欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2183-2195.doi: 10.3724/SP.J.1006.2023.23058

• 耕作栽培·生理生化 • 上一篇    下一篇

吉林省不同年代玉米品种光合生理特性对施氮量的响应

曹玉军(), 刘志铭, 兰天娇, 刘小丹, 魏雯雯, 姚凡云, 吕艳杰, 王立春, 王永军()   

  1. 吉林省农业科学院农业资源与环境研究所 / 农业农村部作物生理生态与耕作重点实验室, 吉林长春 130033
  • 收稿日期:2022-08-24 接受日期:2023-02-10 出版日期:2023-08-12 网络出版日期:2023-02-22
  • 通讯作者: 王永军
  • 作者简介:E-mail: caoyujun828@163.com
  • 基金资助:
    财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-02-19);吉林省科技发展计划项目(20220404007NC);吉林省农业科技创新工程项目(CXGC2017ZY015)

Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province

CAO Yu-Jun(), LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun()   

  1. Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences / Key Laboratory of Crop Eco-physiology and Farming System in the Northeastern, Ministry of Agriculture and Rural Affairs, Changchun 130033, Jilin, China
  • Received:2022-08-24 Accepted:2023-02-10 Published:2023-08-12 Published online:2023-02-22
  • Contact: WANG Yong-Jun
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-02-19);Science and Technology Development Plan Project of Jilin Province(20220404007NC);Agricultural Science and Technology Innovation Project of Jilin Province(CXGC2017ZY015)

摘要:

明确吉林省不同年代玉米品种产量、叶片氮含量与光合特性对不同氮素用量的响应趋势, 对东北地区玉米高产品种选育具有重要的实践意义。本研究以20世纪70年代年以来吉林省大面积推广应用的6个代表性品种为研究对象(1970s: 吉单101、中单2号; 1990s: 四单19、吉单159; 2010s: 先玉335和农华101), 在大田条件下共设置4个氮素水平(0、125、250和375 kg hm-2), 分析了氮素施用量对不同年代玉米品种产量、叶片氮含量及光合特征参数等的影响。结果表明, 所有氮水平下玉米籽粒产量均随品种更替而提高, 现代品种在较高氮水平下(≥250 kg hm-2)产量优势更明显, 各处理产量的提高主要是单穗粒数和粒重同时增加的结果。当施氮量不高于250 kg hm-2时, 各年代玉米品种穗位叶净光合速率(Pn)均随施氮量增加而提高, 现代品种显著高于老品种, 当施氮量为375 kg hm-2Pn均显著降低, 降低幅度表现为老品种高于现代品种。而吐丝至蜡熟期, Pn降低幅度随施氮量增加和品种更替而减小。玉米光补偿点、暗呼吸速率在不同时期均表现为2010s最高、1990s次之、1970s最低, 其中2010s品种的光补偿点比1990s、1970s品种平均分别提高9.72%、27.84%, 暗呼吸速率平均提高7.82%、32.98%。各年代品种比叶重(specific leaf weight, SLW)随施氮量增加而提高, 同一施氮量下SLW表现为随品种更替而降低。不同品种叶片单位面积氮含量(Narea)均随施氮量增加而提高, 不施氮处理老品种显著降低, 施氮处理品种间无显著差异。相关分析表明, Pn与SLW呈显著正相关关系, 而Pn与Narea之间关系可用二次曲线方程拟合, Pn随Narea增加出现转折的Narea值为1.57 g m-2。不同年代品种的光合氮利用效率(PNUE)均随施氮量增加而降低, 而较高氮水平下(≥250 kg hm-2) PNUE随品种更替而显著提高。综上, 在较高氮水平下现代玉米品种比老品种显著增产主要归因于其Pn和PNUE的提高, 而Pn和PNUE的提高又与比叶重(SLM)、叶片N含量(Nmass、Narea)等性状密切相关, 推荐在玉米品种选育过程中参考。

关键词: 品种改良, 施氮量, 光合特性, 比叶重, 叶片含氮量, 产量

Abstract:

It is of great practical significance to clarify the response trend of yield, leaf nitrogen content, and photosynthetic characteristics of maize varieties released in different years in Jilin province to different nitrogen levels for the breeding of high-yield maize varieties in Northeast China. In this study, six representative varieties popularized and applied in Jilin province since 1970s were used as the materials (1970s: JD101, ZD2; 1990s: SD19, JD159; 2010s: XY335, NH101). Field experiments with four nitrogen levels (0, 125, 250, and 375 kg hm-2) were set up to analyze the effects of nitrogen application on the yield, leaf nitrogen content, and photosynthetic characteristic parameters of maize varieties released in different decades. The results showed that maize grain yield under all nitrogen levels increased with the replacement of varieties, and the yield advantage of modern varieties was more obvious under high nitrogen levels. The increase of grain yield under different treatments was mainly due to the simultaneous increase of kernel numbers per ear and kernel weight. The net photosynthetic rate (Pn) of ear leaf increased with the increase of nitrogen application rate at no more than 250 kg hm-2, and the Pn of modern varieties was significantly higher than that of old varieties. When the nitrogen application rate was 375 kg hm-2, Pn decreased significantly, and the degree of reduction showed that the old varieties were higher than the modern varieties. From silking to dough stage, the decrease of Pn decreased with the increase of nitrogen application and varieties evolution. The light compensation point and dark respiration rate of maize were the highest in 2010s, the second in 1990s and the lowest in 1970s at different stages. Compared with 1990s and 1970s, the light compensation point of maize in 2010s increased by 9.72% and 27.84% on average, and the dark respiration rate increased by 7.82% and 32.98% on average. The specific leaf weight (SLW) of varieties increased with the increase of nitrogen application rate, but SLW decreased with the evolution of varieties under the same nitrogen application rate. The leaf nitrogen content per unit area (Narea) of different varieties increased with the increase of nitrogen application rate, but it was significantly decreased in the old cultivars without nitrogen application, and there was no significant difference among the cultivars treated with nitrogen application rate. The correlation analysis showed that there was a significant positive linear correlation between Pn and SLW, and the relationship between Pn and Narea can be fitted by the quadratic equation, the Narea value of Pn turning with the increase of Narea was 1.57 g m-2. The photosynthetic nitrogen use efficiency (PNUE) of all varieties decreased with the increase of nitrogen application rate, while the PNUE of cultivars at higher nitrogen levels (≥ 250 kg hm-2) increased significantly with the evolution of varieties. Thus, compared with the old varieties, the modern varieties were more beneficial to yield improvement in the higher nitrogen levels (≥ 250 kg hm-2), which was mainly attributed to the higher Pn and PNUE of the modern varieties, while the increase of Pn and PNUE was closely related to the specific leaf weight (SLM), leaf N content (Nmass, Narea), and other characters, which was recommended for reference in the breeding process of maize varieties.

Key words: genetic improvement, nitrogen application rate, photosynthetic characteristics, specific leaf weight, nitrogen content of leaves, yield

表1

玉米生长季节气象条件"

气象因子
Meteorological factor
2018 2019
5月
May
6月
Jun.
7月
Jul.
8月
Aug.
9月
Sep.
5月
May
6月
Jun.
7月
Jul.
8月
Aug.
9月
Sep.
降雨量
Precipitation (mm)
63.9 111.4 135.8 198.7 42.1 95.9 99.9 116.7 234.4 52.3
平均气温
Mean air temperature (℃)
17.4 22.5 26.0 22.2 16.0 18.3 20.9 25.1 22.1 18.2
总辐射
Total radiation (MJ m-2 d-1)
543.4 524.8 518.3 411.1 344.6 499.8 502.5 548.3 422.9 389.0

表2

不同年代玉米品种产量和叶片主要生理性状的方差分析"

变异来源
Source of variation
自由度
DF
籽粒产量
Grain yield
比叶重
Specific leaf weight
单位质量氮含量
Leaf nitrogen
content per mass
净光合速率
Net photosynthetic rate
叶面积
Leaf area
年度 Year (Y) 1 NS NS NS NS NS
氮素 Nitrogen (N) 3 277.62** 47.59* 25.17** 36.28** 134.75**
品种 Variety (V) 5 911.39** NS 29.58* 30.29** NS
年代 Decade (D) 2 153.83** NS NS 111.30** 177.62*
年度×氮素 Y×N 3 NS NS NS NS NS
年度×品种 Y×V 5 NS NS NS NS NS
年度×年代 Y×D 2 NS NS NS NS NS

表3

不同施氮水平对不同年代玉米品种产量、产量构成及总生物量的影响"

年份
Year
氮素水平
Nitrogen
level
年代
Decade
品种
Variety
产量
Yield
(t hm-2)
单位面积穗数
Ears per
unit area
(×104 hm-2)
穗粒数
Kernel
number
per ear
百粒重
100-kernel weight
(g)
干物质总积累量
Total biomass accumulation
(t hm-2)
收获指数
Harvest index
2018 N0 1970s JD101 6.69 f 5.38 a 382.42 f 32.39 b 12.55 f 0.458 b
ZD2 7.06 f 5.70 a 375.21 f 33.01 b 13.37 f 0.454 b
1990s SD19 7.61 e 5.60 a 400.65 e 33.10 b 14.08 e 0.465 b
JD159 7.73 e 5.78 a 415.64 e 32.06 b 14.53 e 0.458 b
2010s XY335 8.06 e 5.89 a 411.22 e 33.21 b 14.26 e 0.470 b
NH101 8.09 e 5.90 a 407.35 e 33.69 b 14.58 e 0.477 b
N1 1970s JD101 10.32 d 5.67 a 533.63 c 33.93 ab 17.93 de 0.495 ab
ZD2 10.19 d 5.80 a 528.67 c 33.24 ab 18.07 d 0.485 ab
1990s SD19 10.52 cd 5.69 a 538.25 bc 34.30 a 18.18 cd 0.498 ab
JD159 10.72 c 5.70 a 542.14 bc 34.69 a 19.13 cd 0.482 ab
2010s XY335 10.84 bc 5.90 a 529.26 c 34.71 ab 18.61 cd 0.478 ab
NH101 10.92 c 5.79 a 538.54 bc 34.99 ab 18.39 cd 0.487 ab
N2 1970s JD101 10.53 cd 5.67 a 526.22 c 35.12 a 17.77 de 0.501 ab
ZD2 10.93 c 5.64 a 540.17 bc 36.04 a 18.39 cd 0.511 a
1990s SD19 11.55 b 5.78 a 558.66 b 35.67 a 19.87 bc 0.500 ab
JD159 11.58 b 5.80 a 560.60 b 35.62 a 19.53 c 0.510 a
2010s XY335 13.12 a 6.00 a 609.60 a 35.88 a 21.70 ab 0.520 a
NH101 12.73 a 5.90 a 598.91 a 36.02 a 21.38 ab 0.512 a
N3 1970s JD101 9.74 cd 5.45 a 498.61 d 35.50 a 18.01 d 0.465 b
ZD2 9.54 d 5.30 a 525.55 c 34.98 ab 17.31 de 0.474 b
1990s SD19 11.09 b 5.88 a 542.62 bc 35.18 ab 20.47 bc 0.466 b
JD159 11.23 b 5.90 a 598.93 a 34.59 ab 20.16 b 0.479 ab
2010s XY335 12.94 a 5.78 a 588.22 a 36.40 a 22.26 a 0.500 a
NH101 12.77 a 5.90 a 580.30 a 37.44 a 22.05 ab 0.498 a
2019 N0 1970s JD101 5.59 g 5.40 a 348.74 e 29.68 c 10.59 f 0.454 b
ZD2 5.87 g 5.65 a 340.65 e 30.24 c 10.93 f 0.462 b
1990s SD19 7.38 f 5.50 a 417.55 d 32.12 bc 13.71 e 0.463 b
JD159 7.47 f 5.65 a 420.60 d 31.14 c 13.67 de 0.470 b
2010s XY335 7.83 f 5.70 a 428.93 d 32.03 bc 14.70 de 0.458 b
NH101 7.72 f 5.55 a 429.55 d 32.11 c 14.16 e 0.469 b
N1 1970s JD101 9.63 de 5.70 a 524.66 b 32.21 c 17.36 d 0.477 b
ZD2 10.24 d 5.90 a 531.64 b 32.65 c 18.27 d 0.482 b
1990s SD19 10.74 c 5.60 a 555.14 ab 34.56 ab 18.74 cd 0.493 b
JD159 10.91 c 5.80 a 536.96 b 35.02 ab 19.22 bc 0.488 b
2010s XY335 11.01 c 5.95 a 546.54 ab 34.15 b 19.52 b 0.485 b
NH101 10.82 c 5.70 a 557.25 ab 34.08 b 19.43 bc 0.479 b
N2 1970s JD101 10.01 de 5.90 a 490.61 c 34.58 ab 17.29 d 0.498 ab
ZD2 10.27 d 5.80 a 524.62 b 33.74 bc 17.25 d 0.512 a
1990s SD19 11.62 b 5.80 a 558.22 a 35.89 ab 19.18 bc 0.521 a
JD159 11.88 b 5.70 a 576.31 a 36.18 a 19.88 b 0.514 a
2010s XY335 12.27 a 5.80 a 581.50 a 36.38 a 20.14 b 0.524 a
NH101 12.92 a 5.75 a 600.44 a 37.11 a 21.58 a 0.515 a
2019 N3 1970s JD101 9.54 de 5.40 a 520.40 b 33.96 b 18.76 c 0.462 b
ZD2 10.24 d 5.65 a 576.32 a 34.15 b 19.22 bc 0.458 b
1990s SD19 11.64 b 5.60 a 568.93 a 36.54 a 20.56 ab 0.487 a
JD159 11.74 b 5.80 a 560.56 a 36.12 a 21.53 a 0.469 b
2010s XY335 12.09 ab 5.70 a 588.91 a 36.01 a 21.21 a 0.490 ab
NH101 12.52 a 5.85 a 580.34 a 36.58 a 21.54 a 0.500 ab
方差分析Analysis of variance
年度 Year (Y) 1.625ns 0.785ns 2.207ns 23.447* 0.584ns 0.942ns
氮素Nitrogen (N) 277.621** 1.565ns 123.640** 67.592** 187.475** 59.799**
品种 Variety (V) 911.392** 3.478ns 146.265** 1.163ns 29.580** 25.173**
年代 Decade (D) 153.828** 4.574ns 45.062* 36.297** 111.296** 14.986**
年度×品种 Y×V 2.784ns 1.548ns 2.503ns 1.829ns 0.779ns 1.054ns
年度×年代 Y×D 0.047ns 0.035ns 2.035ns 2.374ns 0.277ns 0.763ns

图1

不同年代玉米品种光合特性对不同施氮水平的响应 SS: 吐丝期; DS: 蜡熟期。柱上不同大写字母代表同一施氮水平下不同年代间差异显著(P < 0.05), 不同小写字母代表相同年代品种不同氮水平间差异显著(P < 0.05)。"

图2

不同年代玉米品种吐丝期和蜡熟期叶片的光响应曲线 SS: 吐丝期; DS: 蜡熟期。"

表4

不同年代玉米品种叶片的光响应参数"

时期
Stage
年代
Decade
AQE
(mol mol-1)
Pn,max
(μmol CO2 m-2 s-1)
LSP
(μmol m-2 s-1)
LCP
(μmol m-2 s-1)
Rd
(μmol m-2 s-1)
相关系数
Correlation coefficient
吐丝期
Silking stage
1970s 0.060 31.92 1709.66 62.81 4.08 0.999
1990s 0.061 34.32 1899.55 73.73 4.84 1.000
2010s 0.063 36.52 1855.84 82.09 5.36 0.999
蜡熟期
Dough stage
1970s 0.064 23.10 1814.14 56.42 3.59 0.999
1990s 0.065 24.21 1840.08 65.19 4.62 0.998
2010s 0.067 26.33 1887.80 70.33 4.84 0.999

表5

不同年代玉米品种叶片生理特征对不同施氮水平的响应"

生育时期Stage 指标
Index
年代
Decade
氮素水平Nitrogen level
N0 N1 N2 N3
吐丝期
Silking stage
单株叶面积
Leaf area per plant
(cm2 plant-1)
1970s 5219.43±123.3 Bc 6524.62±300.1 Bb 6902.56±276.1 Bb 7742.53±245.9 Aa
1990s 5631.56±266.9 Ad 6692.57±244.3 ABc 7336.94±330.2 ABb 8060.50±500.1 Aa
2010s 5910.65±437.3 Ac 6972.69±348.6 Ab 7686.31±192.1 Aa 8164.42±3665.2 Aa
比叶重
SLW
(g m-2)
1970s 40.24±0.21 Bd 44.99±0.20 Ac 50.00±1.56 Ab 54.82±0.30 Aa
1990s 42.84±1.71 ABc 43.86±0.34 Ac 49.46±0.58 ABb 53.49±1.35 Aa
2010s 43.78±1.13 Ac 43.64±0.15 Ac 46.56±3.04 Bb 51.28±0.89 Aa
单位质量含氮量
Nmass
(g kg-1)
1970s 19.13±0.46 Bc 23.14±1.19 Bb 29.50±1.38 Aa 31.27±0.39 Aa
1990s 19.81±0.34 ABc 23.62±0.59 Bb 31.59±0.86 Aa 32.45±0.29 Aa
2010s 20.75±0.43 Ac 25.29±0.37 Ab 31.85±0.20 Aa 32.62±0.21 Aa
单位面积含氮量
Narea
(g m-2)
1970s 0.78±0.02 Cd 1.04±0.06 Ac 1.48±0.07 Ab 1.69±0.03 Aa
1990s 0.85±0.02 Bd 1.06±0.05 Ac 1.53±0.06 Ab 1.74±0.06 Aa
2010s 0.91±0.00 Ad 1.10±0.02 Ac 1.47±0.11 Ab 1.69±0.04 Aa
光合氮利用率
PNUE
(μmol g-1 N s-1)
1970s 27.83±0.07 Aa 24.10±1.22 Ab 18.53±1.08 Cc 15.52±0.55 Bd
1990s 28.29±0.75 Aa 25.42±0.84 Ab 20.08±0.34 Bb 15.94±0.50 Bb
2010s 27.15±0.47 Aa 25.77±1.04 Aa 21.87±1.48 Ab 17.72±0.79 Ac
蜡熟期
Dough stage
单株叶面积
Leaf area per plant
(cm2 plant-1)
1970s 3159.52±157.9 Cc 4656.47±148.9 Ab 4965.56±300.6 Bb 5352.51±106.9 Ba
1990s 3501.79±196.1 Bd 4926.96±200.3 Ac 5225.78±200.1 ABb 5648.82±268.8 Ba
2010s 4714.35±279.1 Ad 5212.35±225.6 Ac 5785.89±121.3 Ab 6223.25±201.9 Aa
比叶重
SLW
(g m-2)
1970s 39.22±1.09 Bc 44.33±0.91 Ab 49.23±2.52 Aa 50.50±3.29 Aa
1990s 42.13±0.19 Ab 43.95±1.30 Ab 47.25±0.33 ABa 49.46±1.85 ABa
2010s 42.79±0.28 Aa 43.77±0.06 Aa 45.93±1.06 Ba 45.56±0.21 Ba
单位质量含氮量
Nmass
(g kg-1)
1970s 16.62±1.09 Bd 19.32±0.58 Bc 21.25±0.29 Bb 27.48±0.01 Aa
1990s 17.95±1.11 Ad 20.59±0.42 ABc 22.75±0.80 Ab 27.06±1.17 Aa
2010s 17.84±0.79 Ad 21.70±0.41 Ac 23.60±0.34 Ab 26.42±0.37 Aa
单位面积含氮量
Narea
(g m-2)
1970s 0.65±0.02 Cd 0.86±0.01 Bc 1.05±0.02 Ab 1.39±0.03 Aa
1990s 0.76±0.05 Bd 0.91±0.05 ABc 1.08±0.03 Ab 1.34±0.04 Aa
2010s 0.83±0.03 Ac 0.94±0.02 Ab 1.08±0.02 Aa 1.20±0.06 Aa
光合氮利用率
PNUE
(μmol g-1 N s-1)
1970s 23.80±2.14 Aa 21.72±0.61 Ab 19.37±1.16 Cc 15.87±0.87 Cd
1990s 24.71±0.86 Aa 22.69±1.33 Ab 21.37±0.68 Bb 18.04±0.82 Bc
2010s 24.70±1.05 Aa 23.04±1.61 Aab 22.90±1.11 Ab 20.94±0.44 Ac

图3

比叶重(SLW)、单位面积含氮量(Narea)与净光合速率(Pn)、光合氮利用效率(PNUE)的关系"

[1] 慈晓科, 张世煌, 谢振江, 徐家舜, 卢振宇, 茹高林, 张德贵, 李新海, 谢传晓, 白丽, 李明顺, 董树亭. 1970-2000年代玉米单交种的遗传产量增益分析方法的比较. 作物学报, 2010, 36: 2185-2190.
doi: 10.3724/SP.J.1006.2010.02185
Ci X K, Zhang S H, Xie Z J, Xu J S, Lu Z Y, Ru G L, Zhang D G, Li X H, Xie C X, Bai L, Li M S, Dong S T. Comparison of analysis method of genetic yield gain for the single-cross hybrids released during 1970s-2000s. Acta Agron Sin, 2010, 36: 2185-2190. (in Chinese with English abstract)
[2] Niu X K, Xie R Z, Liu X, Zhang F L, Li S K, Gao S J. Maize yield gains in northeast China in the last six decades. J Integr Agric, 2013, 12: 630-637.
doi: 10.1016/S2095-3119(13)60281-6
[3] 史新海, 赵格. 山东省紧凑型玉米杂交种主要农艺性状对产量的影响及其演变规律的研究. 玉米科学, 2003, 11(2): 59-61.
Shi X H, Zhao G. Studies on effect of major agronomic characters of maize hybrid on maize yield and its development rule in Shandong Province. J Maize Sci, 2003, 11(2): 59-61. (in Chinese with English abstract)
[4] Yan Y Y, Hou P, Duan F Y, Dai T B, Wang K R, Zhao M, Li S K, Zhou W B. Improving photosynthesis to increase grain yield potential: an analysis of maize hybrids released in different years in China. Photosynth Res, 2021, 150: 295-311.
doi: 10.1007/s11120-021-00847-x
[5] 牛平平, 穆心愿, 张星, 杨春收, 李潮海. 不同年代玉米品种根系对低氮干旱胁迫的响应分析. 作物学报, 2015, 41: 1112-1120.
doi: 10.3724/SP.J.1006.2015.01112
Niu P P, Mu X Y, Zhang X, Yang C S, Li C H. Response of roots of maize varieties released in different years to low nitrogen and drought stresses. Acta Agron Sin, 2015, 41: 1112-1120. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01112
[6] Borrás L, Otegui M E. Maize kernel weight response to post-flowering source-sink ratio. Crop Sci, 2001, 41: 1816-1822.
doi: 10.2135/cropsci2001.1816
[7] Yang L F, Yan J J, Cai Z C. Effects of N-applications and photosynthesis of maize (Zea mays L.)on soil respiration and its diurnal variation. Front Agric China, 2010, 4: 42-49.
doi: 10.1007/s11703-009-0088-9
[8] Ding L, Wang K J, Jiang G M, Liu M Z, Niu S L. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Res, 2005, 93: 108-115.
doi: 10.1016/j.fcr.2004.09.008
[9] Hikosaka K. Interspecific difference in the photosynthesis nitrogen relationship: patterns, physiological causes, and ecological importance. J Plant Res, 2004, 117: 481-494.
pmid: 15583974
[10] Poorter H, Niinemets L, Poorter L, Wright I J, Villar R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol, 2009, 182: 565-588.
doi: 10.1111/nph.2009.182.issue-3
[11] Craufurd P Q, Wheeler R H, Elli R J, Summerfield R J, Williams J H. Effect of temperature and water deficit on water-use efficiency, carbon isotope discrimination, and specific leaf area in peanut. Crop Sci, 1999, 39: 136-142.
doi: 10.2135/cropsci1999.0011183X003900010022x
[12] Niinemets Ü, Sack L. Progress in Botany. Springer, Berlin, Heidelberg 2006. pp 385-419.
[13] Hassiotou F, Renton M, Ludwig M, Evanset J R, Veneklaas E J. Photosynthesis at an extreme end of the leaf trait spectrum: how does it relate to high leaf dry mass per area and associated structural parameters? J Exp Bot, 2010, 61: 3015-3028.
doi: 10.1093/jxb/erq128 pmid: 20484320
[14] Diaz S, Lavorel S, Bello de F, Quetier F, Grigulis K, Robson M. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA, 2007, 104: 20684-20689.
doi: 10.1073/pnas.0704716104 pmid: 18093933
[15] Galmés J, Conesa M À, Ochogavía J M, Perdomo J A, Francis D M, Ribascarbó M, Savé R, Flexas J, Medrano H, Cifre J. Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant Cell Environ, 2011, 34: 245-260.
doi: 10.1111/pce.2011.34.issue-2
[16] Gastal F, Lemaire G. N uptake and distribution in crops: an agronomical and ecophysiological perspective. J Exp Bot, 2002, 53: 789-799.
pmid: 11912222
[17] 崔菁菁, 徐克章, 武志海, 陈展宇, 张治安, 吴春胜. 不同年代水稻品种叶片氮含量变化及其与净光合速率的关系. 西北农林科技大学学报(自然科学版), 2016, 44(7): 70-78.
Cui J J, Xu K Z, Wu Z H, Chen Z Y, Zhang Z A, Wu C S. Change of nitrogen content in leaf and its correlation with net photosynthetic rate of rice cultivars in different years. J Northwest Sci Tech Univ Agric For (Nat Sci Edn), 2016, 44(7): 70-78. (in Chinese with English abstract)
[18] 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响. 植物生态学报, 2018, 42: 672-680.
doi: 10.17521/cjpe.2018.0033
Zhu Q L, Xiang R, Tang L, Long G Q. Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition. Acta Phytophysiol Sin, 2018, 42: 672-680. (in Chinese with English abstract)
[19] 张彦群, 王建东, 龚时宏, 隋娟. 滴灌条件下冬小麦施氮增产的光合生理响应. 农业工程学报, 2015, 31(6): 170-177.
Zhang Y Q, Wang J D, Gong S H, Sui J. Photosynthetic response of yield enhancement by nitrogen fertilization in winter wheat fields with drip irrigation. Trans CSAE, 2015, 31(6): 170-177. (in Chinese with English abstract)
[20] Evans J R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 1989, 78: 9-19.
doi: 10.1007/BF00377192 pmid: 28311896
[21] 曹玉军, 路明, 都钧, 吕艳杰, 姚凡云, 魏雯雯, 刘志铭, 王虹霏, 刘卓, 王永军. 长期水分亏缺对吉林省不同年代玉米品种光合及物质生产特性的影响. 玉米科学, 2020, 28(3): 119-126.
Cao Y J, Lu M, Du J, Lyu Y J, Yao F Y, Wei W W, Liu Z M, Wang H F, Liu Z, Wang Y J. Effects of long-term water deficit on photosynthesis and dry matter production characteristics of maize varieties released in different eras in Jilin province. J Maize Sci, 2020, 28(3): 119-126. (in Chinese with English abstract)
[22] 李大勇, 陈展宇, 徐克章, 张志安, 武志海, 季平, 张鹏. 不同年代大豆品种叶片氮含量及其与净光合速率的关系. 中国油料作物学报, 2013, 35(2): 171-178.
Li D Y, Chen Z Y, Xu K Z, Zhang Z A, Wu Z H, Ji P, Zhang P. Changes of nitrogen content in leaf and its correlations with net photosynthetic rate of soybean cultivars released in different years. Chin J Oil Crop Sci, 2013, 35(2): 171-178. (in Chinese with English abstract)
[23] 张仁和, 杜伟莉, 郭东伟, 张爱瑛, 胡富亮, 李凤艳, 薛吉全. 陕西省不同年代玉米品种产量和氮效率性状的变化. 作物学报, 2014, 40: 915-923.
doi: 10.3724/SP.J.1006.2014.00915
Zhang R H, Du W L, Guo W D, Zhang A Y, Hu F L, Li F Y, Xue J Q. Changes of grain yield and nitrogen use efficiency of maize hybrids released in different eras in Shaanxi province. Acta Agron Sin, 2014, 40: 915-923. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00915
[24] 王帅, 韩晓日, 战秀梅, 杨劲峰, 王月, 刘轶飞, 李娜. 氮肥水平对玉米灌浆期穗位叶光合功能的影响. 植物营养与肥料学报, 2014, 20(2): 280-289.
Wang S, Han X R, Zhan X M, Yang J F, Wang Y, Liu Y F, Li N. Effect of nitrogenous fertilizer levels on photosynthetic functions of maize ear leaves at grain filling stage. J Plant Nutr, 2014, 20: 280-289. (in Chinese with English abstract)
[25] Carmo-silva E, Andralojc P J, Scales J C, Driever S M, Mead A. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield. J Exp Bot, 2017, 68: 3473-3486.
doi: 10.1093/jxb/erx169 pmid: 28859373
[26] Wells R, Schulze L L, Ashley D A, Boerma H R, Brown R H. Cultivar differences in canopy apparent photosynthesis and their relationship to seed yield in soybeans. Crop Sci, 1982, 22: 886-890.
doi: 10.2135/cropsci1982.0011183X002200040044x
[27] Peng S, Krieg D R, Girma F S, Girma F S. Leaf photosynthetic rate is correlated with biomass and grain production in grain sorghum lines. Photosynth Res, 1991, 28: 1-7.
doi: 10.1007/BF00027171
[28] Cao Y J, Wang L C, Gu W R, Zhang J H, Wang Y J. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. J Integr Agric, 2021, 20: 494-510.
doi: 10.1016/S2095-3119(20)63378-0
[29] Li X, Zhang G Q, Sun B, Zhang S, Zhang Y Q, Liao Y W, Zhou Y H, Xia X J, Shi K, Yu J Q. Stimulated leaf dark respiration in tomato in an elevated carbon dioxide atmosphere. Sci Rep, 2013, 3: 3433.
doi: 10.1038/srep03433 pmid: 24305603
[30] WestobY M, Falster D S, Moles A T, Vesk P A, Wright I J. Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst, 2002, 33: 125-159.
doi: 10.1146/ecolsys.2002.33.issue-1
[31] Poorter L, Bongers F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 2006, 87: 1733-1743.
pmid: 16922323
[32] Amanullah. Specific Leaf area and specific leaf weight in small grain crops wheat, rye, barley, and oats differ at various growth stages and NPK source. J Plant Nutr, 2015, 38: 1694-1708.
doi: 10.1080/01904167.2015.1017051
[33] Amanullah, Zakirullah M, Tariq M, Nawab K,. Levels and time of phosphorus application influence growth, dry matter partitioning and harvest index in maize. Pak J Bot, 2010, 42: 4051-4061.
[34] 刘涛, 鲁剑巍, 任涛, 李小坤, 丛日环. 不同氮水平下冬油菜光合氮利用效率与光合器官氮分配的关系. 植物营养与肥料学报, 2016, 22: 518-524.
Liu T, Lu J W, Ren T, Li X K, Cong R H. Relationship between photosynthetic nitrogen use efficiency and nitrogen allocation in photosynthetic apparatus of winter oilseed rape under different nitrogen levels. J Plant Nutr, 2016, 22: 518-524. (in Chinese with English abstract)
[35] Terashima I, Hanba Y T, Tholen D, Niinemets Ü. Leaf functional anatomy in relation to photosynthesis. Plant Physiol, 2011, 155: 108-116.
doi: 10.1104/pp.110.165472 pmid: 21075960
[36] Onoda Y, Wright I J, Evans J R, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosens T, Westoby M. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol, 2017, 214: 1447-1463.
doi: 10.1111/nph.14496 pmid: 28295374
[37] Ye M, Peng S B, Li Y.Intraspecific variation in photosynthetic nitrogen-use efficiency is positively related to photosynthetic rate in rice (Oryza sativa L.) plants. Photosynthetica, 2019, 57: 311-319.
doi: 10.32615/ps.2019.011
[38] Li D D, Tian M M, Cai J, Jiang D, Cao W X, Dai T B. Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. Plant Growth Regul, 2013, 70: 257-263.
doi: 10.1007/s10725-013-9797-4
[39] Tambussi E A, Nogués S, Araus J L. Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta, 2005, 221: 446-458.
pmid: 15645303
[40] 郑淑霞, 上官周平. 不同功能型植物光合特性及其与叶氮含量、比叶重的关系. 生态学报, 2007, 27: 171-181.
Zheng S X, Shang-Guan Z P. Photosynthetic characteristics and their relationships with leaf nitrogen content and leaf mass per area in different plant functional types. Acta Ecol Sin, 2007, 27: 171-181. (in Chinese with English abstract)
[41] Liu X, Li Y.Varietal difference in the correlation between leaf nitrogen content and photosynthesis in rice (Oryza sativa L.)plants is related to specific leaf weight. J Integr Agric, 2016, 15: 2002-2011.
doi: 10.1016/S2095-3119(15)61262-X
[42] 叶苗.水稻品种间光合特性的差异及其机理研究. 华中农业大学博士学位论文, 湖北武汉, 2016.
Ye M.Studies on the Mechanisms of the Varietal Differences in Leaf Photosynthesis in Oryza sativa L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[43] Onoda Y, Hikosaka K, Hirose T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct Ecol, 2004, 18: 419-425.
doi: 10.1111/fec.2004.18.issue-3
[1] 胡艳娟, 薛丹, 耿嫡, 朱末, 王天穹, 王晓雪. 水稻OsCDF1基因突变效应及其基因组变异分析[J]. 作物学报, 2023, 49(9): 2362-2372.
[2] 房孟颖, 任粱, 卢霖, 董学瑞, 武志海, 闫鹏, 董志强. 乙矮合剂对粒用高粱根系建构和产量的影响[J]. 作物学报, 2023, 49(9): 2528-2538.
[3] 李亦扬, 李远, 赵子胥, 张鼎顺, 杜嘉宁, 吴淑娟, 孙思琦, 陈媛, 张祥, 陈德华, 刘震宇. 土壤增氮对棉铃对位叶Bt杀虫蛋白含量影响及氮代谢机制[J]. 作物学报, 2023, 49(9): 2505-2516.
[4] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[5] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[6] 杨毅, 何志强, 林佳慧, 李洋, 陈飞, 吕长文, 唐道彬, 周全卢, 王季春. 椰糠施用量对土壤理化性状和甘薯产量的影响[J]. 作物学报, 2023, 49(9): 2517-2527.
[7] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[8] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[9] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[10] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[11] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[12] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[13] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
[14] 董志强, 吕丽华, 姚艳荣, 张经廷, 张丽华, 姚海坡, 申海平, 贾秀领. 水氮互作下强筋小麦师栾02-1产量和品质[J]. 作物学报, 2023, 49(7): 1942-1953.
[15] 邓艾兴, 李歌星, 吕玉平, 刘猷红, 孟英, 张俊, 张卫建. 齐穗后遮阴时长对西北稻区粳稻产量和品质的影响[J]. 作物学报, 2023, 49(7): 1930-1941.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .