欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2160-2170.doi: 10.3724/SP.J.1006.2023.24190

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

栽培种花生单仁重QTL定位分析

李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍(), 万勇善()   

  1. 山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安 271018
  • 收稿日期:2022-08-16 接受日期:2023-02-10 出版日期:2023-08-12 网络出版日期:2023-03-02
  • 通讯作者: 刘风珍,万勇善
  • 作者简介:E-mail: 2683463925@qq.com
  • 基金资助:
    山东省花生产业技术体系项目(SDAIT-04-03);山东省农业良种工程项目(2020LZGC001);山东省重点研发计划项目(2019GNC106002);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-13)

QTLs mapping for single-seed weight of cultivated peanut

LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen(), WAN Yong-Shan()   

  1. College of Agronomy, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China
  • Received:2022-08-16 Accepted:2023-02-10 Published:2023-08-12 Published online:2023-03-02
  • Contact: LIU Feng-Zhen,WAN Yong-Shan
  • Supported by:
    Construction Project of Shandong Peanut Industrial Technology System(SDAIT-04-03);Shandong Agricultural Improved Varieties Engineering Project(2020LZGC001);Shandong Provincial Key Research and Development Program(2019GNC106002);China Agriculture Research System of MOF and MARA(CARS-13)

摘要:

花生(Arachis hypogaea L.)是我国重要的油料作物和经济作物, 单仁重是决定花生产量和商品性的重要性状之一。本研究以大粒品种山花15号(母本)与小粒品种中花12号(父本)杂交构建的RIL群体为材料, 基于高密度遗传图谱, 在6个种植环境下进行单仁重QTL定位。在A04、A06、A07、B05、B07、B09和B10等7个染色体上共检测到9个与单仁重相关的QTL, 这些QTL的LOD值为3.01~33.97、表型贡献率为2.61%~34.28%、加性效应值为-0.03~0.15 g、定位的物理区间为0.03~4.32 Mb, 其中, qSSWA07.1是在6个种植环境下重复检测的单仁重主效QTL, qSSWA06.1qSSWB09.1均在4个种植环境下重复检测到。qSSWA07.1qSSWA06.1的加性效应为正, 增效位点来自山花15号, qSSWB09.1的加性效应为负, 增效位点来自中花12号, 利用与qSSWA06.1qSSWA07.1qSSWB09.1紧密连锁的3个bin标记(A06: Block3344、A07: Block3373和B09: Block10032)的基因型分析了3个位点调控花生单仁重的累加效应, 发现携带3个增效等位基因的家系的单仁重最大, 而不携带增效等位基因的家系的单仁重最小。对qSSWA06.1qSSWA07.1qSSWB09.1标记区间内的注释基因进行KEGG代谢通路富集分析, 结合基因的功能注释和在不同花生组织中的表达量差异, 预测了4个候选基因(Arahy.9UY90IArahy.RX7YKYArahy.3ZC2CNArahy.9V2WXE)。研究结果为花生产量相关性状的遗传改良提供了参考。

关键词: 花生, 单仁重, QTL定位, 候选基因

Abstract:

Peanut (Arachis hypogaea L.) is an important oil and cash crop in China, and the single-seed weight is one of the important traits that determine the yield and commodity of peanut. In this study, QTLs mapping for single-seed weight of peanut was performed using RIL population constructed from a cross between large-kernel variety Shanhua 15 (female) and small-kernel variety Zhonghua 12 (male), based on a high-density genetic map. Nine QTLs related to single-seed weight were identified on seven chromosomes (A04, A06, A07, B05, B07, B09, and B10). The LOD values of these QTLs was 3.01-33.97, phenotypic variation contribution rates was 2.61%-34.28%, the additive effect values were -0.03 to 0.15 g, and the physical range of positioning was 0.03-4.32 Mb. qSSWA07.1 was a stable major QTL repeatedly detected in six planting environments, and qSSWA06.1 and qSSWB09.1 were repeatedly detected in four planting environments. The additive effect of qSSWA07.1 and qSSWA06.1 were positive, and the favorable alleles were inherited from Shanhua 15. The additive effect of qSSWB09.1 was negative, and the favorable allele was inherited from Zhonghua 12. The additive effect of qSSWA06.1, qSSWA07.1, and qSSWB09.1 on peanut single-seed weight was analyzed with the genotype of three bin markers (A06: Block3344, A07: Block3373, and B09: Block10032) closely-linked with QTLs. The mean value of single-seed weight of lines with three favorable alleles was the largest, and that of the lines without the favorable alleles was the smallest. The candidate genes in qSSWA06.1, qSSWA07.1, and qSSWB09.1 were analyzed by KEGG enrichment pathway, according to the expression in different tissues and functional annotation of these genes, four candidate genes were predicted, Arahy.9UY90I, Arahy.RX7YKY, Arahy.3ZC2CN, and Arahy.9V2WXE, which may play a significant role in the regulation of peanut seed growth and development. The results provided the reference for the genetic improvement of yield related traits in peanut.

Key words: peanut, single-seed weight, QTLs mapping, candidate genes

表1

亲本及RIL群体单仁重性状统计分析"

种植环境
Planting environment
亲本Parent RIL群体 RIL population
山花15号
Shanhua 15
中花12号
Zhonghua 12
最大值
Max.
最小值
Min.
平均值
Mean
标准差
SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
2014 1.39 0.71** 1.63 0.41 0.93 0.25 26.88 0.291 -0.413
2015 1.21 0.58** 1.33 0.22 0.74 0.18 24.32 0.283 0.286
2016 1.08 0.42** 1.24 0.24 0.64 0.18 28.13 0.414 0.217
2017 1.14 0.75** 1.52 0.59 0.94 0.19 20.21 0.354 -0.209
2020 1.18 0.76** 1.57 0.48 0.97 0.21 21.68 0.116 -0.543
2021 1.16 0.76** 1.21 0.33 0.76 0.17 22.37 0.027 -0.437

图1

花生RIL群体单仁重频次分布 2014、2015、2016、2017、2020、2021代表不同的种植环境。RIL: 重组自交系。"

图2

花生单仁重相关QTL基因组分布2014、2015、2016、2017、2020、2021代表种植环境。A04、A06、A07、B05、B07、B09、B10代表不同染色体。"

表2

花生单仁重相关QTL信息"

QTL 种植环境
Planting environment
染色体
Chr.
标记区间
Marker interval
物理区间长度
Physical interval length (Mb)
阈值
LOD
贡献率
PVE (%)
加性效应
ADD (g)
qSSWA04.1 2015 A04 Block1622-Block1625 2.05 3.01 3.41 -0.03
qSSWA06.1 2021 A06 Block3360-Block3309 4.32 6.82 5.83 0.05
2020 8.30 7.61 0.05
2017 10.24 9.40 0.06
2014 8.11 7.39 0.07
qSSWA07.1 2021 A07 Block3421-Block3366 1.39 31.02 32.30 0.10
2020 33.62 34.06 0.11
2017 33.97 34.28 0.12
2016 13.75 16.36 0.07
2015 18.57 21.34 0.08
2014 30.17 31.34 0.15
qSSWB05.1 2020 B05 Block7608-Block7556 0.84 3.12 2.92 0.04
qSSWB05.2 2017 B05 Block7651-Block7587 3.01 4.34 3.33 0.03
qSSWB07.1 2014 B07 Block8272-Block8264 0.40 3.80 4.12 0.05
qSSWB07.2 2020 B07 Block8284-Block8285 0.03 3.08 2.61 0.04
qSSWB09.1 2021 B09 Block10054-Block10004 1.45 5.27 4.21 -0.04
2020 5.79 4.48 -0.04
2017 7.12 6.38 -0.04
2014 6.30 5.39 -0.06
qSSWB10.1 2015 B10 Block10084-Block10083 0.58 3.16 3.36 0.03

图3

qSSWA06.1、qSSWA07.1和 qSSWB09.1在群体中的表型效应 2014、2015、2016、2017、2020、2021代表不同的种植环境; AABBCC、AAbbcc、AABBcc、AAbbCC、aaBBCC、aaBBcc、aabbCC、aabbcc代表不同基因型。"

图4

花生单仁重QTL区间候选基因KEGG富集通路分析 A07、B09和A06代表不同的染色体。"

图5

12个候选基因在花生不同组织中的差异表达 颜色越深代表表达量越高, 反之越低。"

表3

qSSWA06.1、qSSWA07.1和qSSWB09.1的候选基因分析"

基因 ID
Gene ID
染色体
Chr.
物理区间
Physical interval (bp)
基因家族
Gene family
功能注释
Functional description
Arahy.9UY90I A07 447423-452848 legfed_v1_0.L_MWNP2J 烯醇酶
Enolase
Arahy.KE1FF5 A07 955911-958635 legfed_v1_0.L_KG5CQL 半胱氨酸合酶/半胱氨酸β合酶
Cysteine synthase/cystathionine β-synthase
Arahy.K4CMZR A07 1001166-1002296 legfed_v1_0.L_1XK45N 丝氨酸O-乙酰转移酶
Serine O-acetyltransferase
Arahy.K0DIZR A07 1218259-1224643 legfed_v1_0.L_0GKWV0 ABC转运蛋白1型
ABC transporter type 1
Arahy.RX7YKY B09 157391371-157396195 legfed_v1_0.L_BH5DLF 甜菜碱同型半胱氨酸甲基转移酶
Betaine-homocysteine methyltransferase
Arahy.E9249P B09 157550706-157553539 legfed_v1_0.L_0C7SKC 类RmlC-like cupins蛋白
Proteins similar to the RmlC-like cupins
Arahy.IQP7TJ B09 157714814-157717184 legfed_v1_0.L_FMT5KJ 糖苷水解酶
Glycoside hydrolase
Arahy.QJT344 A06 110434786-110446942 legfed_v1_0.L_9WXLVF 泛素特异性蛋白酶
Ubiquitin specific proteases
Arahy.3ZC2CN A06 110489370-110491090 legfed_v1_0.L_63KDF3 LSM蛋白质
LSM proteins
Arahy.S90AI0 A06 112231732-112241188 legfed_v1_0.L_J3GGX7 核转录和剪接因子
Nuclear transcription and splicing factors
Arahy.57RIKC A06 110715861-110721136 legfed_v1_0.L_F86644 磷酸吡哆醛依赖性转移酶
Pyridoxal phosphate-dependent transferase
Arahy.9V2WXE A06 111734794-111743008 legfed_v1_0.L_RNPQZ0 真核翻译起始因子
Eukaryotic translation initiation factor
[1] Sarvamangala C, Gowda M V C, Varshney R K. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res, 2011, 122: 49-59.
doi: 10.1016/j.fcr.2011.02.010
[2] 杨瑶, 冯健, 吴传云. 我国花生生产面临的问题及机械化措施建议. 农机科技推广, 2021, (11): 24-26.
Yang Y, Feng J, Wu C Y. Problems facing peanut production in China and suggestions on mechanization measures. Agric Mach Technol Extens, 2021, (11): 24-26. (in Chinese)
[3] 李振动.花生荚果及种子大小相关性状的QTL分析。中国农业科学院硕士学位论文, 北京, 2015.
Li Z D. QTL Analysis for Pod and Seed Traits in Peanut (Arachis hypogaea L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[4] Fonceka D, Tossim H A, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn M C, Bertioli D J, Glaszmann J C, Courtois B, Rami J F. Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol, 2012, 12: 26.
doi: 10.1186/1471-2229-12-26 pmid: 22340522
[5] 成良强.花生遗传图谱构建及产量相关性状的QTL分析中国农业科学院硕士学位论文, 北京, 2014.
Cheng L Q. Construction of Genetic Linkage Map and QTL Analysis for Yield Related Traits in Peanut (Arachis hypogaea L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2014. (in Chinese with English abstract)
[6] Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B, Jiang H. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015, 128: 1103-1115.
doi: 10.1007/s00122-015-2493-1 pmid: 25805315
[7] 曾新颖.花生荚果和籽仁大小相关性状QTL定位海南大学硕士学位论文, 海南海口, 2019.
Zeng X Y. QTL Analysis of Pod and Kernel Size Related Traits in Peanut (Arachis hypogaea L.). MS Thesis of Hainan University, Haikou, Hainan, China, 2019. (in Chinese with English abstract)
[8] 崔凤高, 胡晓辉, 苗华荣, 张胜忠, 王娟, 王嵩, 侯刚, 隋洁, 张建成, 陈静. 花生百果质量和百仁质量性状的QTL定位分析. 中国油料作物学报, 2021, 43: 1025-1030.
Cui F G, Hu X H, Miao H R, Zhang S Z, Wang J, Wang S, Hou G, Sui J, Zhang J C, Chen J. QTL mapping for 100-pod and 100-seed weights in cultivated peanut. Chin J Oil Crop Sci, 2021, 43: 1025-1030. (in Chinese with English abstract)
[9] Halward T, Stalker H T, Kochert G. Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet, 1993, 87: 379-384.
doi: 10.1007/BF01184927 pmid: 24190266
[10] Burow M D, Simpson C E, Starr J L, Paterson A H. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.). broadening the gene pool of a monophyletic polyploid species. Genetics, 2001, 159: 823-837.
doi: 10.1093/genetics/159.2.823 pmid: 11606556
[11] Milla S R, Isleib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 48: 1-11.
pmid: 15729391
[12] Agarwal G, Clevenger J, Pandey M K, Wang H, Shasidhar Y, Chu Y, Fountain J C, Choudhary D, Culbreath A K, Liu X, Huang G, Wang X, Deshmukh R, Holbrook C C, Bertioli D J, Ozias-Akins P, Jackson S A, Varshney R K, Guo B. High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnol J, 2018, 16: 1954-1967.
doi: 10.1111/pbi.12930 pmid: 29637729
[13] Wang Z, Huai D, Zhang Z, Cheng K, Kang Y, Wan L, Yan L, Jiang H, Lei Y, Liao B. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci, 2018, 9: 827.
doi: 10.3389/fpls.2018.00827 pmid: 29997635
[14] Jiang Y, Luo H, Yu B, Ding Y, Kang Y, Huang L, Zhou X, Liu N, Chen W, Guo J, Huai D, Lei Y, Jiang H, Yan L, Liao B. High-density genetic linkage map construction using whole-genome resequencing for mapping QTLs of resistance to Aspergillus flavus Infection in peanut. Front Plant Sci, 2021, 12: 745408.
doi: 10.3389/fpls.2021.745408
[15] Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet, 2019, 51: 877-884.
doi: 10.1038/s41588-019-0405-z pmid: 31043755
[16] Saito K, Yokoyama H, Noji M, Murakoshi I. Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon. J Biol Chem, 1995, 270: 16321-16326.
doi: 10.1074/jbc.270.27.16321 pmid: 7608200
[17] Saito K, Kurosawa M, Murakoshi I. Determination of a functional lysine residue of a plant cysteine synthase by site-directed mutagenesis, and the molecular evolutionary implications. FEBS Lett, 1993, 328: 111-114.
pmid: 8344414
[18] Lal S K, Johnson S, Conway T, Kelley P M. Characterization of a maize cDNA that complements an enolase-deficient mutant of Escherichia coli. Plant Mol Biol, 1991, 16: 787-795.
pmid: 1859865
[19] Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure, 1995, 3: 853-859.
doi: 10.1016/S0969-2126(01)00220-9 pmid: 8535779
[20] Evans J C, Huddler D P, Jiracek J, Castro C, Millian N S, Garrow T A, Ludwig M L. Betaine-homocysteine methyltransferase: zinc in a distorted barrel. Structure, 2002, 10: 1159-1171.
pmid: 12220488
[21] 高弘扬, 周良云, 罗碧, 许丹芸, 杨全. 乙烯信号转导及其在植物逆境响应中的作用. 江苏农业科学, 2020, 48(12): 15-19.
Gao H Y, Zhou L Y, Luo B, Xu D Y, Yang Q. Ethylene signal transduction and its role in plant stress response. Jiangsu Agric Sci, 2020, 48(12): 15-19. (in Chinese)
[22] Hayashi H. Pyridoxal enzymes: mechanistic diversity and uniformity. J Biochem, 1995, 118: 463-473.
pmid: 8690703
[23] Ye Y, Scheel H, Hofmann K, Komander D. Dissection of USP catalytic domains reveals five common insertion points. Mol Biosyst, 2009, 5: 1797-1808.
doi: 10.1039/b907669g pmid: 19734957
[24] He W, Parker R. Functions of Lsm proteins in mRNA degradation and splicing. Curr Opin Cell Biol, 2000, 12: 346-350.
pmid: 10801455
[25] Koonin E V. Multidomain organization of eukaryotic guanine nucleotide exchange translation initiation factor eIF-2B subunits revealed by analysis of conserved sequence motifs. Protein Sci, 1995, 4: 1608-1617.
pmid: 8520487
[26] 殷冬梅, 李拴柱, 崔党群. 花生主要农艺性状的相关性及聚类分析. 中国油料作物学报, 2010, 32: 212-216.
Yin D M, Li S Z, Cui D Q. Agronomic character and cluster analysis of peanut cultivars. Chin J Oil Crop Sci, 2010, 32: 212-216. (in Chinese with English abstract)
[27] 郑国栋, 黄金堂, 陈海玲. 花生产量与主要农艺性状之间的灰色关联度分析. 安徽农学通报, 2013, 19(16): 22-24.
Zheng G D, Huang J T, Chen H L. Analysis of gray correlation between yield and major agronomic traits of peanut. Anhui Agric Sci Bull, 2013, 19(16): 22-24. (in Chinese with English abstract)
[28] Gangurde S S, Wang H, Yaduru S, Pandey M K, Fountain J C, Chu Y, Isleib T, Holbrook C C, Xavier A, Culbreath A K, Ozias-Akins P, Varshney R K, Guo B. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). Plant Biotechnol J, 2020, 18: 1457-1471.
doi: 10.1111/pbi.13311 pmid: 31808273
[29] Wang Z, Yan L, Chen Y, Wang X, Huai D, Kang Y, Jiang H, Liu K, Lei Y, Liao B. Detection of a major QTL and development of KASP markers for seed weight by combining QTL-seq, QTL-mapping and RNA-seq in peanut. Theor Appl Genet, 2022, 135: 1779-1795.
doi: 10.1007/s00122-022-04069-0 pmid: 35262768
[30] Li N, Li Y. Signaling pathways of seed size control in plants. Curr Opin Plant Biol, 2016, 33: 23-32.
doi: S1369-5266(16)30083-8 pmid: 27294659
[31] Li N, Xu R, Duan P, Li Y. Control of grain size in rice. Plant Reprod, 2018, 31: 237-251.
doi: 10.1007/s00497-018-0333-6 pmid: 29523952
[32] Luo H, Guo J, Ren X, Chen W, Huang L, Zhou X, Chen Y, Liu N, Xiong F, Lei Y, Liao B, Jiang H. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2018, 131: 267-282.
doi: 10.1007/s00122-017-3000-7
[33] Li W, Liu N, Huang L, Chen Y, Guo J, Yu B, Luo H, Zhou X, Huai D, Chen W, Yan L, Wang X, Lei Y, Liao B, Jiang H. Stable major QTL on chromosomes A07 and A08 increase shelling percentage in peanut (Arachis hypogaea L.). Crop J, 2022, 10: 820-829.
doi: 10.1016/j.cj.2021.09.003
[1] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[2] 胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立[J]. 作物学报, 2023, 49(9): 2498-2504.
[3] 王菲菲, 张胜忠, 胡晓辉, CHU Ye, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461.
[4] 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384.
[5] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[6] 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104.
[7] 王让剑, 杨军, 张力岚, 高香凤. 茶树新梢中香叶醇樱草糖苷含量的全基因组关联分析[J]. 作物学报, 2023, 49(7): 1843-1859.
[8] 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541.
[9] 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230.
[10] 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
[11] 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730.
[12] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
[13] 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661.
[14] 纪红昌, 胡畅丽, 邱晓臣, 吴兰荣, 李晶晶, 李鑫, 李晓婷, 刘雨函, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁品质性状高通量表型分析模型的构建[J]. 作物学报, 2023, 49(3): 869-876.
[15] 刘俊华, 吴正锋, 党彦学, 于天一, 郑永美, 万书波, 王才斌, 李林. 密度对不同株型花生单粒精播群体质量及产量的影响[J]. 作物学报, 2023, 49(2): 459-471.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .