020-80437-4 |
[20] |
Toledo-Ortiz G, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell, 2003, 15: 1749-1770.
doi: 10.1105/tpc.013839 pmid: 12897250 |
[21] |
Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J, Ma H, Wang J, Zhang D. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol, 2006, 141: 1167-1184.
doi: 10.1104/pp.106.080580 |
[22] |
Wei K, Chen H. Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat. BMC Plant Biol, 2018, 18: 309.
doi: 10.1186/s12870-018-1529-5 pmid: 30497403 |
[23] |
Alessio V M, Cavaçana N, Dantas L L B, Lee N, Hotta C T, Imaizumi T, Menossi M. The FBH family of bHLH transcription factors controls ACC synthase expression in sugarcane. J Exp Bot, 2018, 69: 2511-2525.
doi: 10.1093/jxb/ery083 pmid: 29514290 |
[24] | 文明富, 杨俊贤, 潘方胤, 吴文龙, 陈月桂, 官锦燕. 甘蔗遗传改良研究进展. 广东农业科学, 2016, 43(6): 58-63. |
Wen M F, Yang J X, Pan F Y, Wu W L, Chen Y G, Guan J Y. Review on genetic improvement of sugarcane (Saccharum spp.). Guangdong Agric Sci, 2016, 43(6): 58-63. (in Chinese with English abstract) | |
[25] |
Bassi D, Menossi M, Mattiello L. Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Sci Rep, 2018, 8: 2327.
doi: 10.1038/s41598-018-20653-1 pmid: 29396510 |
[26] |
Ling H, Huang N, Wu Q, Su Y, Peng Q, Ahmed W, Gao S, Su W, Que Y, Xu L. Transcriptional insights into the Sugarcane- Sorghum mosaic virus interaction. Trop Plant Biol, 2018, 11: 163-176.
doi: 10.1007/s12042-018-9210-6 |
[27] | Que Y, Su Y, Guo J, Wu Q, Xu L. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq. PLoS One, 2014, 9: e106476. |
[28] |
Yang Y, Gao S, Su Y, Lin Z, Guo J, Li M, Wang Z, Que Y, Xu L. Transcripts and low nitrogen tolerance: regulatory and metabolic pathways in sugarcane under low nitrogen stress. Environ Exp Bot, 2019, 163: 97-111.
doi: 10.1016/j.envexpbot.2019.04.010 |
[29] |
黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析. 作物学报, 2021, 47: 882-893.
doi: 10.3724/SP.J.1006.2021.04128 |
Huang N, Hui Q L, Fang Z M, Li S S, Ling H, Que Y X, Yuan Z N. Identification, localization and expression analysis of beta- carotene isomerase gene family in sugarcane. Acta Agron Sin, 2021, 47: 882-893. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04128 |
|
[30] |
Nguyen Ba A N, Pogoutse A, Provart N, Moses A M. NLStradamus: a simple hidden markov model for nuclear localization signal prediction. BMC Bioinform, 2009, 10: 202.
doi: 10.1186/1471-2105-10-202 |
[31] |
Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García J F, Bilbao-Castro J R, Robertson D L. Genome-wide classification and evolutionary analysis of the bhlh family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol, 2010, 153: 1398-1412.
doi: 10.1104/pp.110.153593 pmid: 20472752 |
[32] |
Bailey P C, Martin C, Toledo-Ortiz G, Quail P H, Huq E, Heim M A, Jakoby M, Werber M, Weisshaar B. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell, 2003, 15: 2497-2502.
pmid: 14600211 |
[33] |
Earley K W, Haag J R, Pontes O, Opper K, Juehne T, Song K, Pikaard C S. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J, 2006, 45: 616-629.
doi: 10.1111/j.1365-313X.2005.02617.x pmid: 16441352 |
[34] | 苏亚春. 甘蔗应答黑穗病菌侵染的转录组与蛋白组研究及抗性相关基因挖掘. 福建农林大学博士学位论文, 福建福州, 2014. |
Su Y C. Transcriptome and Proteome of Sugarcane Response to Sporisorium scitamineum Infection and Mining of Resistance-related Genes. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2014. (in Chinese with English abstract) | |
[35] |
Wang Q, Yu G, Chen Z, Han J, Hu Y, Wang K. Optimization of protoplast isolation, transformation and its application in sugarcane (Saccharum spontaneum L.). Crop J, 2021, 9: 133-142.
doi: 10.1016/j.cj.2020.05.006 |
[36] |
Shih C H, Chu H, Tang L K, Sakamoto W, Maekawa M, Chu I K, Wang M, Lo C. Functional characterization of key structural genes in rice flavonoid biosynthesis. Planta, 2008, 228: 1043-1054.
doi: 10.1007/s00425-008-0806-1 pmid: 18726614 |
[37] |
Ling H, Wu Q, Guo J, Xu L, Que Y. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One, 2014, 9: e97469.
doi: 10.1371/journal.pone.0097469 |
[38] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[39] | Walker J M. The Proteomics Protocols Handbook. Totowa New Jersey: Humana Press, 2005. pp 31-175. |
[40] |
Smolen G A, Pawlowski L, Wilensky S E, Bender J. Dominant alleles of the basic helix-loop-helix transcription factor ATR2 activate stress-responsive genes in Arabidopsis. Genetics, 2002, 161: 1235-1246.
doi: 10.1093/genetics/161.3.1235 |
[41] |
Murre C, Bain G, van Dijk M A, Engel I, Furnari B A, Massari M E, Matthews J R, Quong M W, Rivera R R, Stuiver M H. Structure and function of helix-loop-helix proteins. Biochim Biophys Acta, 1994, 1218: 129-135.
doi: 10.1016/0167-4781(94)90001-9 pmid: 8018712 |
[42] |
周华, 朱祺, 杨艳芳, 刘洪伟, 余发新, 邱德有. 南方红豆杉bHLH基因克隆与序列分析. 植物研究, 2015, 35(1): 52-59.
doi: 10.7525/j.issn.1673-5102.2015.01.010 |
Zhou H, Zhu Q, Yang Y F, Liu H W, Yu F X, Qiu D Y. Cloning and sequence analysis of bHLH gene from Taxus chinensis var. mairei. Bull Bot Res, 2015, 35(1): 52-59. (in Chinese with English abstract) | |
[43] | 王沛捷, 马艳红, 武小娟, 范菠菠, 赵娜勤. 紫色马铃薯bHLH转录因子家族基因的鉴定及表达分析. 基因组学与应用生物学, 2022, 41: 601-616. |
Wang P J, Ma Y H, Wu X J, Fan B B, Zhao N Q. Identification and expression analysis of bHLH transcription factor family genes in purple potato. Genomics Appl Biol, 2021, 41: 601-616. (in Chinese with English abstract) | |
[44] | 林延慧, 徐冉, 朱红林, 唐力琼, 侯本军, 徐靖. 大豆耐涝bHLH转录因子筛选及生物信息学分析. 大豆科学, 2021, 40: 319-326. |
Lin Y H, Xu R, Zhu H L, Tang L Q, Hou B J, Xu J. Selection and bioinformatics analysis of bHLH transcription factor response to submergence stress in soybean. Soybean Sci, 2021, 40: 319-326. (in Chinese with English abstract) |
[1] | 杜翠翠, 吴明星, 张雅婷, 谢婉婕, 张积森, 王恒波. 甘蔗割手密种糖转运蛋白基因SsSWEET11的克隆与功能分析[J]. 作物学报, 2023, 49(9): 2385-2397. |
[2] | 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432. |
[3] | 玉泉馨, 杨宗桃, 张海, 程光远, 周营栓, 焦文迪, 曾康, 罗廷绪, 黄国强, 张木清, 徐景升. 甘蔗VAMP相关蛋白ScPVA12与甘蔗花叶病毒P3N-PIPO的互作研究[J]. 作物学报, 2023, 49(9): 2472-2484. |
[4] | 潘洁明, 田绍锐, 梁艳兰, 朱宇林, 周定港, 阙友雄, 凌辉, 黄宁. 甘蔗PIN-LIKES基因家族的鉴定与表达分析[J]. 作物学报, 2023, 49(2): 414-425. |
[5] | 肖健, 韦星璇, 杨尚东, 卢文, 谭宏伟. 间作西瓜对甘蔗产量效益和根际土壤理化性质及微生态的影响[J]. 作物学报, 2023, 49(2): 526-538. |
[6] | 杨宗桃, 焦文迪, 张海, 张克闽, 程光远, 罗廷绪, 曾康, 周营栓, 徐景升. 甘蔗谷胱甘肽硫转移酶ScGSTF1与P3N-PIPO互作应答甘蔗花叶病毒侵染的研究[J]. 作物学报, 2023, 49(10): 2665-2676. |
[7] | 沈庆庆, 王天菊, 王俊刚, 张树珍, 赵雪婷, 何丽莲, 李富生. 割手密转录因子SsWRKY1提高甘蔗品种抗旱能力的功能鉴定[J]. 作物学报, 2023, 49(10): 2654-2664. |
[8] | 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61. |
[9] | 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104. |
[10] | 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600. |
[11] | 李旭娟, 李纯佳, 吴转娣, 田春艳, 胡鑫, 丘立杭, 吴建明, 刘新龙. 甘蔗HTD2基因的表达特征及基因多态性分析[J]. 作物学报, 2022, 48(7): 1601-1613. |
[12] | 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234. |
[13] | 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026. |
[14] | 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872. |
[15] | 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341. |
|