欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2171-2182.doi: 10.3724/SP.J.1006.2023.24193

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

烟草转录因子NtNAC080在非生物胁迫下的表达分析及功能鉴定

文利超1,2(), 熊涛3, 邓智超1,2, 刘涛1,2, 郭存4, 李伟1,*(), 郭永峰1,*()   

  1. 1 中国农业科学院烟草研究所 / 烟草行业基因资源利用重点实验室, 山东青岛 266101
    2 中国农业科学院研究生院, 北京 100081
    3 湖北省烟草公司恩施州公司利川市分公司, 湖北恩施 445000
    4 云南省烟草公司昆明市公司石林分公司, 云南昆明 650000
  • 收稿日期:2022-08-23 接受日期:2023-02-10 出版日期:2023-08-12 网络出版日期:2023-02-28
  • 通讯作者: 李伟,郭永峰
  • 作者简介:E-mail: 82101201624@caas.cn
  • 基金资助:
    国家自然科学基金项目(31400267);国家自然科学基金项目(31970204);中国农业科学院科技创新工程项目(ASTIP-TRIC02)

Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress

WEN Li-Chao1,2(), XIONG Tao3, DENG Zhi-Chao1,2, LIU Tao1,2, GUO Cun4, LI Wei1,*(), GUO Yong-Feng1,*()   

  1. 1 Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong, China
    2 Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3 Enshi Tobacco Company, Enshi 445000, Hubei, China
    4 Kunming Tobacco Company, Kunming 650000, Yunnan, China
  • Received:2022-08-23 Accepted:2023-02-10 Published:2023-08-12 Published online:2023-02-28
  • Contact: LI Wei,GUO Yong-Feng
  • Supported by:
    National Natural Science Foundation of China(31400267);National Natural Science Foundation of China(31970204);Agricultural Science and Technology Innovation Program(ASTIP-TRIC02)

摘要:

NAC作为植物特有的转录因子, 广泛参与植物生长发育、衰老及胁迫响应等生物学过程。为探究烟草NtNAC080在非生物胁迫响应中的功能, 利用qRT-PCR技术分析了不同胁迫处理下NtNAC080的表达模式, 结果表明, NtNAC080的表达受干旱、高盐胁迫以及ABA、MeJA和SA激素的诱导; 以NtNAC080基因的敲除突变体及野生型(K326)烟株为材料, 分析敲除株系在高盐和干旱胁迫下抗逆表型。试验表明, 与野生型相比, 2个敲除株系的耐盐抗旱能力均明显增强; 干旱和盐胁迫下敲除株系的抗氧化酶(SOD、POD、CAT)活性以及可溶性蛋白、脯氨酸含量显著高于野生型, 而丙二醛含量显著低于野生型。相反地, 异源表达NtNAC080的转基因拟南芥与野生型(Col-0)相比对盐和干旱的耐受性明显减弱。qRT-PCR分析发现在干旱和盐处理后胁迫相关基因(NtDREB1ANtKAT2NtNHX1等)在NtNAC080基因敲除株系中表达水平显著高于野生型。以上结果表明, NtNAC080在烟草的非生物胁迫响应中起负调控作用, 这可能是通过调控抗氧化酶活性及胁迫相关基因的表达来实现的。

关键词: 烟草, NtNAC080, ROS, 表达分析, 非生物胁迫

Abstract:

NAC proteins, which constitute one of the largest plant-specific transcription factor families, are widely involved in the regulation of plant development, senescence and stress responses. To explore the function of NtNAC080 in abiotic stress response, qRT-PCR was used to analyze the relative expression pattern of NtNAC080 genes under different abiotic stress treatments. Results showed that the relative expression level of NtNAC080 genes was induced by drought, salt, ABA, MeJA, and SA treatments. The NtNAC080 mutant and WT (K326) plants were used to analyze the phenotypes under salt and drought stresses. Results showed that NtNAC080 knockout tobacco lines had increased tolerance to salt and drought stresses. Under salt and drought stresses treatments, the antioxidant enzymes (SOD, POD, and CAT) activities, soluble protein, and proline contents of these two knockout lines plants were significantly higher than those of WT, while MDA content was significantly lower than that of WT. In contrast, NtNAC080-overexpressing Arabidopsis plants had more sensitive to salt and drought stresses. Furthermore, NtNAC080 mutation in tobacco resulted in the up-regulated expression of abiotic stress-related genes (NtDREB1A, NtKAT2, and NtNHX1) after salt and drought treatments. These results indicated that NtNAC080 could be play a negative role in response to salt and drought stresses by regulating the activity of antioxidant enzymes and the relative expression level of stress-related genes.

Key words: tobacco, NtNAC080, ROS, the relative expression analysis, abiotic stresses

表1

用于qRT-PCR分析的引物序列"

基因名称
Gene name
基因编号
Accession number
正向引物序列
Forward primer (5°-3°)
反向引物序列
Reverse primer (5°-3°)
NtActin XM_016618658 ACCTCTATGGCAACATTGTGCTCAG CTGGGAGCCAAAGCGGTGATT
NtNAC080 XM_016596133 TTCACGACTATTTGATGACAATGCTA TATTGGTCATTGTGTTTTGGTTGTT
NtDREB1A XM_016627803 TAACCCCAAGAAGCGAGCAG TAGCCGCCATTTCTGCAGAA
NtKAT2 XM_016602939 CCGCGCAAATCCAGAAGATG TGGCCCTCCATTTGTTTGGT
NtERF5 XM_016584910 TGGATGAAGAGCCAAGCCAT GAATCTCCGCCGCGAATTTC
NtNHX1 XM_016578291 CCCCCACAGAGGCAGTTAAG GCGCCAGTATCTATGCACCT
NtSOS1 XM_016611193 TCGCTTTGCTTGTTCTTGGC ACCGCCAACAGAAGATCAGG
AtActin NM_001338359 TGTGCCAATCTACGAGGGTTT TTTCCCGCTCTGCTGTTGT
AtDREB1A NM_118680 TTTCAAACCGCTGAGATGGC AAGCCGAGTCAGCGAAATTG
AtKAT2 NM_001341273 TTCGCCTTTGATGTCTGCTC TCTCAAGCCTTGCAAACAGC
AtERF5 NM_124094 CGCAGCTGAAAACACCAAAC AATTTCCCCCACGGTCTTTG
AtNHX1 NM_122597 GGTGCCATATTTGCTGCAAC ATCGCGTTGAAGACCACAAC
AtSOS1 NM_126259 ACCAATGAAACTGCGTGGTG ATGCAGCGAGTGATTGTTGC

图1

NtNAC080表达模式分析 LB: 侧芽; R: 根; S: 茎; UL: 上部叶; ML: 中部叶; LL: 下部叶; AP: 顶芽; F: 花。*表示在0.05概率水平差异显著。"

图2

烟草ntnac080敲除植株在盐胁迫下表型分析 A: ntnac080敲除系和K326烟草植株在盐胁迫下的表型。B: 幼苗在含0、50、100、150和200 mmol L-1 NaCl的MS培养基上生长2周的根长统计。C~E: 盐处理前后ntnac080敲除系和K326烟草叶片中抗氧化酶活性(SOD、CAT和POD)分析。F~H: 盐处理前后ntnac080敲除系和K326烟草叶片中MDA含量、可溶性蛋白含量以及脯氨酸含量。*表示在0.05概率水平差异显著。"

图3

烟草ntnac080敲除株系和K326在干旱胁迫下表型分析 A: ntnac080敲除系烟草植株和K326在干旱胁迫下的表型。B~D: 干旱处理前后ntnac080敲除系和K326烟草叶片中抗氧化酶活性(SOD、CAT和POD)分析。E: 干旱处理前后ntnac080敲除系和K326烟草叶片中MDA含量。*表示在0.05概率水平差异显著。"

图4

NtNAC080过表达降低了转基因拟南芥植株的耐盐性和抗旱性 A: NtNAC080基因在转基因拟南芥中的表达量分析。B~C: NtNAC080-OE在盐胁迫下的萌发率。D: NBT染色。E: 测定不同基因型植物离体叶片中H2O2的积累。F~H: 盐胁迫处理后NtNAC080-OE过表达系和WT的POD、SOD、CAT活性。I: NtNAC080过表达系(OE3和OE6)和WT在干旱胁迫下的表型。J: 干旱胁迫后NtNAC080过表达系(OE3和OE6)和WT的存活率。K: NtNAC080过表达系(OE3和OE6)和WT离体叶片失水率。*表示在0.05概率水平差异显著。"

图5

干旱和盐胁迫应答基因在烟草敲除株系中的表达模式 *表示在0.05概率水平差异显著。* means significant difference at the 0.05 probability level."

图6

干旱和盐胁迫应答基因在拟南芥过表达株系中的表达模式 *表示在0.05概率水平差异显著。"

[1] 张冠初, 张智猛, 慈敦伟, 丁红, 杨吉顺, 史晓龙, 田家明, 戴良香. 干旱和盐胁迫对花生渗透调节和抗氧化酶活性的影响. 华北农学报, 2018, 33(3): 176-181.
doi: 10.7668/hbnxb.2018.03.026
Zhang G C, Zhang Z M, Ci D W, Ding H, Yang J S, Shi X L, Tian J M, Dai L X. Effects of drought and salt stress on osmotic regulator and antioxidaseactivities. Acta Agric Boreali-Sin, 2018, 33(3): 176-181. (in Chinese with English abstract)
[2] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[3] 王佳丽, 黄贤金, 钟太洋, 陈志刚. 盐碱地可持续利用研究综述. 地理学报, 2011, 66: 673-684.
Wang J L, Huang X J, Zhong T Y, Chen Z G. Review on sustainable utilization of salt-affected land. Acta Eograph, 2011, 66: 673-684. (in Chinese with English abstract)
[4] 陈鑫, 马超, 杨永娟, 王红玲, 黄盈, 张晓霞, 黄开封, 赵卓, 张素芝. 转碱蓬SsNHX1基因烟草的耐盐抗旱性研究. 中国生态农业学报, 2017, 25: 1518-1526.
Chen X, Ma C, Yang Y J, Wang H L, Huang Y, Zhang X X, Huang K F, Zhao Z, Zhang S Z. Overexpression of Suaeda salsa SsNHX1 gene enhanced salt and drought tolerance of transgenic tobacco. Chin J Eco-Agric, 2017, 25: 1518-1526. (in Chinese with English abstract)
[5] Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ, 2012, 35: 259-270.
doi: 10.1111/j.1365-3040.2011.02336.x
[6] 郭亚宁.NAC转录因子在陆地棉叶片衰老中的作用. 西北农林科技大学博士学位论文, 陕西杨凌, 2017.
Guo Y N.The Function of NAC TFs in Leaf Senescence of Upland Cotton. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2017 (in Chinese with English abstract).
[7] Balazadeh S, Riano-Pachon D M, Mueller-Roeber B. Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol, 2008, 10: 63-75.
doi: 10.1111/plb.2008.10.issue-s1
[8] Guo Y F, Gan S S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J, 2006, 46: 601-612.
doi: 10.1111/j.1365-313X.2006.02723.x pmid: 16640597
[9] 朱冬梅, 贾媛, 崔继哲, 付畅. 植物对盐胁迫应答的转录因子及其生物学特性. 生物技术通报, 2010, (4): 16-21.
Zhu D M, Jia Y, Cui J Z, Fu C. Plant transcription factors in response to salt stress and its biological characteristic. Biotechnol Bull, 2010, (4): 16-21. (in Chinese with English abstract)
[10] Kim S G, Lee S, Seo P J, Kim S K, Kim J K, Park C M. Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice. Genomics, 2010, 95: 56-65.
doi: 10.1016/j.ygeno.2009.09.003
[11] Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L.Overexpressing a NAM, ATAF, and CUC NAC transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987-12992.
doi: 10.1073/pnas.0604882103
[12] Mao C, Ding W, Wu Y, Yu J, He X, Shou H, Wu P. Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol, 2007, 176: 288-298.
doi: 10.1111/j.1469-8137.2007.02177.x pmid: 17888111
[13] Jeong J S, Kim Y S, Redillas M C, Jang G, Jung H, Bang S W, Choi Y D, Ha S H, Reuzeau C, Kim J K. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotechnol J, 2013, 11: 101-114.
doi: 10.1111/pbi.12011 pmid: 23094910
[14] Zhang X, Long Y, Huang J, Xia J. OsNAC45 is involved in ABA response and salt tolerance in rice. Rice, 2020, 13: 1-13.
doi: 10.1186/s12284-019-0361-3
[15] 任瑞, 张喜凤, 胡文韬, 钟丽梅, 余潮, 刘金龙. 拟南芥ANAC055基因突变体对高盐和渗透胁迫的响应. 基因组学与应用生物学, 2019, 38: 8.
Ren R, Zhang X F, Hu W T, Zhong L M, Yu C, Liu J L. The response of Arabidopsis ANAC055 gene mutant to high salt and osmotic stress. Genomics Appl Biol, 2019, 38: 8. (in Chinese with English abstract)
[16] Tran L P, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 2004, 16: 2481-2498.
doi: 10.1105/tpc.104.022699
[17] Lee S, Lee H, Huh S U, Paek K, Ha J, Park C. The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions. Plant Sci, 2014, 227: 76-83.
doi: 10.1016/j.plantsci.2014.07.003
[18] Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R.TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot, 2012, 63: 2933-2946.
doi: 10.1093/jxb/err462 pmid: 22330896
[19] Xue G, Way H M, Richardson T, Drenth J, Joyce P A, Mcintyre C L. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant, 2011, 4: 697-712.
doi: 10.1093/mp/ssr013
[20] Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep, 2014, 33: 1851-1863.
doi: 10.1007/s00299-014-1662-z
[21] Ma N N, Zuo Y Q, Liang X Q, Yin B, Wang G D, Meng Q W. The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. Physiol Plant, 2013, 149: 474-486.
[22] Li X X, Wang Q, Guo C, Sun J, Li Z, Wang Y, Yang A, Pu W, Guo Y, Gao J. NtNAC053, A novel NAC transcription factor, confers drought and salt tolerances in tobacco. Front Plant Sci, 2022, 13: 817106-817106.
doi: 10.3389/fpls.2022.817106
[23] Xu X Y, Yao X Z, Lu L T, Zhao D G. Overexpression of the transcription factor NtNAC2 confers drought tolerance in tobacco. Plant Mol Biol, 2018, 36: 543-552.
[24] Li W, Li X X, Chao J T, Zhang Z L, Wang W F, Guo Y F. NAC family transcription factors in tobacco and their potential role in regulating leaf senescence. Front Plant Sci, 2018, 9: 1900.
doi: 10.3389/fpls.2018.01900 pmid: 30622549
[25] 赵晓妮.刺五加和龙牙楤木体胚发生及其有效物质累积研究. 东北林业大学硕士学位论文, 黑龙江哈尔滨, 2013.
Zhao X N. Studies on Somatic Embryo Genesis and Effective Substances Accumulation of Acanthopanax senticosus and Araliaelata. MS Thesis of Northeast Forestry University, Harbin, Heilongjiang, China, 2013. (in Chinese with English abstract)
[26] 王群, 刘朝巍, 徐文娟. 紫外分光光度法测定玉米过氧化氢酶活性新进展. 中国农学通报, 2016, 32(15): 159-165.
doi: 10.11924/j.issn.1000-6850.casb16020031
Wang Q, Liu C W, Xu W J. Ultraviolet spectrophotometry measurement of catalase activity in maize. Chin Agric Sci Bull, 2016, 32(15): 159-165. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb16020031
[27] 赵永斌, 盛雪, 肖丹, 林彤, 刘金阳. 山葡萄脯氨酸含量与温度的相关性. 榆林学院学报, 2012, 22(6): 10-13.
Zhao Y B, Sheng X, Xiao D, Lin T, Liu J Y. On correlation between proline content of amur grape and environment temperature. J Yulin Univ, 2012, 22(6): 10-13. (in Chinese with English abstract)
[28] 朱红芳, 李晓锋, 朱玉英, 郭欣欣, 刘金平, 高倩倩, 翟文. 根肿病对不结球白菜的生长及生理生化物质和活性氧代谢的影响. 西北植物学报, 2015, 35: 2469-2476.
Zhu H F, Li X F, Zhu Y Y, Guo X X, Liu J P, Gao Q Q, Zhai W. Effects of clubroot disease on growth physiochemical substance and reactive oxygen metabolism in pak-choi. Acta Bot Boreali-Occident Sin, 2015, 35: 2469-2476. (in Chinese with English abstract)
[29] Yasuhiro K, Ken S, Cyril Z. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol, 2015, 56: 1472-1480.
doi: 10.1093/pcp/pcv063 pmid: 25941234
[30] 杨盛昌, 谢潮添, 张平, 陈德海, 丁印龙, 廖启炓. 低温胁迫下弓葵幼苗膜脂过氧化及保护酶活性的变化. 园艺学报, 2003, 30(1): 104-106.
Yang S C, Xie C T, Zhang P, Chen D H, Ding Y L, Liao Q L. Changes in membrane lipid peroxidation and activities of cell defense enzyme in leave es of Butia capitata Becc. seedling under low temperature stress. Acta Hortic Sin, 2003, 30(1): 104-106. (in Chinese with English abstract)
[31] 任伟, 高慧娟, 王润娟, 吕昕培, 何傲蕾, 邵坤仲, 汪永平, 张金林. 高等植物适应干旱生境研究进展. 草学, 2020, (3): 4-15.
Ren W, Gao H J, Wang R J, Lyu X P, He A L, Shao K Z, Wang Y P, Zhang J L. Research advances in adaptation of higher plants to arid habitats. J Grassland Forage Sci, 2020, (3): 4-15. (in Chinese with English abstract)
[32] 李志, 薛姣, 耿贵, 王宇光, 於丽华. 逆境胁迫下甜菜生理特性的研究进展. 中国农学通报, 2021, 37(24): 39-47.
doi: 10.11924/j.issn.1000-6850.casb2021-0113
Li Z, Xue J, Geng G, Wang Y G, Yu L H. The physiological characteristics of beets under stress. Chin Agric Sci Bull, 2021, 37(24): 39-47. (in Chinese with English abstract)
[33] 杨少辉, 季静, 王罡. 盐胁迫对植物的影响及植物的抗盐机理. 世界科技研究与发展, 2006, 28(4): 70-76.
Yang S H, Ji J, Wang G. Effects of salt stress on plants and the mechanism of salt tolerance. World Sci Technol Res Dev, 2006, 28(4): 70-76. (in Chinese with English abstract)
[34] Guo Y F, Gan S S. Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ, 2012, 35: 644-655.
doi: 10.1111/pce.2012.35.issue-3
[35] Zhang K, Gan S S. An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol, 2012, 158: 961-969.
doi: 10.1104/pp.111.190876
[36] Huang Q J, Wang Y, Li B, Chang J L, Chen M J, Li K X, Yang G X, He G Y.TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol, 2015, 15: 268.
doi: 10.1186/s12870-015-0644-9 pmid: 26536863
[37] Kou X H, Watkins C B, Gan S S. Arabidopsis AtNAP regulates fruit senescence. J Exp Bot, 2012, 63: 6139-6147.
doi: 10.1093/jxb/ers266
[38] Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014, 111: 10013.
doi: 10.1073/pnas.1321568111
[39] 杨洁.毛果杨PtNAC101基因在高盐胁迫中的功能分析. 鲁东大学硕士学位论文, 山东烟台, 2021.
Yang J. The Functional Analysis of PtNAC101 Gene in Populus trichocarpa under High Salt Stress. MS Thesis of Ludong University, Yantai, Shandong, China, 2021. (in Chinese with English abstract)
[40] 林少华, 张晓军, 张慧杰, 贾红亮, 潘妍, 罗红霞. 果蔬氧化还原防御系统研究进展. 中国果菜, 2021, 41(4): 33-39.
Lin S H, Zhang X J, Zhang H J, Jia H L, Pan Y, Luo H X. Research progress on redox defense system of fruits and vegetables. China Fruit Veget, 2021, 41(4): 33-39. (in Chinese with English abstract)
[41] 王晓娟.干旱胁迫对红花檵木生长和生理特性的影响. 四川农业大学硕士学位论文, 四川成都, 2015.
Wang X J. Growth and Physiological Characteristics of Loropetalum chinense under Drought Stress. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015. (in Chinese with English abstract)
[42] Guo R, Zhao J, Wang X, Guo C, Li Z, Wang Y, Wang X. Constitutive expression of a grape aspartic protease gene in transgenic Arabidopsis confers osmotic stress tolerance. Plant Cell Tissue Organ Cult, 2015, 121: 275-287.
doi: 10.1007/s11240-014-0699-6
[43] Boudmyxay K, 沈镭, 钟帅, 孙艳芝, 杨慧芹. 脯氨酸引发提高烟草种子和幼苗抗逆性及其与抗氧化系统的关系. 山西农业科学, 2019, 47(1): 39-48.
Boudmyxay K, Shen L, Zhong S, Sun Y Z, Yang H Q. Improving the antioxidant system and its stress resistance to tobacco seeds and seedling by proline priming. J Shanxi Agric Sci, 2019, 47(1): 39-48. (in Chinese with English abstract)
[44] 黄建.农杆菌介导S6PDH基因转化枣树(Zyziphus jujube Mill.)的研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2006.
Huang J. Study on Agrobacterium-mediated Transformation of Zyziphus jujube with S6PDH Gene. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2006. (in Chinese with English abstract)
[45] 韩佩尧, 赵烨, 田彦挺, 侯荣轩, 孙宇涵, 李云. 植物耐盐机制及耐盐基因在杨树育种中的应用. 分子植物育种, 2021, 19: 7977-7983.
Han P Y, Zhao Y, Tian Y T, Hou R X, Sun Y H, Li Y. Mechanism of plant salt tolerance and application of salt tolerance gene in poplar breeding. Mol Plant Breed, 2021, 19: 7977-7983. (in Chinese with English abstract)
[46] 钟磊, 钱家萍, 蔡启忠, 王敏, 张慧晔, 杨全, 罗碧. 肉桂种子生物学特性及生活力研究. 种子, 2021, 40(7): 99-103.
Zhong L, Qian J P, Cai Q Z, Wang M, Zhang H Y, Yang Q, Luo B. Study on biological characteristics and viability of Cinnamomum cassia seeds. Seed, 2021, 40(7): 99-103. (in Chinese with English abstract)
[47] Jiang D, Zhou L, Chen W, Ye N, Xia J, Zhuang C. Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in rice via ABA-mediated pathways. Rice, 2019, 12: 76.
doi: 10.1186/s12284-019-0334-6
[48] 马丽.梭梭再生体系研究及HaDREB2C基因的克隆与分析. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2017.
Ma L. Cloning and Analyzing of HaDREB2C and the Establishing on Regeneration System of Haloxylon. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2017. (in Chinese with English abstract)
[49] Caroline S, Aleksandra W, Florina V, Christiane V, Jeffrey L. Guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. J Exp Bot, 2009, 60: 1439-1463.
doi: 10.1093/jxb/ern340
[50] Zhang W D, Wang P, Bao Z L, Ma Q, Duan L J, Bao A K, Zhang J L, Wang S M.SOS1, HKT1, and NHX1 synergistically modulate Na+ homeostasis in the halophytic grass Puccinellia tenuiflora. Front Plant Sci, 2017, 8: 576.
[51] Pan Y, Seymour G B, Lu C, Hu Z, Chen X, Chen G. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep, 2012, 31: 349-360.
doi: 10.1007/s00299-011-1170-3 pmid: 22038370
[52] 关扬扬, 郑淑心, 刘向阳, 王召军, 张洪映, 崔红, 闫筱筱. NtCycB2基因表达对烟草抗旱性的影响. 烟草科技, 2021, 54(3): 1-8.
Guan Y Y, Zheng S X, Liu X Y, Wang Z J, Zhang H Y, Cui H, Yan X X. Effect of NtCycB2 gene expression on drought resistance of tobacco. Tobacco Sci Technol, 2021, 54(3): 1-8. (in Chinese with English abstract)
[1] 代书桃, 朱灿灿, 马小倩, 秦娜, 宋迎辉, 魏昕, 王春义, 李君霞. 谷子HAK/KUP/KT钾转运蛋白家族全基因组鉴定及其对低钾和高盐胁迫的响应[J]. 作物学报, 2023, 49(8): 2105-2121.
[2] 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784.
[3] 梅玉琴, 刘意, 王崇, 雷剑, 朱国鹏, 杨新笋. 甘薯PHB基因家族的全基因组鉴定和表达分析[J]. 作物学报, 2023, 49(6): 1715-1725.
[4] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[5] 李慧, 路依萍, 汪小凯, 王璐瑶, 邱婷婷, 张雪婷, 黄海燕, 崔晓玉. CBL互作蛋白激酶GmCIPK10增强大豆耐盐性[J]. 作物学报, 2023, 49(5): 1272-1281.
[6] 贾玉库, 高宏欢, 冯健超, 郝紫瑞, 王晨阳, 谢迎新, 郭天财, 马冬云. 小麦G2-like转录因子家族基因鉴定与表达模式分析[J]. 作物学报, 2023, 49(5): 1410-1425.
[7] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[8] 周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应[J]. 作物学报, 2023, 49(4): 966-977.
[9] 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选[J]. 作物学报, 2023, 49(4): 955-965.
[10] 齐燕妮, 李闻娟, 赵丽蓉, 李雯, 王利民, 谢亚萍, 赵玮, 党照, 张建平. 亚麻生氰糖苷合成关键酶CYP79基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(3): 687-702.
[11] 邓照, 蒋环琪, 程丽沙, 刘睿, 黄敏, 李曼菲, 杜何为. 利用WGCNA鉴定玉米非生物胁迫相关基因共表达网络[J]. 作物学报, 2023, 49(3): 672-686.
[12] 黄震, 吴启境, 陈灿妮, 吴霞, 曹珊, 张辉, 岳娇, 胡亚丽, 罗登杰, 李赟, 廖长君, 李茹, 陈鹏. 钙调素基因(HcCaM7)及其蛋白乙酰化修饰参与红麻响应非生物胁迫的作用[J]. 作物学报, 2023, 49(2): 402-413.
[13] 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85.
[14] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[15] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .