欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1785-1798.doi: 10.3724/SP.J.1006.2023.24137

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径

王雁楠1(), 陈金金1, 卞倩倩1, 胡琳琳2, 张莉3, 尹雨萌1, 乔守晨1, 曹郭郑1, 康志河1, 赵国瑞1, 杨国红1, 杨育峰1,*()   

  1. 1河南省农业科学院粮食作物研究所, 河南郑州 450002
    2郑州大学农学院, 河南郑州 450001
    3河南省农业科学院农业经济与信息研究所, 河南郑州 450002
  • 收稿日期:2022-06-08 接受日期:2022-11-25 出版日期:2023-07-12 网络出版日期:2022-12-28
  • 通讯作者: *杨育峰, E-mail: yyfyyf5@163.com
  • 作者简介:E-mail: alman001@qq.com
  • 基金资助:
    本研究由河南省自然科学基金项目(212300410170);河南省科技攻关项目(212102110251);河南省农业良种联合攻关项目(2022010401-2);河南省现代农业产业技术体系建设专项资金(HARS-22-04-G1);财政部和农业农村部国家现代农业产业技术体系建设专项(甘薯);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-10-C14)

Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress

WANG Yan-Nan1(), CHEN Jin-Jin1, BIAN Qian-Qian1, HU Lin-Lin2, ZHANG Li3, YIN Yu-Meng1, QIAO Shou-Chen1, CAO Guo-Zheng1, KANG Zhi-He1, ZHAO Guo-Rui1, YANG Guo-Hong1, YANG Yu-Feng1,*()   

  1. 1Cereal Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
    3Institute of Agricultural Economics and Information, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2022-06-08 Accepted:2022-11-25 Published:2023-07-12 Published online:2022-12-28
  • Contact: *E-mail: yyfyyf5@163.com
  • Supported by:
    The Natural Science Foundation of Henan Province(212300410170);The Science and Technology Research Program of Henan Province(212102110251);The Henan Joint Research Program for Improved Agricultural Varieties(2022010401-2);The Special Fund for Henan Agriculture Research System(HARS-22-04-G1);The China Agriculture Research System of MOF and MARA(甘薯);The China Agriculture Research System of MOF and MARA(CARS-10-C14)

摘要:

甘薯是喜光作物, 但其在套种栽培模式中一般处于低位被遮阴, 大田生长中后期也时常面临阴雨寡照天气而影响块根干物质积累, 因此, 解析甘薯在遮阴胁迫下的代谢响应途径可为其耐荫性品种改良提供理论依据。本研究对甘薯品种郑红23号进行透光率50%的遮阴胁迫15 d后发现, 遮阴胁迫下郑红23号的叶绿素b以及总叶绿素含量较自然光照下均显著提高; 叶绿素光系统PSII最大光化学效率(Fv/Fm)、PSII潜在活性(Fv/Fo)和光合性能综合指数(PIABS)在遮阴胁迫下均显著下降; 净光合速率和水分利用率显著降低, SOD酶和POD酶活性则显著提高; 此外, 遮阴胁迫显著提高了郑红23号的蔓长和比叶面积, 根鲜重则显著降低。对遮阴胁迫和自然光照条件下的叶片组织进行转录组和代谢组联合分析发现, 差异基因和差异代谢物主要共同富集于苯丙素合成途径、糖代谢相关途径、鞘脂代谢途径和精氨酸合成途径。苯丙素合成途径富集到的上调差异表达基因多数为POD酶家族基因, 说明遮阴胁迫触发了甘薯的ROS活性氧清除系统。同时, 遮阴胁迫降低了甘薯植株的糖代谢水平, 叶片可溶性糖含量下降, 淀粉合成与降解均受到抑制, 块根膨大受阻。而鞘脂及精氨酸代谢途径则可能通过提高生物膜的稳定性以及增加多胺类抗逆因子的合成底物来使植株更好地适应遮阴胁迫。以上结果为理解遮阴胁迫下甘薯的代谢响应途径提供了新的理论依据。

关键词: 甘薯, 遮阴胁迫, 转录组, 代谢组, 响应途径

Abstract:

Sweetpotato is a heliophile crop. However, it is usually shaded in the lower position in the interplanting cultivation mode. During the middle and late field growing period, it often faces rainy weather with little illumination, which affects the dry matter accumulation in tuberous roots. Thus, analyzing the metabolic response pathways of sweetpotato under shade stress will provide the theoretical basis for the varieties’ genetic improvement of shade tolerance. In this study, the sweetpotato variety Zhenghong 23 was exposed to shade stress with 50% light transmittance for 15 days. Results showed that chlorophyll b and the total chlorophyll contents of Zhenghong 23 under shade stress were significantly increased compared with those under natural light. The maximum photochemical efficiency (Fv/Fm), the potential activity (Fv/Fo), and the comprehensive index of photosynthetic performance (PIABS) of the chlorophyll photosystem PSII decreased significantly under shade stress. The net photosynthetic rate and water use efficiency decreased significantly, while SOD and POD enzyme activities increased significantly. In addition, shade stress increased significantly the vine length and specific leaf area of Zhenghong 23, but reduced significantly the fresh weight of roots. Transcriptome and metabolome analysis of leaf tissues under shade stress and natural light conditions showed that the DEGs and DMs were mainly enriched in phenylpropanoid biosynthesis, sugar metabolism, sphinolipid metabolism, and arginine biosynthesis pathways. Most of the up-regulated DEGs enriched in the phenylpropanoid biosynthesis pathway were POD enzyme family genes, indicating that the shade stress triggered the ROS scavenging system in sweetpotato. Meanwhile, shade stress reduced sugar metabolism level of sweetpotato, decreased the soluble sugar content of leaves, inhibited both the synthesis and degradation of starch, and blocked the expansion of tuberous roots. In addition, the sphinolipid and arginine metabolism pathways may better adapt sweetptoato plants to shade stress through improving the stability of biomembranes and increase the synthetic substrates of polyamine anti-stress factors. These results provide new theoretical basis for understanding the metabolic response pathways of sweetpotato under shade stress.

Key words: sweetpotato, shade stress, transciptome, metabolome, the response pathways

图1

郑红23号自然光照与遮阴胁迫下的植株形态对比"

表1

遮阴胁迫对郑红23号植株形态指标及叶片酶活的影响"

光处理
Light
treatment
蔓长
Vine length
(cm)
茎节数
Stem internode number
比叶面积
Specific leaf area
(cm2 g-1)
根鲜重
Root fresh weight (g)
SOD活性
SOD activity
(U g-1 FW)
POD活性
POD activity
(U g-1 FW)
光照Light 43.5 (6.9) 13.3 (0.5) 211.9 (28.3) 17.9 (9.9) 339.7 (80.2) 1096.1 (230.0)
遮阴Shade 65.7 (9.3)** 14.8 (2.1) 457.6 (39.2)*** 1.2 (0.5)* 547.2 (72.8)** 2366.9 (398.0)**

表2

遮阴胁迫对郑红23号叶绿素含量(mg g-1 FW)及荧光特性的影响"

光处理
Light treatment
叶绿素a
Chlorophyll a
叶绿素b
Chlorophyll b
叶绿素a/b
Chlorophyll a/b
总叶绿素
Total chlorophyll
Fv/Fm Fv/Fo PIABS
光照Light 1.08 (0.11) 0.45 (0.12) 2.44 (0.34) 1.53 (0.23) 0.749 (0.022) 2.838 (0.210) 0.570 (0.055)
遮阴Shade 1.21 (0.04) 0.73 (0.05)** 1.66 (0.15)** 1.94 (0.05)* 0.670 (0.033)** 2.107 (0.364)* 0.398 (0.046)**

表3

遮阴胁迫对郑红23号光合参数的影响"

光处理
Light
treatment
净光合速率
Net photosynthetic rate
(μmol m-2 s-1)
蒸腾速率
Transpiration
rate
(mmol m-2 s-1)
胞间CO2浓度
Intercellular CO2 concentration
(μmol mol-1)
气孔导度
Stomatal
conductance
(mmol m-2 s-1)
水汽压亏缺
Vapor pressure deficit
(mb)
水分利用效率
Water use
efficiency
(%)
光照Light 9.13 (0.87) 2.29 (0.53) 241.8 (28.2) 103.5 (8.9) 2.07 (0.18) 4.07 (0.54)
遮阴Shade 2.45 (0.54)*** 1.93 (0.46) 341.0 (13.7)** 97.3 (10.1) 2.18 (0.23) 1.02 (0.37)***

图2

RNA-seq样品相关性热图(a)及代谢组各样品间的主成分分析(b) S: 遮阴; L: 光照。"

表4

样品RNA-seq质量"

样品
Sample name
原始序列数
Raw
reads
过滤后序列及占比
Clean reads and
percentage (%)
比对到基因组上的reads数及占比
Number and proportion of reads
on the genome (%)
单一位置reads数及百分比
Unique mapped reads
and percentage (%)
Q30比例
Q30 ratio
(%)
S1 46,514,384 45,395,970 (97.60) 32,813,096 (72.28%) 31,148,789 (68.62%) 92.72
S2 45,595,318 44,524,818 (97.65) 32,073,379 (72.03%) 30,310,383 (68.08%) 93.15
S3 48,243,946 46,619,848 (96.63) 33,903,203 (72.72%) 32,580,570 (69.89%) 93.16
S4 45,242,868 43,886,694 (97.00) 31,090,577 (70.84%) 29,766,110 (67.82%) 92.72
L1 51,826,126 50,453,206 (97.35) 36,601,089 (72.54%) 35,349,491 (70.06%) 92.79
L2 52,046,026 50,516,688 (97.06) 35,620,398 (70.51%) 34,152,030 (67.61%) 93.27
L3 43,082,564 42,246,862 (98.06) 29,421,358 (69.64%) 28,373,138 (67.16%) 92.76
L4 45,214,902 43,699,856 (96.65) 30,949,611 (70.82%) 29,612,170 (67.76%) 93.30

图3

遮阴胁迫和自然光照下鉴定出的表达基因数(a)和差异表达基因数(b) S: 遮阴; L: 光照。"

图4

差异表达基因GO富集中显著性排名前30的功能类(a)和KEGG富集中显著性排名前20的通路(b) BP: 生物过程; CC: 细胞组成; MF: 分子功能。柱上数字代表富集到的差异基因个数。纵坐标为显著性水平, 数值越高越显著。"

图5

Top20差异代谢物相关性图(a)及差异代谢物KEGG富集气泡图(b) (a) 红色代表正相关, 蓝色代表负相关, 没有颜色的点表示无显著相关性(P > 0.05)。(b) 气泡颜色与大小代表富集可信度及富集到的差异代谢物数目。-log10(P-value)越大, 富集可信度越高。S: 遮阴; L: 光照。"

图6

Top50的DMs (顶部)与Top100的DEGs (左侧)之间的相关性热图(a)以及代谢-转录KEGG共有富集通路气泡图(b) (a) 红色代表正相关, 蓝色代表负相关。椭圆越扁, 代表相关性的绝对值越高。相关性统计检验P < 0.05会进行星号(*)标记。(b) 三角形代表差异基因, 圆点代表差异代谢物。-log10(P-value)越大, 富集可信度越高。S: 遮阴; L: 光照。"

图7

苯丙素合成途径DMs的含量热图(a)以及DMs与DEGs之间的相关性热图(b)"

图8

糖代谢相关途径DMs的含量热图(a)以及DMs与DEGs之间的相关性热图(b)"

[1] Liu Q C. Improvement for agronomically important traits by gene engineering in sweetpotato. Breed Sci, 2017, 67: 15-26.
doi: 10.1270/jsbbs.16126
[2] Gommers C M M, Visser E J W, Onge K R S, Voesenek L A C J, Pierik R. Shade tolerance: when growing tall is not an option. Trends Plant Sci, 2012, 18: 65-71.
doi: 10.1016/j.tplants.2012.09.008
[3] Fraser D P, Hayes S, Franklin K A. Photoreceptor crosstalk in shade avoidance. Curr Opin Plant Biol, 2016, 33: 1-7.
doi: S1369-5266(16)30035-8 pmid: 27060719
[4] Carriedo L G, Maloof J N, Brady S M. Molecular control of crop shade avoidance. Curr Opin Plant Biol, 2016, 30: 151-158.
doi: 10.1016/j.pbi.2016.03.005 pmid: 27016665
[5] Leivar P, Quail P H. PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci, 2011, 16: 19-28.
doi: 10.1016/j.tplants.2010.08.003 pmid: 20833098
[6] Zhang Y, Mayba O, Pfeiffer A, Shi H, Tepperman J M, Speed T P, Quail P H. A quartet of PIF bHLH factors provides a transcriptionally centered signaling hub that regulates seedling morphogenesis through differential expression patterning of shared target genes in Arabidopsis. PLoS Genet, 2013, 9: e1003244.
doi: 10.1371/journal.pgen.1003244
[7] Warnasooriya S N, Brutnell T P. Enhancing the productivity of grasses under high-density planting by engineering light responses: from model systems to feedstocks. J Exp Bot, 2014, 65: 2825-2834.
doi: 10.1093/jxb/eru221 pmid: 24868036
[8] Evans J R, Poorter H. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ, 2001, 24: 755-767.
doi: 10.1046/j.1365-3040.2001.00724.x
[9] Valladares F, Niinemets Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst, 2008, 39: 237-257.
doi: 10.1146/ecolsys.2008.39.issue-1
[10] Roig-Villanova I, Bou-Torrent J, Galstyan A, Carretero-Paulet L, Portolés S, Rodrígues-Concepción M, Martínez-García J F. Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. EMBO J, 2007, 26: 4756-4767.
doi: 10.1038/sj.emboj.7601890 pmid: 17948056
[11] Galstyan A, Cifuentes-Esquivel N, Bou-Torrent J, Martinez-Garcia J F. The shade avoidance syndrome in Arabidopsis: a fundamental role for atypical basic helix-loop-helix proteins as transcriptional cofactors. Plant J, 2011, 66: 258-267.
doi: 10.1111/tpj.2011.66.issue-2
[12] Brouwer B, Ziolkowska A, Bagard M, Keech O, Gardeström P. The impact of light intensity on shade-induced leaf senescence. Plant Cell Environ, 2012, 35: 1084-1098.
doi: 10.1111/pce.2012.35.issue-6
[13] Tamim S A, Li F M, Wang Y, Shang L L, Zhang X Y, Tao J B, Wang Y R, Gai W X, Dong H Q, Ahiakpa J K, Mumtaz M A, Zhang Y Y. Effect of shading on ascorbic acid accumulation and biosynthetic gene expression during tomato fruit development and ripening. Veg Res, 2022, 2: 1.
[14] 陈勤操, 戴伟东, 蔺志远, 解东超, 吕美玲, 林智. 代谢组学解析遮阴对茶叶主要品质成分的影响. 中国农业科学, 2019, 52: 1066-1077.
doi: 10.3864/j.issn.0578-1752.2019.06.010
Chen Q C, Dai W D, Lin Z Y, Xie D C, Lyu M L, Lin Z. Effects of shading on main quality components in tea (Camellia sinensis (L.) O. Kuntze) leaves based on metabolomics analysis. Sci Agric Sin, 2019, 52: 1066-1077. (in Chinese with English abstract)
[15] 王庆美, 侯夫云, 汪宝卿, 王振林, 董顺旭, 张海燕, 李爱贤, 张立明, 解备涛. 遮阴处理对紫甘薯块根品质的影响. 中国农业科学, 2011, 44: 192-200.
Wang Q M, Hou F Y, Wang B Q, Wang Z L, Dong S X, Zhang H Y, Li A X, Zhang L M, Xie B T. Effects of shading stress on qualities of purple sweetpotato storage roots. Sci Agric Sin, 2011, 44: 192-200. (in Chinese with English abstract)
[16] 王庆美, 侯夫云, 汪宝卿, 董顺旭, 王振林, 张海燕, 李爱贤, 解备涛, 张立明. 大田遮阴对紫心甘薯块根中酶活性的影响. 核农学报, 2012, 26: 960-966.
Wang Q M, Hou F Y, Wang B Q, Dong S X, Wang Z L, Zhang H Y, Li A X, Xie B T, Zhang L M. Enzymatic activity of root qualities in purple-fleshed sweetpotato under field shading stress. J Nucl Agric Sci, 2012, 26: 960-966 (in Chinese with English abstract).
[17] 赵习武, 王晨静, 周雅倩, 郭迪, 陆国权. 不同遮阴处理对四种观赏甘薯光合特性的影响. 北方园艺, 2013, (24): 55-59.
Zhao X W, Wang C J, Zhou Y Q, Guo D, Lu G Q. Effects of different shading treatments on the photosynthetic properties of four ornamental sweetpotato varieties. North Hortic, 2013, (24): 55-59. (in Chinese)
[18] 周雅倩, 陆国权. 主成分分析法对观赏甘薯品种耐弱光性综合评价. 浙江农业学报, 2013, 25: 1194-1201.
Zhou Y Q, Lu G Q. Comprehensive evaluation of weak light tolerance of ornamental sweetpotato cultivars with main factor analysis. Acta Agric Zhejiangensis, 2013, 25: 1194-1201. (in Chinese with English abstract)
[19] 蒋亚. 甘薯耐荫性评价及其对弱光的生理响应. 西南大学硕士学位论文, 重庆, 2020.
Jiang Y. Evaluation of Shade Tolerance of Sweet Potato and Its Physiological Response to Low Light. MS Thesis of Southwest University, Chongqing, China, 2020 (in Chinese with English abstract).
[20] Li J, Yin J, Rong C, Li K E, Wu J X, Huang L Q, Zeng H Y, Sahu S K, Yao N. Orosomucoid proteins interact with the small subunit of serine palmitoyltransferase and contribute to sphingolipid homeostasis and stress responses in Arabidopsis. Plant Cell, 2016, 28: 3038-3051.
doi: 10.1105/tpc.16.00574
[21] Zheng P, Wu J X, Sahu S K, Zeng H Y, Huang L Q, Liu Z, Xiao S, Yao N. Loss of alkaline ceramidase inhibits autophagy in Arabidopsis and plays an important role during environmental stress response. Plant Cell Environ, 2018, 41: 837-849.
doi: 10.1111/pce.v41.4
[22] 杨洪强, 高华君. 植物精氨酸及其代谢产物的生理功能. 植物生理与分子生物学学报, 2007, 33: 1-8.
Yang H Q, Gao H J. Physiological function of arginine and its metabolites in plants. J Plant Physiol Mol Biol, 2007, 33: 1-8. (in Chinese with English abstract)
[23] 李伟, 黄金丽, 眭晓蕾, 王绍辉, 关秋竹, 周明, 胡丽萍, 张振贤. 黄瓜幼苗光合及荧光特性对弱光的响应. 园艺学报, 2008, 35: 119-122.
Li W, Huang J L, Sui X L, Wang S H, Guan Q Z, Zhou M, Hu L P, Zhang Z X. Effects of low light on photosynthetic and fluorescent characteristics of seedlings of Cucumis sativus. Acta Hortic Sin, 2008, 35: 119-122. (in Chinese with English abstract)
[24] 付景. 玉米耐荫性指标的筛选与评价. 河南农业大学硕士学位论文, 河南郑州, 2009.
Fu J. Selection and Evaluation on Maize (Zea mays L.) Shade-tolerance Indexes. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2009. (in Chinese with English abstract)
[25] Evans J R, Poorter H. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ, 2001, 24: 755-767.
doi: 10.1046/j.1365-3040.2001.00724.x
[26] Zhang X B, Liu C J. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Mol Plant, 2015, 8: 17-27.
doi: 10.1016/j.molp.2014.11.001 pmid: 25578269
[27] Dong N Q, Lin H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J Integr Plant Biol, 2021, 63: 180-209.
doi: 10.1111/jipb.v63.1
[28] Zhu Y C, Wang Q Y, Wang Y, Xu Y, Li J W, Zhao S H, Wang D D, Ma Z P, Yan F, Liu Y J. Combined transcriptomic and metabolomic analysis reveals the role of phenylpropanoid biosynthesis pathway in the salt tolerance process of Sophora alopecuroides. Int J Mol Sci, 2021, 22: 2399.
doi: 10.3390/ijms22052399
[29] Kang C, He S Z, Zhai H, Li R J, Zhao N, Liu Q C. A sweetpotato auxin response factor gene (IbARF5) is involved in carotenoid biosynthesis and salt and drought tolerance in transgenic Arabidopsis. Front Plant Sci, 2018, 9: 1307.
doi: 10.3389/fpls.2018.01307
[30] Zhang H, Gao X R, Zhi Y H, Li X, Zhang Q, Niu J B, Wang J, Zhai H, Zhao N, Li J G, Liu Q C, He S Z. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytol, 2019, 223: 1918-1936.
doi: 10.1111/nph.15925 pmid: 31091337
[31] Shi H T, Chan Z L. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol, 2014, 56: 114-121.
doi: 10.1111/jipb.12128
[32] Minocha R, Majumdar R, Minocha S C. Polyamines and abiotic stress in plants: a complex relationship. Front Plant Sci, 2014, 5: 175.
doi: 10.3389/fpls.2014.00175 pmid: 24847338
[33] Li B, He L Z, Guo S R, Li J, Yang Y J, Yan B, Sun J, Li J. Proteomics reveal cucumber Spd-responses under normal condition and salt stress. Plant Physiol Biochem, 2013, 67: 7-14.
doi: 10.1016/j.plaphy.2013.02.016
[34] Sagor G H M, Berberich T, Takahashi Y, Niitsu M, Kusano T. The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgenic Res, 2013, 22: 595-605.
doi: 10.1007/s11248-012-9666-3 pmid: 23080295
[35] Kunz S, Pesquet E, Kleczkowski L A. Functional dissection of sugar signals affecting gene expression in Arabidopsis thaliana. PLoS One, 2014, 9: e100312.
doi: 10.1371/journal.pone.0100312
[36] Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development. J Exp Bot, 2014, 65: 799-807.
doi: 10.1093/jxb/ert474 pmid: 24453229
[37] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应. 作物学报, 2023, 49: 12-23.
doi: 10.3724/SP.J.1006.2023.13064
Sun Z C, Zhang J W. Physiological mechanism and regulation effect of low light on maize yield formation. Acta Agron Sin, 2023, 49: 12-23. (in Chinese with English abstract)
[38] 祖超, 杨建峰, 李志刚, 王灿, 鱼欢, 邬华松. 遮阴对胡椒主花期叶片碳代谢及成花量的影响. 热带作物学报, 2015, 36: 1561-1567.
Zu C, Yang J F, Li Z G, Wang C, Yu H, Wu S H. Effect of shading on carbon metabolism and inflorescence quantity in black pepper during full-bloom stage. Chin J Trop Crops, 2015, 36: 1561-1567. (in Chinese with English abstract)
[39] 王喜蒙. 遮阴条件下白及叶片的蛋白质组学研究. 郑州大学硕士学位论文, 河南郑州, 2021.
Wang X M. Proteome Studies of Bletilla striata Leaves in Response to Shelter Covering. MS Thesis of Zhengzhou University, Zhengzhou, Henan, China, 2021 (in Chinese with English abstract).
[40] Wu J X, Li J, Liu Z, Yin J, Chang Z Y, Rong C, Wu J L, Bi F C, Yao N. The Arabidopsis ceramidase AtACER functions in disease resistance and salt tolerance. Plant J, 2015, 81: 767-780.
doi: 10.1111/tpj.2015.81.issue-5
[41] Ng C K-Y, Carr K, McAinsh M R, Powell B, Hetherington A M. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature, 2001, 410: 596-599.
doi: 10.1038/35069092
[42] Nishikawa M, Hosokawa K, Ishiguro M, Minamioka H, Tamura K, Hara-Nishimura I, Takahashi Y, Shimazaki K, Imai H. Degradation of sphingoid long-chain base 1-phosphates (LCB-1Ps): functional characterization and expression of AtDPL1 encoding LCB-1P lyase involved in the dehydration stress response in Arabidopsis. Plant Cell Physiol, 2008, 49: 1758-1763.
doi: 10.1093/pcp/pcn149 pmid: 18849574
[43] Dutilleul C, Benhassaine-Kesri G, Demandre C, Rézé N, Launay A, Pelletier S, Renou J P, Zachowski A, Baudouin E, Guillas I. Phytosphingosine-phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling. New Phytol, 2012, 194: 181-191.
doi: 10.1111/nph.2012.194.issue-1
[44] Wan T, Feng Y, Liang C L, Pan L Y, He L, Cai Y L. Metabolomics and transcriptomics analyses of two contrasting cherry rootstocks in response to drought stress. Biology, 2021, 10: 201.
doi: 10.3390/biology10030201
[45] 冯斌, 俞继华, 张宝, 宋志磊, 陈劲松, 廖海, 周嘉裕. 植物磷酸乙醇胺甲基转移酶的生物信息学分析. 西南农业学报, 2013, 26: 499-504.
Feng B, Yu J H, Zhang B, Song Z L, Chen J S, Liao H, Zhou J Y. Bioinformatics analysis of phosphoethanolamine N-methyltransferase in plants. Southwest China J Agric Sci, 2013, 26: 499-504. (in Chinese with English abstract)
[46] 李婷, 刘嘉龙, 林小玲, 彭丽梅, 周大虎, 傅军如, 徐杰. 精氨酸酶在植物胁迫应答中功能研究进展. 分子植物育种, [2021-03-15] https://kns.cnki.net/kcms/detail/46.1068.S.20210315.1126.008.html.
Li T, Liu J L, Lin X L, Peng L M, Zhou D H, Fu J R, Xu J. Research progress on the function of arginase in plant stress response. Molecular Plant Breeding, Online first: 2021-03-15, https://kns.cnki.net/kcms/detail/46.1068.S.20210315.1126.008.html.
[47] She M Y, Wang J, Wang X M, Yin G X, Wang K, Du L P, Ye X G. Comprehensive molecular analysis of arginase-encoding genes in common wheat and its progenitor species. Sci Rep, 2017, 7: 6641.
doi: 10.1038/s41598-017-07084-0 pmid: 28747704
[48] 王慧飞, 冯雪, 张一名, 冯立峰, 张瑜, 陈光, 孙艳香. 棉花精氨酸酶基因GhARG1 cDNA的克隆与表达分析. 华北农学报, 2018, 33(4): 17-24.
doi: 10.7668/hbnxb.2018.04.003
Wang H F, Feng X, Zhang Y M, Feng L F, Zhang Y, Chen G, Sun Y X. Cloning and expression analysis of arginase gene GhARG1 cDNA from Gossypium hirsutum L. Acta Agric Boreali-Sin, 2018, 33(4): 17-24. (in Chinese with English abstract)
[49] Labudda M, Różańska E, Cieśla J, Sobczak M, Dzik J M. Arginase activity in Arabidopsis thaliana infected with Heterodera schachtii. Plant Pathol, 2016, 65: 1529-1538.
doi: 10.1111/ppa.2016.65.issue-9
[1] 陈力, 王靖, 邱晓, 孙海莲, 张文浩, 王天佐. 不同耐旱性紫花苜蓿干旱胁迫下生理响应和转录调控的差异研究[J]. 作物学报, 2023, 49(8): 2122-2132.
[2] 贾瑞雪, 陈伊航, 张荣, 唐朝臣, 王章英. 超高效液相色谱法同时测定甘薯中13种类胡萝卜素的含量[J]. 作物学报, 2023, 49(8): 2259-2274.
[3] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[4] 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894.
[5] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[6] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[7] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[8] 陈伊航, 唐朝臣, 张雄坚, 姚祝芳, 江炳志, 王章英. 基于表型性状和SSR分子标记构建甘薯核心种质[J]. 作物学报, 2023, 49(5): 1249-1261.
[9] 刘明, 范文静, 赵鹏, 靳容, 张强强, 朱晓亚, 王静, 李强. 甘薯耐低钾基因型苗期筛选及综合评价[J]. 作物学报, 2023, 49(4): 926-937.
[10] 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响[J]. 作物学报, 2023, 49(4): 1090-1101.
[11] 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制[J]. 作物学报, 2023, 49(1): 225-238.
[12] 吴旭莉, 吴正丹, 晚传芳, 杜叶, 高艳, 李賾萱, 王志前, 唐道彬, 王季春, 张凯. 甘薯糖转运蛋白IbSWEET15的功能研究[J]. 作物学报, 2023, 49(1): 129-139.
[13] 姚祝芳, 张雄坚, 杨义伶, 黄立飞, 陈新亮, 姚肖健, 罗忠霞, 陈景益, 王章英, 房伯平. 177份甘薯地方资源表型性状的遗传多样性分析[J]. 作物学报, 2022, 48(9): 2228-2241.
[14] 解黎明, 姜仲禹, 柳洪鹃, 韩俊杰, 刘本奎, 王晓陆, 史春余. 甘薯发根分枝期适宜土壤水分促进块根糖供应和块根形成的研究[J]. 作物学报, 2022, 48(8): 2080-2087.
[15] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .