作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2160-2170.doi: 10.3724/SP.J.1006.2023.24190
李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍(), 万勇善()
LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen(), WAN Yong-Shan()
摘要:
花生(Arachis hypogaea L.)是我国重要的油料作物和经济作物, 单仁重是决定花生产量和商品性的重要性状之一。本研究以大粒品种山花15号(母本)与小粒品种中花12号(父本)杂交构建的RIL群体为材料, 基于高密度遗传图谱, 在6个种植环境下进行单仁重QTL定位。在A04、A06、A07、B05、B07、B09和B10等7个染色体上共检测到9个与单仁重相关的QTL, 这些QTL的LOD值为3.01~33.97、表型贡献率为2.61%~34.28%、加性效应值为-0.03~0.15 g、定位的物理区间为0.03~4.32 Mb, 其中, qSSWA07.1是在6个种植环境下重复检测的单仁重主效QTL, qSSWA06.1和qSSWB09.1均在4个种植环境下重复检测到。qSSWA07.1和qSSWA06.1的加性效应为正, 增效位点来自山花15号, qSSWB09.1的加性效应为负, 增效位点来自中花12号, 利用与qSSWA06.1、qSSWA07.1和qSSWB09.1紧密连锁的3个bin标记(A06: Block3344、A07: Block3373和B09: Block10032)的基因型分析了3个位点调控花生单仁重的累加效应, 发现携带3个增效等位基因的家系的单仁重最大, 而不携带增效等位基因的家系的单仁重最小。对qSSWA06.1、qSSWA07.1和qSSWB09.1标记区间内的注释基因进行KEGG代谢通路富集分析, 结合基因的功能注释和在不同花生组织中的表达量差异, 预测了4个候选基因(Arahy.9UY90I、Arahy.RX7YKY、Arahy.3ZC2CN和Arahy.9V2WXE)。研究结果为花生产量相关性状的遗传改良提供了参考。
[1] |
Sarvamangala C, Gowda M V C, Varshney R K. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res, 2011, 122: 49-59.
doi: 10.1016/j.fcr.2011.02.010 |
[2] | 杨瑶, 冯健, 吴传云. 我国花生生产面临的问题及机械化措施建议. 农机科技推广, 2021, (11): 24-26. |
Yang Y, Feng J, Wu C Y. Problems facing peanut production in China and suggestions on mechanization measures. Agric Mach Technol Extens, 2021, (11): 24-26. (in Chinese) | |
[3] | 李振动.花生荚果及种子大小相关性状的QTL分析。中国农业科学院硕士学位论文, 北京, 2015. |
Li Z D. QTL Analysis for Pod and Seed Traits in Peanut (Arachis hypogaea L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract). | |
[4] |
Fonceka D, Tossim H A, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn M C, Bertioli D J, Glaszmann J C, Courtois B, Rami J F. Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol, 2012, 12: 26.
doi: 10.1186/1471-2229-12-26 pmid: 22340522 |
[5] | 成良强.花生遗传图谱构建及产量相关性状的QTL分析中国农业科学院硕士学位论文, 北京, 2014. |
Cheng L Q. Construction of Genetic Linkage Map and QTL Analysis for Yield Related Traits in Peanut (Arachis hypogaea L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2014. (in Chinese with English abstract) | |
[6] |
Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B, Jiang H. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015, 128: 1103-1115.
doi: 10.1007/s00122-015-2493-1 pmid: 25805315 |
[7] | 曾新颖.花生荚果和籽仁大小相关性状QTL定位海南大学硕士学位论文, 海南海口, 2019. |
Zeng X Y. QTL Analysis of Pod and Kernel Size Related Traits in Peanut (Arachis hypogaea L.). MS Thesis of Hainan University, Haikou, Hainan, China, 2019. (in Chinese with English abstract) | |
[8] | 崔凤高, 胡晓辉, 苗华荣, 张胜忠, 王娟, 王嵩, 侯刚, 隋洁, 张建成, 陈静. 花生百果质量和百仁质量性状的QTL定位分析. 中国油料作物学报, 2021, 43: 1025-1030. |
Cui F G, Hu X H, Miao H R, Zhang S Z, Wang J, Wang S, Hou G, Sui J, Zhang J C, Chen J. QTL mapping for 100-pod and 100-seed weights in cultivated peanut. Chin J Oil Crop Sci, 2021, 43: 1025-1030. (in Chinese with English abstract) | |
[9] |
Halward T, Stalker H T, Kochert G. Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet, 1993, 87: 379-384.
doi: 10.1007/BF01184927 pmid: 24190266 |
[10] |
Burow M D, Simpson C E, Starr J L, Paterson A H. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.). broadening the gene pool of a monophyletic polyploid species. Genetics, 2001, 159: 823-837.
doi: 10.1093/genetics/159.2.823 pmid: 11606556 |
[11] |
Milla S R, Isleib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 48: 1-11.
pmid: 15729391 |
[12] |
Agarwal G, Clevenger J, Pandey M K, Wang H, Shasidhar Y, Chu Y, Fountain J C, Choudhary D, Culbreath A K, Liu X, Huang G, Wang X, Deshmukh R, Holbrook C C, Bertioli D J, Ozias-Akins P, Jackson S A, Varshney R K, Guo B. High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnol J, 2018, 16: 1954-1967.
doi: 10.1111/pbi.12930 pmid: 29637729 |
[13] |
Wang Z, Huai D, Zhang Z, Cheng K, Kang Y, Wan L, Yan L, Jiang H, Lei Y, Liao B. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci, 2018, 9: 827.
doi: 10.3389/fpls.2018.00827 pmid: 29997635 |
[14] |
Jiang Y, Luo H, Yu B, Ding Y, Kang Y, Huang L, Zhou X, Liu N, Chen W, Guo J, Huai D, Lei Y, Jiang H, Yan L, Liao B. High-density genetic linkage map construction using whole-genome resequencing for mapping QTLs of resistance to Aspergillus flavus Infection in peanut. Front Plant Sci, 2021, 12: 745408.
doi: 10.3389/fpls.2021.745408 |
[15] |
Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet, 2019, 51: 877-884.
doi: 10.1038/s41588-019-0405-z pmid: 31043755 |
[16] |
Saito K, Yokoyama H, Noji M, Murakoshi I. Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon. J Biol Chem, 1995, 270: 16321-16326.
doi: 10.1074/jbc.270.27.16321 pmid: 7608200 |
[17] |
Saito K, Kurosawa M, Murakoshi I. Determination of a functional lysine residue of a plant cysteine synthase by site-directed mutagenesis, and the molecular evolutionary implications. FEBS Lett, 1993, 328: 111-114.
pmid: 8344414 |
[18] |
Lal S K, Johnson S, Conway T, Kelley P M. Characterization of a maize cDNA that complements an enolase-deficient mutant of Escherichia coli. Plant Mol Biol, 1991, 16: 787-795.
pmid: 1859865 |
[19] |
Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure, 1995, 3: 853-859.
doi: 10.1016/S0969-2126(01)00220-9 pmid: 8535779 |
[20] |
Evans J C, Huddler D P, Jiracek J, Castro C, Millian N S, Garrow T A, Ludwig M L. Betaine-homocysteine methyltransferase: zinc in a distorted barrel. Structure, 2002, 10: 1159-1171.
pmid: 12220488 |
[21] | 高弘扬, 周良云, 罗碧, 许丹芸, 杨全. 乙烯信号转导及其在植物逆境响应中的作用. 江苏农业科学, 2020, 48(12): 15-19. |
Gao H Y, Zhou L Y, Luo B, Xu D Y, Yang Q. Ethylene signal transduction and its role in plant stress response. Jiangsu Agric Sci, 2020, 48(12): 15-19. (in Chinese) | |
[22] |
Hayashi H. Pyridoxal enzymes: mechanistic diversity and uniformity. J Biochem, 1995, 118: 463-473.
pmid: 8690703 |
[23] |
Ye Y, Scheel H, Hofmann K, Komander D. Dissection of USP catalytic domains reveals five common insertion points. Mol Biosyst, 2009, 5: 1797-1808.
doi: 10.1039/b907669g pmid: 19734957 |
[24] |
He W, Parker R. Functions of Lsm proteins in mRNA degradation and splicing. Curr Opin Cell Biol, 2000, 12: 346-350.
pmid: 10801455 |
[25] |
Koonin E V. Multidomain organization of eukaryotic guanine nucleotide exchange translation initiation factor eIF-2B subunits revealed by analysis of conserved sequence motifs. Protein Sci, 1995, 4: 1608-1617.
pmid: 8520487 |
[26] | 殷冬梅, 李拴柱, 崔党群. 花生主要农艺性状的相关性及聚类分析. 中国油料作物学报, 2010, 32: 212-216. |
Yin D M, Li S Z, Cui D Q. Agronomic character and cluster analysis of peanut cultivars. Chin J Oil Crop Sci, 2010, 32: 212-216. (in Chinese with English abstract) | |
[27] | 郑国栋, 黄金堂, 陈海玲. 花生产量与主要农艺性状之间的灰色关联度分析. 安徽农学通报, 2013, 19(16): 22-24. |
Zheng G D, Huang J T, Chen H L. Analysis of gray correlation between yield and major agronomic traits of peanut. Anhui Agric Sci Bull, 2013, 19(16): 22-24. (in Chinese with English abstract) | |
[28] |
Gangurde S S, Wang H, Yaduru S, Pandey M K, Fountain J C, Chu Y, Isleib T, Holbrook C C, Xavier A, Culbreath A K, Ozias-Akins P, Varshney R K, Guo B. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). Plant Biotechnol J, 2020, 18: 1457-1471.
doi: 10.1111/pbi.13311 pmid: 31808273 |
[29] |
Wang Z, Yan L, Chen Y, Wang X, Huai D, Kang Y, Jiang H, Liu K, Lei Y, Liao B. Detection of a major QTL and development of KASP markers for seed weight by combining QTL-seq, QTL-mapping and RNA-seq in peanut. Theor Appl Genet, 2022, 135: 1779-1795.
doi: 10.1007/s00122-022-04069-0 pmid: 35262768 |
[30] |
Li N, Li Y. Signaling pathways of seed size control in plants. Curr Opin Plant Biol, 2016, 33: 23-32.
doi: S1369-5266(16)30083-8 pmid: 27294659 |
[31] |
Li N, Xu R, Duan P, Li Y. Control of grain size in rice. Plant Reprod, 2018, 31: 237-251.
doi: 10.1007/s00497-018-0333-6 pmid: 29523952 |
[32] |
Luo H, Guo J, Ren X, Chen W, Huang L, Zhou X, Chen Y, Liu N, Xiong F, Lei Y, Liao B, Jiang H. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2018, 131: 267-282.
doi: 10.1007/s00122-017-3000-7 |
[33] |
Li W, Liu N, Huang L, Chen Y, Guo J, Yu B, Luo H, Zhou X, Huai D, Chen W, Yan L, Wang X, Lei Y, Liao B, Jiang H. Stable major QTL on chromosomes A07 and A08 increase shelling percentage in peanut (Arachis hypogaea L.). Crop J, 2022, 10: 820-829.
doi: 10.1016/j.cj.2021.09.003 |
[1] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[2] | 胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立[J]. 作物学报, 2023, 49(9): 2498-2504. |
[3] | 王菲菲, 张胜忠, 胡晓辉, CHU Ye, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461. |
[4] | 徐扬, 张岱, 康涛, 温赛群, 张冠初, 丁红, 郭庆, 秦斐斐, 戴良香, 张智猛. 盐胁迫对花生幼苗离子动态及耐盐基因表达的影响[J]. 作物学报, 2023, 49(9): 2373-2384. |
[5] | 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087. |
[6] | 黄莉, 陈伟刚, 李威涛, 喻博伦, 郭建斌, 周小静, 罗怀勇, 刘念, 雷永, 廖伯寿, 姜慧芳. 花生根部结瘤性状QTL定位[J]. 作物学报, 2023, 49(8): 2097-2104. |
[7] | 王让剑, 杨军, 张力岚, 高香凤. 茶树新梢中香叶醇樱草糖苷含量的全基因组关联分析[J]. 作物学报, 2023, 49(7): 1843-1859. |
[8] | 刘亭萱, 谷勇哲, 张之昊, 王俊, 孙君明, 邱丽娟. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541. |
[9] | 陶顺玉, 吴贝, 刘念, 罗怀勇, 黄莉, 周小静, 陈伟刚, 郭建斌, 喻博伦, 雷永, 廖伯寿, 姜慧芳. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 2023, 49(5): 1222-1230. |
[10] | 孙全喜, 苑翠玲, 牟艺菲, 闫彩霞, 赵小波, 王娟, 王奇, 孙慧, 李春娟, 单世华. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954. |
[11] | 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730. |
[12] | 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754. |
[13] | 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661. |
[14] | 纪红昌, 胡畅丽, 邱晓臣, 吴兰荣, 李晶晶, 李鑫, 李晓婷, 刘雨函, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁品质性状高通量表型分析模型的构建[J]. 作物学报, 2023, 49(3): 869-876. |
[15] | 刘俊华, 吴正锋, 党彦学, 于天一, 郑永美, 万书波, 王才斌, 李林. 密度对不同株型花生单粒精播群体质量及产量的影响[J]. 作物学报, 2023, 49(2): 459-471. |
|