作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2171-2182.doi: 10.3724/SP.J.1006.2023.24193
文利超1,2(), 熊涛3, 邓智超1,2, 刘涛1,2, 郭存4, 李伟1,*(), 郭永峰1,*()
WEN Li-Chao1,2(), XIONG Tao3, DENG Zhi-Chao1,2, LIU Tao1,2, GUO Cun4, LI Wei1,*(), GUO Yong-Feng1,*()
摘要:
NAC作为植物特有的转录因子, 广泛参与植物生长发育、衰老及胁迫响应等生物学过程。为探究烟草NtNAC080在非生物胁迫响应中的功能, 利用qRT-PCR技术分析了不同胁迫处理下NtNAC080的表达模式, 结果表明, NtNAC080的表达受干旱、高盐胁迫以及ABA、MeJA和SA激素的诱导; 以NtNAC080基因的敲除突变体及野生型(K326)烟株为材料, 分析敲除株系在高盐和干旱胁迫下抗逆表型。试验表明, 与野生型相比, 2个敲除株系的耐盐抗旱能力均明显增强; 干旱和盐胁迫下敲除株系的抗氧化酶(SOD、POD、CAT)活性以及可溶性蛋白、脯氨酸含量显著高于野生型, 而丙二醛含量显著低于野生型。相反地, 异源表达NtNAC080的转基因拟南芥与野生型(Col-0)相比对盐和干旱的耐受性明显减弱。qRT-PCR分析发现在干旱和盐处理后胁迫相关基因(NtDREB1A、NtKAT2、NtNHX1等)在NtNAC080基因敲除株系中表达水平显著高于野生型。以上结果表明, NtNAC080在烟草的非生物胁迫响应中起负调控作用, 这可能是通过调控抗氧化酶活性及胁迫相关基因的表达来实现的。
[1] |
张冠初, 张智猛, 慈敦伟, 丁红, 杨吉顺, 史晓龙, 田家明, 戴良香. 干旱和盐胁迫对花生渗透调节和抗氧化酶活性的影响. 华北农学报, 2018, 33(3): 176-181.
doi: 10.7668/hbnxb.2018.03.026 |
Zhang G C, Zhang Z M, Ci D W, Ding H, Yang J S, Shi X L, Tian J M, Dai L X. Effects of drought and salt stress on osmotic regulator and antioxidaseactivities. Acta Agric Boreali-Sin, 2018, 33(3): 176-181. (in Chinese with English abstract) | |
[2] |
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[3] | 王佳丽, 黄贤金, 钟太洋, 陈志刚. 盐碱地可持续利用研究综述. 地理学报, 2011, 66: 673-684. |
Wang J L, Huang X J, Zhong T Y, Chen Z G. Review on sustainable utilization of salt-affected land. Acta Eograph, 2011, 66: 673-684. (in Chinese with English abstract) | |
[4] | 陈鑫, 马超, 杨永娟, 王红玲, 黄盈, 张晓霞, 黄开封, 赵卓, 张素芝. 转碱蓬SsNHX1基因烟草的耐盐抗旱性研究. 中国生态农业学报, 2017, 25: 1518-1526. |
Chen X, Ma C, Yang Y J, Wang H L, Huang Y, Zhang X X, Huang K F, Zhao Z, Zhang S Z. Overexpression of Suaeda salsa SsNHX1 gene enhanced salt and drought tolerance of transgenic tobacco. Chin J Eco-Agric, 2017, 25: 1518-1526. (in Chinese with English abstract) | |
[5] |
Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ, 2012, 35: 259-270.
doi: 10.1111/j.1365-3040.2011.02336.x |
[6] | 郭亚宁.NAC转录因子在陆地棉叶片衰老中的作用. 西北农林科技大学博士学位论文, 陕西杨凌, 2017. |
Guo Y N.The Function of NAC TFs in Leaf Senescence of Upland Cotton. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2017 (in Chinese with English abstract). | |
[7] |
Balazadeh S, Riano-Pachon D M, Mueller-Roeber B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol, 2008, 10: 63-75.
doi: 10.1111/plb.2008.10.issue-s1 |
[8] |
Guo Y F, Gan S S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J, 2006, 46: 601-612.
doi: 10.1111/j.1365-313X.2006.02723.x pmid: 16640597 |
[9] | 朱冬梅, 贾媛, 崔继哲, 付畅. 植物对盐胁迫应答的转录因子及其生物学特性. 生物技术通报, 2010, (4): 16-21. |
Zhu D M, Jia Y, Cui J Z, Fu C. Plant transcription factors in response to salt stress and its biological characteristic. Biotechnol Bull, 2010, (4): 16-21. (in Chinese with English abstract) | |
[10] |
Kim S G, Lee S, Seo P J, Kim S K, Kim J K, Park C M. Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice. Genomics, 2010, 95: 56-65.
doi: 10.1016/j.ygeno.2009.09.003 |
[11] |
Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L.Overexpressing a NAM, ATAF, and CUC NAC transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987-12992.
doi: 10.1073/pnas.0604882103 |
[12] |
Mao C, Ding W, Wu Y, Yu J, He X, Shou H, Wu P. Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol, 2007, 176: 288-298.
doi: 10.1111/j.1469-8137.2007.02177.x pmid: 17888111 |
[13] |
Jeong J S, Kim Y S, Redillas M C, Jang G, Jung H, Bang S W, Choi Y D, Ha S H, Reuzeau C, Kim J K. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J, 2013, 11: 101-114.
doi: 10.1111/pbi.12011 pmid: 23094910 |
[14] |
Zhang X, Long Y, Huang J, Xia J. OsNAC45 is involved in ABA response and salt tolerance in rice. Rice, 2020, 13: 1-13.
doi: 10.1186/s12284-019-0361-3 |
[15] | 任瑞, 张喜凤, 胡文韬, 钟丽梅, 余潮, 刘金龙. 拟南芥ANAC055基因突变体对高盐和渗透胁迫的响应. 基因组学与应用生物学, 2019, 38: 8. |
Ren R, Zhang X F, Hu W T, Zhong L M, Yu C, Liu J L. The response of Arabidopsis ANAC055 gene mutant to high salt and osmotic stress. Genomics Appl Biol, 2019, 38: 8. (in Chinese with English abstract) | |
[16] |
Tran L P, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 2004, 16: 2481-2498.
doi: 10.1105/tpc.104.022699 |
[17] |
Lee S, Lee H, Huh S U, Paek K, Ha J, Park C. The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions. Plant Sci, 2014, 227: 76-83.
doi: 10.1016/j.plantsci.2014.07.003 |
[18] |
Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R.TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot, 2012, 63: 2933-2946.
doi: 10.1093/jxb/err462 pmid: 22330896 |
[19] |
Xue G, Way H M, Richardson T, Drenth J, Joyce P A, Mcintyre C L. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant, 2011, 4: 697-712.
doi: 10.1093/mp/ssr013 |
[20] |
Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep, 2014, 33: 1851-1863.
doi: 10.1007/s00299-014-1662-z |
[21] | Ma N N, Zuo Y Q, Liang X Q, Yin B, Wang G D, Meng Q W. The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. Physiol Plant, 2013, 149: 474-486. |
[22] |
Li X X, Wang Q, Guo C, Sun J, Li Z, Wang Y, Yang A, Pu W, Guo Y, Gao J. NtNAC053, A novel NAC transcription factor, confers drought and salt tolerances in tobacco. Front Plant Sci, 2022, 13: 817106-817106.
doi: 10.3389/fpls.2022.817106 |
[23] | Xu X Y, Yao X Z, Lu L T, Zhao D G. Overexpression of the transcription factor NtNAC2 confers drought tolerance in tobacco. Plant Mol Biol, 2018, 36: 543-552. |
[24] |
Li W, Li X X, Chao J T, Zhang Z L, Wang W F, Guo Y F. NAC family transcription factors in tobacco and their potential role in regulating leaf senescence. Front Plant Sci, 2018, 9: 1900.
doi: 10.3389/fpls.2018.01900 pmid: 30622549 |
[25] | 赵晓妮.刺五加和龙牙楤木体胚发生及其有效物质累积研究. 东北林业大学硕士学位论文, 黑龙江哈尔滨, 2013. |
Zhao X N. Studies on Somatic Embryo Genesis and Effective Substances Accumulation of Acanthopanax senticosus and Araliaelata. MS Thesis of Northeast Forestry University, Harbin, Heilongjiang, China, 2013. (in Chinese with English abstract) | |
[26] |
王群, 刘朝巍, 徐文娟. 紫外分光光度法测定玉米过氧化氢酶活性新进展. 中国农学通报, 2016, 32(15): 159-165.
doi: 10.11924/j.issn.1000-6850.casb16020031 |
Wang Q, Liu C W, Xu W J. Ultraviolet spectrophotometry measurement of catalase activity in maize. Chin Agric Sci Bull, 2016, 32(15): 159-165. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb16020031 |
|
[27] | 赵永斌, 盛雪, 肖丹, 林彤, 刘金阳. 山葡萄脯氨酸含量与温度的相关性. 榆林学院学报, 2012, 22(6): 10-13. |
Zhao Y B, Sheng X, Xiao D, Lin T, Liu J Y. On correlation between proline content of amur grape and environment temperature. J Yulin Univ, 2012, 22(6): 10-13. (in Chinese with English abstract) | |
[28] | 朱红芳, 李晓锋, 朱玉英, 郭欣欣, 刘金平, 高倩倩, 翟文. 根肿病对不结球白菜的生长及生理生化物质和活性氧代谢的影响. 西北植物学报, 2015, 35: 2469-2476. |
Zhu H F, Li X F, Zhu Y Y, Guo X X, Liu J P, Gao Q Q, Zhai W. Effects of clubroot disease on growth physiochemical substance and reactive oxygen metabolism in pak-choi. Acta Bot Boreali-Occident Sin, 2015, 35: 2469-2476. (in Chinese with English abstract) | |
[29] |
Yasuhiro K, Ken S, Cyril Z. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol, 2015, 56: 1472-1480.
doi: 10.1093/pcp/pcv063 pmid: 25941234 |
[30] | 杨盛昌, 谢潮添, 张平, 陈德海, 丁印龙, 廖启炓. 低温胁迫下弓葵幼苗膜脂过氧化及保护酶活性的变化. 园艺学报, 2003, 30(1): 104-106. |
Yang S C, Xie C T, Zhang P, Chen D H, Ding Y L, Liao Q L. Changes in membrane lipid peroxidation and activities of cell defense enzyme in leave es of Butia capitata Becc. seedling under low temperature stress. Acta Hortic Sin, 2003, 30(1): 104-106. (in Chinese with English abstract) | |
[31] | 任伟, 高慧娟, 王润娟, 吕昕培, 何傲蕾, 邵坤仲, 汪永平, 张金林. 高等植物适应干旱生境研究进展. 草学, 2020, (3): 4-15. |
Ren W, Gao H J, Wang R J, Lyu X P, He A L, Shao K Z, Wang Y P, Zhang J L. Research advances in adaptation of higher plants to arid habitats. J Grassland Forage Sci, 2020, (3): 4-15. (in Chinese with English abstract) | |
[32] |
李志, 薛姣, 耿贵, 王宇光, 於丽华. 逆境胁迫下甜菜生理特性的研究进展. 中国农学通报, 2021, 37(24): 39-47.
doi: 10.11924/j.issn.1000-6850.casb2021-0113 |
Li Z, Xue J, Geng G, Wang Y G, Yu L H. The physiological characteristics of beets under stress. Chin Agric Sci Bull, 2021, 37(24): 39-47. (in Chinese with English abstract) | |
[33] | 杨少辉, 季静, 王罡. 盐胁迫对植物的影响及植物的抗盐机理. 世界科技研究与发展, 2006, 28(4): 70-76. |
Yang S H, Ji J, Wang G. Effects of salt stress on plants and the mechanism of salt tolerance. World Sci Technol Res Dev, 2006, 28(4): 70-76. (in Chinese with English abstract) | |
[34] |
Guo Y F, Gan S S. Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ, 2012, 35: 644-655.
doi: 10.1111/pce.2012.35.issue-3 |
[35] |
Zhang K, Gan S S. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol, 2012, 158: 961-969.
doi: 10.1104/pp.111.190876 |
[36] |
Huang Q J, Wang Y, Li B, Chang J L, Chen M J, Li K X, Yang G X, He G Y.TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol, 2015, 15: 268.
doi: 10.1186/s12870-015-0644-9 pmid: 26536863 |
[37] |
Kou X H, Watkins C B, Gan S S. Arabidopsis AtNAP regulates fruit senescence. J Exp Bot, 2012, 63: 6139-6147.
doi: 10.1093/jxb/ers266 |
[38] |
Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014, 111: 10013.
doi: 10.1073/pnas.1321568111 |
[39] | 杨洁.毛果杨PtNAC101基因在高盐胁迫中的功能分析. 鲁东大学硕士学位论文, 山东烟台, 2021. |
Yang J. The Functional Analysis of PtNAC101 Gene in Populus trichocarpa under High Salt Stress. MS Thesis of Ludong University, Yantai, Shandong, China, 2021. (in Chinese with English abstract) | |
[40] | 林少华, 张晓军, 张慧杰, 贾红亮, 潘妍, 罗红霞. 果蔬氧化还原防御系统研究进展. 中国果菜, 2021, 41(4): 33-39. |
Lin S H, Zhang X J, Zhang H J, Jia H L, Pan Y, Luo H X. Research progress on redox defense system of fruits and vegetables. China Fruit Veget, 2021, 41(4): 33-39. (in Chinese with English abstract) | |
[41] | 王晓娟.干旱胁迫对红花檵木生长和生理特性的影响. 四川农业大学硕士学位论文, 四川成都, 2015. |
Wang X J. Growth and Physiological Characteristics of Loropetalum chinense under Drought Stress. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015. (in Chinese with English abstract) | |
[42] |
Guo R, Zhao J, Wang X, Guo C, Li Z, Wang Y, Wang X. Constitutive expression of a grape aspartic protease gene in transgenic Arabidopsis confers osmotic stress tolerance. Plant Cell Tissue Organ Cult, 2015, 121: 275-287.
doi: 10.1007/s11240-014-0699-6 |
[43] | Boudmyxay K, 沈镭, 钟帅, 孙艳芝, 杨慧芹. 脯氨酸引发提高烟草种子和幼苗抗逆性及其与抗氧化系统的关系. 山西农业科学, 2019, 47(1): 39-48. |
Boudmyxay K, Shen L, Zhong S, Sun Y Z, Yang H Q. Improving the antioxidant system and its stress resistance to tobacco seeds and seedling by proline priming. J Shanxi Agric Sci, 2019, 47(1): 39-48. (in Chinese with English abstract) | |
[44] | 黄建.农杆菌介导S6PDH基因转化枣树(Zyziphus jujube Mill.)的研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2006. |
Huang J. Study on Agrobacterium-mediated Transformation of Zyziphus jujube with S6PDH Gene. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2006. (in Chinese with English abstract) | |
[45] | 韩佩尧, 赵烨, 田彦挺, 侯荣轩, 孙宇涵, 李云. 植物耐盐机制及耐盐基因在杨树育种中的应用. 分子植物育种, 2021, 19: 7977-7983. |
Han P Y, Zhao Y, Tian Y T, Hou R X, Sun Y H, Li Y. Mechanism of plant salt tolerance and application of salt tolerance gene in poplar breeding. Mol Plant Breed, 2021, 19: 7977-7983. (in Chinese with English abstract) | |
[46] | 钟磊, 钱家萍, 蔡启忠, 王敏, 张慧晔, 杨全, 罗碧. 肉桂种子生物学特性及生活力研究. 种子, 2021, 40(7): 99-103. |
Zhong L, Qian J P, Cai Q Z, Wang M, Zhang H Y, Yang Q, Luo B. Study on biological characteristics and viability of Cinnamomum cassia seeds. Seed, 2021, 40(7): 99-103. (in Chinese with English abstract) | |
[47] |
Jiang D, Zhou L, Chen W, Ye N, Xia J, Zhuang C. Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in rice via ABA-mediated pathways. Rice, 2019, 12: 76.
doi: 10.1186/s12284-019-0334-6 |
[48] | 马丽.梭梭再生体系研究及HaDREB2C基因的克隆与分析. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2017. |
Ma L. Cloning and Analyzing of HaDREB2C and the Establishing on Regeneration System of Haloxylon. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2017. (in Chinese with English abstract) | |
[49] |
Caroline S, Aleksandra W, Florina V, Christiane V, Jeffrey L. Guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot, 2009, 60: 1439-1463.
doi: 10.1093/jxb/ern340 |
[50] | Zhang W D, Wang P, Bao Z L, Ma Q, Duan L J, Bao A K, Zhang J L, Wang S M.SOS1, HKT1, and NHX1 synergistically modulate Na+ homeostasis in the halophytic grass Puccinellia tenuiflora. Front Plant Sci, 2017, 8: 576. |
[51] |
Pan Y, Seymour G B, Lu C, Hu Z, Chen X, Chen G. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep, 2012, 31: 349-360.
doi: 10.1007/s00299-011-1170-3 pmid: 22038370 |
[52] | 关扬扬, 郑淑心, 刘向阳, 王召军, 张洪映, 崔红, 闫筱筱. NtCycB2基因表达对烟草抗旱性的影响. 烟草科技, 2021, 54(3): 1-8. |
Guan Y Y, Zheng S X, Liu X Y, Wang Z J, Zhang H Y, Cui H, Yan X X. Effect of NtCycB2 gene expression on drought resistance of tobacco. Tobacco Sci Technol, 2021, 54(3): 1-8. (in Chinese with English abstract) |
[1] | 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121. |
[2] | 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784. |
[3] | 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725. |
[4] | 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495. |
[5] | 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281. |
[6] | 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425. |
[7] | 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954. |
[8] | 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977. |
[9] | 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965. |
[10] | 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702. |
[11] | 邓照, 蒋环琪, 程丽沙, 刘睿, 黄敏, 李曼菲, 杜何为. 利用WGCNA鉴定玉米非生物胁迫相关基因共表达网络[J]. 作物学报, 2023, 49(3): 672-686. |
[12] | 黄震, 吴启境, 陈灿妮, 吴霞, 曹珊, 张辉, 岳娇, 胡亚丽, 罗登杰, 李赟, 廖长君, 李茹, 陈鹏. 钙调素基因(HcCaM7)及其蛋白乙酰化修饰参与红麻响应非生物胁迫的作用[J]. 作物学报, 2023, 49(2): 402-413. |
[13] | 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85. |
[14] | 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61. |
[15] | 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937. |
|