欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2105-2121.doi: 10.3724/SP.J.1006.2023.24194

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应

代书桃1(), 朱灿灿1, 马小倩2, 秦娜1, 宋迎辉1, 魏昕1, 王春义1, 李君霞1,*()   

  1. 1 河南省农业科学院粮食作物研究所, 河南郑州 450002
    2 河南科技大学农学院, 河南洛阳 471023
  • 收稿日期:2022-08-24 接受日期:2023-02-10 出版日期:2023-08-12 网络出版日期:2023-02-21
  • 通讯作者: 李君霞
  • 作者简介:E-mail: daist82@163.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-06-14.5-B24);河南省良种联合攻关项目(2022010401);中央引导地方科技发展资金(Z20221341070);河南省农业科学院创新团队和自主创新项目(TD2022033);河南省农业科学院创新团队和自主创新项目(2022ZC07)

Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress

DAI Shu-Tao1(), ZHU Can-Can1, MA Xiao-Qian2, QIN Na1, SONG Ying-Hui1, WEI Xin1, WANG Chun-Yi1, LI Jun-Xia1,*()   

  1. 1 Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2 College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
  • Received:2022-08-24 Accepted:2023-02-10 Published:2023-08-12 Published online:2023-02-21
  • Contact: LI Jun-Xia
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-06-14.5-B24);Funding of Joint Research on Agricultural Varieties Improvement of Henan Province(2022010401);Central Guidance on Science and Technology Development of Henan(Z20221341070);Innovation Team and Independent innovation Project of Henan Academy of Agricultural Sciences(TD2022033);Innovation Team and Independent innovation Project of Henan Academy of Agricultural Sciences(2022ZC07)

摘要:

KT/HAK/KUP (HAK)家族是植物中最丰富的钾转运体家族, 对植物的生长和环境适应具有重要作用。谷子是抗逆耐瘠研究的模式植物, 然而, 谷子中HAK家族缺乏系统研究。本研究基于基因组序列信息, 鉴定出29个谷子HAK基因(SiHAKs), 并对该家族成员的基本特征、蛋白结构、染色体定位、基因复制、表达模式和逆境响应等方面进行了系统分析。结果显示, (1) SiHAKs分为5个进化簇(Cluster I~Cluster V), 成员数量分别为11、9、3、3和3。基因结构和蛋白保守基序分析表明, 谷子HAK家族具有较高的保守性, 不同Cluster的保守性依次为: Cluster III = Cluster V > Cluster II > Cluster I > Cluster IV。(2) 串联复制是SiHAKs扩增的主要原因, 15个SiHAKs位于串联重复中。(3) 171个转录因子可能结合到不同SiHAKs的启动子上, 这些转录因子包含ERF、NAC、MYB和WRKY等家族中的大量成员, 可能授予了SiHAKs对非生物胁迫多样的响应机制。(4) 基因表达聚类将SiHAKs分成3组: Group I、Group II和Group III, 多数SiHAKs在张谷和豫谷1号2个品种中的表达模式具有一致性; 不同Cluster表达水平总体表现为: Cluster III > Cluster V > Cluster II > Cluster I > Cluster IV。(5) 根系中表达水平较高的11个SiHAKs用来检测对低钾和高盐胁迫的响应。在低钾胁迫后, 8个SiHAKs的表达水平显著升高, 1个SiHAK显著降低, 2个SiHAKs变化不明显; 而高盐胁迫后, 3个SiHAKs的表达水平显著升高, 2个SiHAKs显著降低, 其余6个SiHAKs变化不明显。SiHAK15受到低钾和高盐胁迫的响应最为强烈, 其表达量分别为对照的151倍和22倍。(6) 基因表达谱的差异反映出不同Cluster间SiHAKs的功能差异。Cluster I主要在根系中表达, 可能参与谷子根系K+的吸收; Cluster II不具有组织表达特异性, 推测其参与K+的吸收、转运和生长发育等多个生物过程; Cluster III受到低钾和高盐2种胁迫的诱导, 显示出维持谷子K+/Na+平衡和抵御盐胁迫的潜在作用; Cluster IV在被检测的多个组织中几乎不表达; Cluster V不同成员对低钾和高盐胁迫的响应存在差异, 可能发生了功能分化。研究结果不仅为深入解析谷子HAK家族的功能奠定了基础, 而且为植物中钾高效利用和耐盐机制的研究提供了重要线索。

关键词: 谷子, 钾转运蛋白, KT/HAK/KUP家族, 盐胁迫, 表达分析

Abstract:

KT/HAK/KUP (HAK) family is the most abundant potassium (K+) transporter family in plants, which plays important roles in plant growth and environmental adaptation. Foxtail millet (Setaria italic L. Beauv) is a model plant for studies on stress resistance mechanisms. However, the HAK family has not yet been well characterized in foxtail millet. In this study, 29 Setaria italic HAK genes (SiHAKs) were identified based on genome-wide sequence information, and the basic characteristics, protein structure, chromosome location, gene replication, expression pattern, and responses to stress were comprehensively analyzed. The results showed as followes: (1) SiHAKs were divided into five phylogenetic clusters (Cluster I-Cluster V), containing 11, 9, 3, 3 and 3 members, respectively. Gene structure and conserved motif analyses indicated that SiHAKs was high conserved, and the conservatisms were as follows: Cluster III = Cluster V > Cluster II > Cluster I > Cluster IV. (2) Tandem replication was the main contribution to the amplification of SiHAKs. 15 SiHAKs were located in tandem replication. (3) 171 transcription factors, including a large number of members of ERF, NAC, MYB and WRKY families, may bind to the promoter sequences of SiHAKs, which may confer SiHAKs diverse response mechanisms to abiotic stress. (4) SiHAKs were divided into three groups (Group I, Group II, and Group III) by gene expression Cluster Ing. The relative expression patterns of most SiHAKs were consistent in the two varieties (Zhanggu and Yugu 1). The relative expression levels of SiHAKs from the five clusters were generally as follows: Cluster III > Cluster V > Cluster II > Cluster I> Cluster IV. (5) Eleven SiHAKs with high expression levels in root were selected to detect the responses to low K+ and high salt stress. Under K+ deficiency treatment, eight SiHAKs were markedly upregulated in the expression levels, one SiHAK was significantly decreased, and two SiHAKs had no obvious changes. Under high salt stress, Three SiHAKs were significantly increased in the expression levels, two SiHAKs were significantly decreased, and the remaining six SiHAKs had no obvious changes. Remarkably, SiHAK15 had the strongest response to K+ deficiency and high salt stress, its expression level was 151 times and 22 times of the control, respectively. (6) The differences of gene expression profiles reflected the function differences among SiHAKs from different clusters. SiHAKs from Cluster I were mainly expressed in root, implying their important roles in K+ absorption in root. SiHAKs from Cluster II generally had no tissue-specific expression characteristics, and might be involved in many biological processes, such as K+ absorption and transport, plant growth and development. SiHAKs from Cluster III were upregulated by K+ deficiency and high salt stress, inferring their potential roles in maintaining K+/Na+ balance and resisting salt stress. SiHAKs from Cluster IV were almost undetectable in gene expression in the tested tissues. SiHAKs from Cluster V had different responses to K+ deficiency and high salt stresses. Some of them were upregulated in gene expression, while others were inhibited, thus indicating that the members from Cluster V were functionally differentiated. This results not only provide the foundation for further functional studies of SiHAKs, but also provide the valuable guidance for the study of K+ efficient utilization and salt tolerance mechanism in plants.

Key words: foxtail millet, potassium transporter, KT/HAK/KUP family, salt stress, the relative expression analysis

附表1

用于SiHAK基因表达分析的引物序列信息"

基因
Gene
引物名称
Primer name
序列
Sequence (5°-3°)
SiHAK2 SiHAK2-F CGGCGTCCTCTCCTTCGTCT
SiHAK2-R CCCGTGGCCTTCTCTTCCTC
SiHAK3 SiHAK3-F TCTTTATTCACTGCTTTGCCG
SiHAK3-R TTCTGAGTTGGTGCCCCTCTA
SiHAK4 SiHAK4-F AAAAGTTAGCCTGCTTCCGAA
SiHAK4-R GCCGTCACCAATCACCATAGA
SiHAK6 SiHAK6-F AGGTTTCTCTTTCGTCGGGTC
SiHAK6-R TTCAAATGCTTGGGGGTTCTC
SiHAK7 SiHAK7-F ACGTGACCCTGACATAAGCAAA
SiHAK7-R TCAAGAGCCAGAGCACAACAAT
SiHAK10 SiHAK10-F CACGGAGAGCAACGAGGAGA
SiHAK10-R GCAGAGGAGGGAGTAGAGCG
SiHAK15 SiHAK15-F GAATCCCCAAATGTAAGCCG
SiHAK15-R CATGATGTATGCCACCCCAG
SiHAK16 SiHAK16-F CTCTTGCACTGGGTTGTTTTCC
SiHAK16-R GCATTTCCTATCTGGCTTTGGT
SiHAK18 SiHAK18-F ACCTTCGCTCCTGTCATCTCG
SiHAK18-R CCATCCTTCCCATTCCTTTTG
SiHAK23 SiHAK23-F CCCCCACATCTTCTCCCACT
SiHAK23-R CTTGTACCCGTACCTCGCCA
SiHAK24 SiHAK24-F GCATCCCACCCATATTCCCT
SiHAK24-R TACCCATACCGTGCCACACA
Si-actin-2 Si-actin-2-F ATCCAGCCCCTTGTATGTGA
Si-actin-2-R ACGCCCAACAATACTTGGAA

表1

谷子SiHAK基因及其蛋白质基本信息"

基因名称
Gene name
基因序列号
Gene ID
染色体位置
Chromosome position
基因组大小
Genome size (bp)
编码序列长度
Coding sequence
length (bp)
氨基酸
Amino
acid (aa)
分子量
Molecular
weight (kD)
等电点 Isoelectric
point (pI)
亚细胞定位
Subcellular location
SiHAK1 Seita.1G175000 Chr.1:25211256..25214882 forward 3627 2193 731 80.02 8.26 质膜 Plasma membrane
SiHAK2 Seita.1G307200 Chr.1:37040523..37045883 forward 5361 2322 774 86.24 7.85 质膜 Plasma membrane
SiHAK3 Seita.2G129100 Chr.2:14902256..14908174 reverse 5919 2364 788 88.61 8.49 质膜 Plasma membrane
SiHAK4 Seita.2G192700 Chr.2:28886553..28891290 reverse 4738 2568 856 94.46 7.47 质膜 Plasma membrane
SiHAK5 Seita.2G224400 Chr.2:32661560..32666230 forward 4671 2133 711 78.65 9.21 质膜 Plasma membrane
SiHAK6 Seita.2G327100 Chr.2:41466190..41473814 reverse 7625 2559 853 94.42 5.94 质膜 Plasma membrane
SiHAK7 Seita.2G427100 Chr.2:47923110..47928818 forward 5709 2352 784 87.76 8.86 质膜 Plasma membrane
SiHAK8 Seita.2G432200 Chr.2:48265283..48269697 reverse 4415 2364 788 87.21 7.61 质膜 Plasma membrane
SiHAK9 Seita.4G119700 Chr.4:12129620..12135065 reverse 5446 2331 777 85.78 8.25 质膜 Plasma membrane
SiHAK10 Seita.4G209800 Chr.4:32743375..32748151 forward 4777 2448 816 90.27 8.47 质膜 Plasma membrane
SiHAK11 Seita.4G266200 Chr.4:38390011..38398958 reverse 8948 2322 774 85.41 8.22 质膜 Plasma membrane
SiHAK12 Seita.5G168000 Chr.5:16861878..16864997 reverse 3120 2442 814 89.65 8.60 质膜 Plasma membrane
SiHAK13 Seita.5G439500 Chr.5:45554118..45559684 forward 5567 2325 775 86.47 8.52 质膜 Plasma membrane
SiHAK14 Seita.5G441200 Chr.5:45651197..45655632 reverse 4436 2205 735 80.50 8.50 质膜 Plasma membrane
SiHAK15 Seita.5G444100 Chr.5:45784733..45789729 forward 4997 2361 787 88.43 9.07 质膜 Plasma membrane
SiHAK16 Seita.6G027600 Chr.6:1995986..2001010 reverse 5025 2367 789 88.43 8.34 质膜 Plasma membrane
SiHAK17 Seita.6G205800 Chr.6:32522339..32526598 forward 4260 2220 740 82.47 8.84 质膜 Plasma membrane
SiHAK18 Seita.7G082300 Chr.7:18653291..18658866 forward 5576 2322 774 86.58 8.64 质膜 Plasma membrane
SiHAK19 Seita.7G082600 Chr.7:18675471..18680567 forward 5097 2373 791 88.54 8.82 质膜 Plasma membrane
SiHAK20 Seita.7G082700 Chr.7:18682739..18686823 forward 4085 2331 777 87.11 8.92 质膜 Plasma membrane
SiHAK21 Seita.7G082800 Chr.7:18693088..18697351 forward 4264 2286 762 85.03 6.99 质膜 Plasma membrane
SiHAK22 Seita.7G232600 Chr.7:29611687..29616556 reverse 4870 2550 850 94.73 6.15 质膜 Plasma membrane
SiHAK23 Seita.7G235500 Chr.7:29787315..29792347 reverse 5033 2412 804 89.58 8.34 质膜 Plasma membrane
SiHAK24 Seita.9G182300 Chr.9:12585631..12590025 forward 4395 2415 805 91.00 8.64 质膜 Plasma membrane
SiHAK25 Seita.9G182400 Chr.9:12603097..12608101 forward 5005 2433 811 91.93 9.02 质膜 Plasma membrane
SiHAK26 Seita.9G182500 Chr.9:12637593..12642369 forward 4777 2403 801 90.86 8.84 质膜 Plasma membrane
SiHAK27 Seita.9G182600 Chr.9:12646706..12651914 forward 5209 2415 805 90.42 8.82 质膜 Plasma membrane
SiHAK28 Seita.9G412000 Chr.9:46973981..46979758 reverse 5778 2415 805 89.58 6.82 质膜 Plasma membrane
SiHAK29 Seita.J004400 scaffold_11:162273..168095 reverse 5823 2682 894 98.77 8.68 质膜 Plasma membrane

图1

SiHAKs在谷子染色体上的分布 红色表示基因位于染色体正义链, 蓝色表示基因位于染色体反义链。"

图2

SiHAK蛋白的跨膜结构 红色的峰表示预测的跨膜螺旋。"

图3

谷子、水稻和拟南芥HAK蛋白的系统进化树"

图4

SiHAKs的基因结构和保守基序"

图5

29个SiHAKs启动子区结合的转录因子 A: 潜在结合到29个SiHAKs启动子区的转录因子家族。YABBY: YABBY结构域。WOX: WUSCHEL类同源框。TALE: 三氨基酸环延伸。GRAS: GAI、RGA和SCR。CAMTA: 钙调素结合转录激活子。C3H: 香豆酸-3-羟化酶。ARR-B: B型反应调节因子。EIL: 乙烯不敏感类。E2F/DP: E2因子/二聚体伴侣。CPP: 富含半胱氨酸的多梳样蛋白。BBR-BPC: 大麦B重组体/碱性五半胱氨酸。B3: B3结构域。LBD: 侧生组织边界结构域。HSF: 热激因子。ARF: 生长素应答因子。AP2: APETALA2。TCP: TEOSINTE BRANCHED1/ CYCLOIDEA/proliferation细胞因子。SBP: Squamosa启动子结合蛋白。MYB_related: myeloblastosis类。MIKC_MADS: MIKC型MADS (MCMI、AGAMOUS、DEFICIENS、SRF4)。bHLH: 碱性螺旋-环-螺旋。Trihelix: 三串联螺旋。GATA: GATA结合蛋白。HD-ZIP: 同源异型域-亮氨酸拉链蛋白。G2-like: Golden 2类。Dof: 单指DNA结合。bZIP: 碱性亮氨酸拉链。C2H2: Cys2/His2锌指蛋白。WRKY: WRKYGQK结构域锌指型转录因子。MYB: myeloblastosis。NAC: NAM、ATAF1/2和CUC2。ERF: 乙烯响应因子。B: 不同SiHAKs启动子上转录因子的数量。横坐标表示转录因子的数量。"

图6

SiHAKs启动子序列的转座子成分"

图7

29个SiHAKs的表达谱 A: SiHAKs在品种‘张谷’ 4个组织(根、茎、叶和穗状花序)中的表达谱。B: SiHAKs在品种豫谷1号不同组织或处理条件下的20个样品中的表达谱。a = 黑暗5 d生长出的黄花苗, b = 黑暗6 d萌发的芽, c = 2周大植株的第1片叶, d = 2周大植株的第2片叶, e = 2周大植株的第3片叶, f = 2周大植株的第4片叶, g = 2周大植株的第5片叶, h = 2周大植株的第6片叶, i = 处于stage 1的穗, j = 处于stage 2的穗穗, k = 幼根, l = 铵态氮生长条件下根, m = 干旱条件下的根, n = 硝态氮条件下的根, o = 尿素氮源条件下的根, p = 生长1周的幼茎, q = 蓝光条件下生长的幼苗, r = 黑暗条件下生长的幼苗, s = 远红光条件下生长的幼苗, t = 红光条件下生长的幼苗。"

图8

11个SiHAKs在低钾和高盐条件下根系中的表达水平 误差线表示3个独立试验的标准差。*表示显著性差异(0.01 < P < 0.05); **表示极显著差异(P < 0.01)。"

[1] Zörb C, Senbayram M, Peiter E. Potassium in agriculture: status and perspectives. J Plant Physiol, 2014, 171: 656-669.
doi: 10.1016/j.jplph.2013.08.008
[2] Lu Z, Pan Y, Hu W, Cong R, Ren T, Guo S, Lu J. The photosynthetic and structural differences between leaves and siliques of Brassica napus exposed to potassium deficiency. BMC Plant Biol, 2017, 17: 240.
doi: 10.1186/s12870-017-1201-5
[3] Hasanuzzaman M, Bhuyan M H M B, Nahar K, Hossain M S, Mahmud J A, Hossen M S, Masud A A C, Moumita, Fujita M. Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 2018, 8: 31.
doi: 10.3390/agronomy8030031
[4] Wang Y, Wu W H. Regulation of potassium transport and signaling in plants. Curr Opin Plant Biol, 2017, 39: 123-128.
doi: S1369-5266(17)30031-6 pmid: 28710919
[5] Mostofa M G, Rahman M M, Ghosh T K, Kabir A H, Abdelrahman M, Khan M A R, Mochida K, Tran L P. Potassium in plant physiological adaptation to abiotic stresses. Plant Physiol Biochem, 2022, 186: 279-289.
doi: 10.1016/j.plaphy.2022.07.011
[6] Johnson R, Vishwakarma K, Hossen M S, Kumar V, Shackira A M, Puthur J T, Abdi G, Sarraf M, Hasanuzzaman M. Potassium in plants: growth regulation, signaling, and environmental stress tolerance, Plant Physiol Biochem, 2022, 172: 56-69.
doi: 10.1016/j.plaphy.2022.01.001
[7] Hussain S, Hussain S, Ali B, Ren X, Chen X, Li Q, Saqib M, Ahmad N. Recent progress in understanding salinity tolerance in plants: story of Na+/K+ balance and beyond. Plant Physiol Biochem, 2021, 160: 239-256.
doi: 10.1016/j.plaphy.2021.01.029
[8] Gierth M, Mäser P. Potassium transporters in plants: involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett, 2007, 581: 2348-2356.
doi: 10.1016/j.febslet.2007.03.035
[9] Li W, Xu G, Alli A, Yu L. Plant HAK/KUP/KT K+ transporters: function and regulation. Semin Cell Dev Biol, 2018, 74: 133-141.
doi: 10.1016/j.semcdb.2017.07.009
[10] Ahn S J, Shin R, Schachtman D P. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol, 2004, 134: 1135-1145.
doi: 10.1104/pp.103.034660
[11] Gupta M, Qiu X, Wang L, Xie W, Zhang C, Xiong L, Lian X, Zhang Q. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genomics, 2008, 280: 437-452.
doi: 10.1007/s00438-008-0377-7 pmid: 18810495
[12] Li Y, Peng L, Xie C, Shi X, Dong C, Shen Q, Xu Y. Genome-wide identification, characterization, and expression analyses of the HAK/KUP/KT potassium transporter gene family reveals their involvement in K+ deficient and abiotic stress responses in pear rootstock seedlings. Plant Growth Regul, 2018, 85: 187-198.
doi: 10.1007/s10725-018-0382-8
[13] He C, Cui K, Duan A, Zeng Y, Zhang J. Genome-wide and molecular evolution analysis of the Poplar KT/HAK/KUP potassium transporter gene family. Ecol Evol, 2012, 2: 1996-2004.
doi: 10.1002/ece3.299 pmid: 22957200
[14] Cheng X, Liu X, Mao W, Zhang X, Chen S, Zhan K, Bi H, Xu H. Genome-wide identification and analysis of HAK/KUP/KT potassium transporters gene family in wheat (Triticum aestivum L.). Int J Mol Sci, 2018, 19: 3969.
doi: 10.3390/ijms19123969
[15] Zhou J, Zhou H J, Chen P, Zhang L L, Zhu J T, Li P F, Yang J, Ke Y Z, Zhou Y H, Li J N, Du H. Genome-wide survey and expression analysis of the KT/HAK/KUP family in Brassica napus and its potential roles in the response to K+ deficiency. Int J Mol Sci, 2020, 21: 9487.
doi: 10.3390/ijms21249487
[16] 许赛赛, 张博, 仲阳, 段思凡, 杨慧芹, 马玲. 马铃薯HAK/ KUP/KT基因家族鉴定与表达分析. 分子植物育种, 2021, 19: 3878-3886.
Xu S S, Zhang B, Zhong Y, Duan S F, Yang H Q, Ma L. Identification and expression analysis of HAK/KUP/KT gene family in potato. Mol Plant Breed, 2021, 19: 3878-3886. (in Chinese with English abstract)
[17] Rubio F, Santa-María G E, Rodríguez-Navarro A. Cloning of Arabidopsis and barley cDNA encoding HAK potassium transporters in root and shoot cells. Physiol Plant, 2001, 109: 34-43.
doi: 10.1034/j.1399-3054.2000.100106.x
[18] Nieves-Cordones M, Ródenas R, Chavanieu A, Rivero R M, Martinez V, Gaillard I, Rubio F. Uneven HAK/KUP/KT protein diversity among angiosperms: species distribution and perspectives. Front Plant Sci, 2016, 7: 127.
doi: 10.3389/fpls.2016.00127 pmid: 26904084
[19] Santa-María G E, Rubio F, Dubcovsky J, Rodríguez-Navarro A. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell, 1997, 9: 2281-2289.
doi: 10.1105/tpc.9.12.2281 pmid: 9437867
[20] Gierth M, Mäser P, Schroeder J I. The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol, 2005, 137: 1105-1114.
doi: 10.1104/pp.104.057216
[21] Bañuelos M A, Garciadeblas B, Cubero B, Rodríguez-Navarro A. Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol, 2002, 130: 784-795.
doi: 10.1104/pp.007781 pmid: 12376644
[22] Han M, Wu W, Wu W H, Wang Y. Potassium transporter KUP7 is involved in K+ Acquisition and translocation in Arabidopsis root under K+-limited conditions. Mol Plant, 2016, 9: 437-446.
doi: 10.1016/j.molp.2016.01.012
[23] Okada T, Nakayama H, Shinmyo A, Yoshida K. Expression of OsHAK genes encoding potassium ion transporters in rice. Plant Biotechnol, 2008, 25: 241-245.
doi: 10.5511/plantbiotechnology.25.241
[24] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析. 作物学报, 2018, 44: 236-244.
doi: 10.3724/SP.J.1006.2018.00236
Chao M N, Wen Q Y, Zhang Z Y, Hu G H, Zhang J B, Wang G, Wang Q L. Sequence characteristics and expression analysis of potassium transporter gene GhHAK5 in upland cotton (Gossypium hirsutum L.). Acta Agron Sin, 2018, 44: 236-244. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00236
[25] Senn M E, Rubio F, Bañuelos M A, Rodríguez-Navarro A. Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. J Biol Chem, 2001, 276: 44563-44569.
doi: 10.1074/jbc.M108129200 pmid: 11562376
[26] Garciadeblas B, Benito B, Rodríguez-Navarro A.Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2of the seagrass Cymodocea nodosa. Plant Mol Biol, 2002, 50: 623-633.
pmid: 12374296
[27] Wang X, Li J, Li F, Pan Y, Cai D, Mao D, Chen L, Luan S. Rice potassium transporter OsHAK8 mediates K+ uptake and translocation in response to low K+ stress. Front Plant Sci, 2021, 12: 730002.
doi: 10.3389/fpls.2021.730002
[28] Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Seo S U, Abo M, Yoshimura E, Shinozaki K, Yamaguchi-Shinozaki K. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell, 2013, 25: 609-624.
doi: 10.1105/tpc.112.105700
[29] Chen G, Liu C, Gao Z, Zhang Y, Jiang H, Zhu L, Ren D, Yu L, Xu G, Qian Q. OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice. Front Plant Sci, 2017, 8: 1885.
doi: 10.3389/fpls.2017.01885 pmid: 29163608
[30] Feng H, Tang Q, Cai J, Xu B, Xu G, Yu L. Rice OsHAK 16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance. Planta, 2019, 250: 549-561.
doi: 10.1007/s00425-019-03194-3
[31] Zhang M, Liang X, Wang L, Cao Y, Song W, Shi J, Lai J, Jiang C. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat Plants, 2019, 5: 1297-1308.
doi: 10.1038/s41477-019-0565-y pmid: 31819228
[32] Jing X, Song X, Cai S, Wang P, Lu G, Yu L, Zhang C, Wu Z. Overexpression of OsHAK5 potassium transporter enhances virus resistance in rice (Oryza sativa). Mol Plant Pathol, 2022, 23: 1107-1121.
doi: 10.1111/mpp.v23.8
[33] 刁现民, 程汝宏.十五年区试数据分析展示谷子糜子育种现状中国农业科学, 2017, 50: 4469-4474.
doi: 10.3864/j.issn.0578-1752.2017.23.001
Diao X M, Cheng R H. Current breeding situation of foxtail millet and common millet in China as revealed by exploitation of 15 years regional adaptation test data. Sci Agric Sin, 2017, 50: 4469-4474. (in Chinese with English abstract)
[34] 张亚琦, 李淑文, 杜雄, 文宏达. 施钾对杂交谷子水分利用效率和产量的影响. 河北农业大学学报, 2014, 37(6): 1-6.
Zhang Y Q, Li S W, Du X, Wen H D. Effect of potassium fertilization on water use efficiency and yield of hybrid millet. J Hebei Agric Univ, 2014, 37(6): 1-6. (in Chinese with English abstract)
[35] 宋淑贤, 田伯红, 王建广, 赵光辉, 刘艳丽, 张立新. 不同施钾量对谷子生长及产量的影响. 辽宁农业科学, 2015, (6): 6-8.
Song S X, Tian B H, Wang J G, Zhao G H, Liu Y L, Zhang L X. Effect of potassium fertilization on the growth and yield of millet. Liaoning Agric Sci, 2015, (6): 6-8 (in Chinese with English abstract).
[36] 郝科星, 李娜娜, 侯富恩. 氮·磷·钾肥运筹对谷子品质与产量的影响. 安徽农业科学, 2016, 44(13): 51-55.
Hao K X, Li N N, Hou H E. Effect of N, P, K Fertilizer management on the quality and yield of millet. J Anhui Agric Sci, 2016, 44(13): 51-55. (in Chinese with English abstract)
[37] Nadeem F, Ahmad Z, Hassan M U, Wang R, Diao X, Li X. Adaptation of foxtail millet (Setaria italica L.) to abiotic stresses: a special perspective of responses to nitrogen and phosphate limitations. Front Plant Sci, 2020, 11: 187.
doi: 10.3389/fpls.2020.00187
[38] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价. 作物学报, 2020, 46: 1591-1604.
doi: 10.3724/SP.J.1006.2020.04064
Chen E Y, Wang R F, Qin L, Yang Y B, Li F F, Zhang H W, Wang H L, Liu B, Kong Q H, Guan Y A. Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination. Acta Agron Sin, 2020, 46: 1591-1604. (in Chinese with English abstract)
[39] Sato Y, Nanatani K, Hamamoto S, Shimizu M, Takahashi M, Tabuchi-Kobayashi M, Mizutani A, Schroeder J I, Souma S, Uozumi N. Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K+ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter. J Biochem, 2014, 155: 315-323.
doi: 10.1093/jb/mvu007
[40] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
pmid: 15171794
[41] 宋毓峰, 张良, 董连红, 靳义荣, 史素娟, 白岩, 刘朝科, 冯广林, 冯祥国, 王倩, 刘好宝. 植物KUP/HAK/KT家族钾转运体研究进展. 中国农业科技导报, 2013, 15(6): 92-98.
Song Y F, Zhang L, Dong L H, Jin Y R, Shi S J, Bai Y, Liu C K, Feng G L, Feng X G, Wang Q, Liu H B. Research progress on KUP/HAK/KT potassium transporter family in plant. J Agric Sci Technol, 2013, 15(6): 92-98. (in Chinese with English abstract)
[42] 柴薇薇, 王文颖, 崔彦农, 王锁民. 植物钾转运蛋白KUP/HAK/KT家族研究进展. 植物生理学报, 2019, 55: 1747-1761.
Chai W W, Wang W Y, Cui Y N, Wang S M. Research progress of function on KUP/HAK/KT family in plants. Plant Physiol J, 2019, 55: 1747-1761. (in Chinese with English abstract)
[43] Feng X, Liu W, Qiu C W, Zeng F, Wang Y, Zhang G, Chen Z H, Wu F. HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H+ homoeostasis. Plant Biotechnol J, 2020, 18: 1683-1696.
doi: 10.1111/pbi.13332 pmid: 31917885
[44] Kim E J, Kwak J M, Schroeder U J I. AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell, 1998, 10: 51-62.
pmid: 9477571
[45] Uchiyama M, Fudaki R, Kobayashi T, Adachi Y, Ukai Y, Yoshihara T, Shimada H. Rice OsHAK5 is a major potassium transporter that functions in potassium uptake with high specificity but contributes less to cesium uptake. Biosci Biotechnol Biochem, 2022, 86: 1599-1604.
doi: 10.1093/bbb/zbac152
[46] Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol, 2014, 166: 945-959.
doi: 10.1104/pp.114.246520 pmid: 25157029
[47] Maathuis F. The role of monovalent cation transporters in plant responses to salinity. J Exp Bot, 2006, 57: 1137-1147.
doi: 10.1093/jxb/erj001 pmid: 16263900
[48] Zhang L, Sun X, Li Y, Luo X, Song S, Chen Y, Wang X, Mao D, Chen L, Luan S. Rice Na+-permeable transporter OsHAK12 mediates shoots Na+ exclusion in response to salt stress. Front Plant Sci, 2021, 12: 771746.
doi: 10.3389/fpls.2021.771746
[1] 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384.
[2] 文利超, 熊涛, 邓智超, 刘涛, 郭存, 李伟, 郭永峰. 烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定[J]. 作物学报, 2023, 49(8): 2171-2182.
[3] 万夷曼, 肖圣慧, 白依超, 范佳音, 王琰, 吴长艾. 谷子毛状根诱导方法的建立与优化[J]. 作物学报, 2023, 49(7): 1758-1768.
[4] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[5] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[6] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[7] 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425.
[8] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444.
[9] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[10] 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702.
[11] 张文宣, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 利用CRISPR/Cas9技术突变BnaMPK6基因降低甘蓝型油菜的耐盐性[J]. 作物学报, 2023, 49(2): 321-331.
[12] 王蓉, 陈小红, 王倩, 刘少雄, 陆平, 刁现民, 刘敏轩, 王瑞云. 中国谷子名米品种遗传多样性与亲缘关系研究[J]. 作物学报, 2022, 48(8): 1914-1925.
[13] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[14] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114.
[15] 韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因[J]. 作物学报, 2022, 48(7): 1645-1657.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .