欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2196-2209.doi: 10.3724/SP.J.1006.2023.21054

• 耕作栽培·生理生化 • 上一篇    下一篇

冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化

杨晓慧(), 王碧胜(), 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝()   

  1. 青岛农业大学农学院, 山东青岛 266109
  • 收稿日期:2022-08-08 接受日期:2023-02-21 出版日期:2023-08-12 网络出版日期:2023-03-03
  • 通讯作者: 王碧胜,房全孝
  • 作者简介:E-mail: yangxiaohui0529@163.com
  • 基金资助:
    国家自然科学基金项目(31671627);山东省自然科学基金青年项目(ZR2021QC113);青岛农业大学博士启动基金项目(6631120069)

Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule

YANG Xiao-Hui(), WANG Bi-Sheng(), SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao()   

  1. College of Agriculture, Qingdao Agricultural University, Qingdao 266109, Shandong, China
  • Received:2022-08-08 Accepted:2023-02-21 Published:2023-08-12 Published online:2023-03-03
  • Contact: WANG Bi-Sheng,FANG Quan-Xiao
  • Supported by:
    National Natural Science Foundation of China(31671627);Youth Program of Shandong Provincial Natural Science Foundation(ZR2021QC113);Qingdao Agricultural University Doctoral Start-up Fund(6631120069)

摘要:

滴灌技术结合节水灌溉制度可显著提高作物水分利用效率, 但针对滴灌条件下冬小麦节水灌溉制度的优化研究相对较少, 利用作物模型优化节水灌溉制度可以弥补田间试验的不足, 对于作物精确灌溉具有重要的指导意义。本研究利用胶东冬小麦滴灌节水试验数据(2016—2019年)评价了根区水质模型(RZWQM-CERES)的适应性, 并模拟评价了不同节水滴灌制度对冬小麦产量和水分利用效率的影响, 以筛选最佳节水滴灌制度。结果表明RZWQM- CERES可以较好地模拟土壤水分、冬小麦生长和产量对不同滴灌处理和季节的响应, 其中模拟0~90 cm土壤贮水量的均方根误差(RMSE)为22.7~32.3 mm、相对均方根误差(NRMSE)为11.9%~16.3%、决定系数(R2)为0.52~0.69, 模拟收获期生物量的RMSE为1184~1904 kg hm-2、NRMSE为9.9%~16.8%、R2为0.67, 模拟产量的RMSE为361~491 kg hm-2、NRMSE为5.7%~7.8%、R2为0.75。长期模拟结果表明该地区冬小麦需水关键期为孕穗期(丰水年和平水年)或拔节期(枯水年)。针对不同降水年型冬小麦产量和水分利用效率对灌溉量的响应差异, 筛选滴灌条件下冬小麦最佳灌溉制度为: 丰水年在拔节期和开花期各灌水45 mm; 平水年(或枯水年)在拔节期、孕穗期及开花期各灌水35 mm (或45 mm)。本研究结果扩展了RZWQM-CERES优化冬小麦滴灌制度的应用潜力, 为实施冬小麦精确灌溉提供了重要的技术支持。

关键词: 冬小麦, 水分胁迫, 滴灌, 灌溉制度, RZWQM-CERES, 作物产量, 水分利用效率

Abstract:

Combining drip irrigation and water-saving irrigation can increase crop use efficiency greatly, however, few studies investigated water-saving irrigation schedule for winter wheat under drip irrigation conditions. Using crop models to optimize water-saving irrigation systems can make up for the shortcomings of field trials, which can provide the guideline for precise irrigation. In this study, we evaluated the adaptability of the Root Zone Water Quality Model and Crop Estimation through Resource and Environment Synthesis (RZWQM-CERES) using the data from a three-year experiment with drip irrigation water conservation for winter wheat at Jiaodong area. Then we evaluated the influences of different water-saving drip irrigation schedules on winter wheat yield and water use efficiency. The results showed that RZWQM-CERES could effectively simulate the responses of soil moisture, winter wheat growth, and yield to different irrigation treatments and seasons. Root mean square error (RMSE), relative root mean square error (NRMSE), and coefficient of determination (R2) for the simulated soil water storage in 0-90 cm layer were 22.7-32.3 mm, 11.9%-16.3%, and 0.52-0.69, respectively. RMSE, NRMSE, and R2 values for simulated harvest above-ground biomass were 1184-1904 kg hm-2, 9.9%-16.8%, and 0.67, respectively. The corresponding values for simulated grain yield were 361-491 kg hm-2, 5.7%-7.8%, and 0.75, respectively. The long-term simulation results revealed that the critical water requirement period of winter wheat in this region was the booting period (in wet years and normal years) or the jointing period (in dry years). According to the different responses of winter wheat yield and water use efficiency to irrigation amounts and timings among the different rainfall patterns, the recommended optimal drip irrigation regimes for winter wheat at this region were 45 mm irrigation at both jointing and flowering stages in wet years, and 35 mm (or 45 mm) irrigations at the jointing, booting, and flowering stages in normal years (or dry years). These simulation results extended RZWQM-CERES to optimize drip irrigation schedule of winter wheat and provided an important technical support for the implementation of precise irrigation for winter wheat in the region.

Key words: winter wheat, water stress, drip irrigation, irrigation schedule, RZWQM-CERES, crop yield, water use efficiency

图1

2016-2019年冬小麦生育期内逐日(a)最高气温(Tmax)和最低气温(Tmin), (b)太阳辐射量及(c)降雨量"

表1

胶州试验站土壤水力学参数的校正结果"

层次
Soil layer
(cm)
类型
Soil type
容重
Bulk density
(g cm-3)
饱和导水率
Saturated hydraulic conductivity
(cm h-1)
田间持水量
Field water capacity at 33 kPa
(cm3 cm-3)
0-3 壤质沙土 Loamy sand 1.49 1.94 (1.52-3.36) 0.20 (0.15-0.32)
3-18 壤土 Loam 1.42 1.52 (1.24-2.98) 0.25 (0.15-0.30)
18-55 粉质壤土 Silty loam 1.42 1.52 (1.28-2.75) 0.29 (0.18-0.35)
55-100 黏质壤土 Clay loam 1.42 1.25 (0.85-2.15) 0.28 (0.20-0.35)
100-150 粉质黏壤土 Silty clay loam 1.32 0.39 (0.14-1.35) 0.31 (0.25-0.35)
150-200 粉质黏壤土 Silty clay loam 1.42 0.19 (0.12-0.44) 0.33 (0.25-0.40)

表2

RZWQM-CERES模型冬小麦遗传参数校正结果"

作物参数
Crop parameter
参数值
Parameter value
校正范围
Value
range
春化作用特性参数 P1V (d) 30 25-60
光周期特性参数 P1D (%) 30 20-50
灌浆期特性参数 P5 (℃ d) 560 400-650
籽粒数特性参数 G1 (gain g-1) 28 20-45
潜在灌浆速率参数 G2 (mg d-1) 30 20-45
花期潜在单茎穗重参数 G3 (g) 1.3 0.5-2.5
出叶间隔特性参数 PHINT (℃) 80 70-90

图2

2016-2019年RZWQM-CERES模拟不同灌溉处理下0~90 cm土壤贮水量(mm)与实测值对比"

表3

2016-2019年RZWQM-CERES模拟不同灌溉处理下0~90 cm土壤贮水量、收获期生物量、产量及农田蒸散量与观测值对比"

项目
Item
处理
Treatment
观测值
Measured
模拟值
Simulated
相对误差
MRE (%)
决定系数
R2
均方根
误差
RMSE
相对均方根
误差
NRMSE (%)
模型有效系数
E
模型校正结果 Calibration results (CK)
土壤贮水量
Soil water storage (mm)
CK 195.93±5.73 199.83±5.41 9.6 0.65 23.36 11.9 0.56
开花期
Flowering stage (day of year)
CK 128.33±1.40 130.33±1.15 1.6 0.99 2.16 1.7
成熟期
Maturity stage (day of year)
CK 159.33±1.50 157.67±1.45 1.0 0.99 1.73 1.1
生物量
Biomass (Mg hm-2)
CK 11.33±1.37 12.69±1.53 14.8 0.83 1.90 16.8
产量
Yield (Mg hm-2)
CK 6.32±1.37 6.59±1.41 4.2 0.99 0.36 5.7
农田蒸散
ET_m2 (mm)
CK 442.41±33.54 427.07±29.78 5.6 0.84 24.47 5.5
模型验证结果 Validation results (T1, T2, T3, T4)
土壤贮水量
Soil water strong (mm)
T1 187.32±5.49 189.74±5.54 10.5 0.69 22.73 12.3 0.55
T2 186.45±5.66 197.18±5.28 15.1 0.69 30.35 16.3 0.24
T3 193.39±5.59 197.52±5.17 13.5 0.52 29.60 15.3 0.26
T4 190.80±5.08 204.67±4.87 15.3 0.54 32.31 15.2 0.27
开花期
Flowering stage (day of year)
T1-T4 127.33±0.62 131.00±0.49 2.9 0.99 3.70 2.9 0.13
成熟期
Maturity stage (day of year)
T1-T4 160.00±0.89 157.67±0.62 1.4 0.98 2.52 1.6 0.27
生物量
Biomass (Mg hm-2)
T1-T4 11.98±1.53 12.66±1.02 8.6 0.67 1.18 9.9 0.36
产量
Yield (Mg hm-2)
T1-T4 6.34±0.88 6.13±0.68 6.3 0.75 0.49 7.8 0.69
农田蒸散
ET_m2 (mm)
T1-T4 410.63±23.89 416.21±31.54 6.6 0.67 29.64 7.2 0.40

图3

2016-2019年RZWQM-CERES模拟不同灌溉处理下动态生物量与实测值对比 缩写同表3。"

图4

2016-2019年RZWQM-CERES模拟不同灌溉处理收获期生物量和产量与实测值对比 缩写同表3。"

图5

2016-2019年RZWQM-CERES模拟不同灌溉处理农田蒸散(ET_S)与不考虑(或考虑)地下水补充的农田蒸散估算值ET_m1 (或ET_m2) (公式1)对比 缩写同表3。"

图6

不同降水年型下RZWQM-CERES模拟的冬小麦产量对灌溉量和灌溉次数的响应 子图标题中字母a为丰水年, b为平水年, c为枯水年; 数字1表示灌溉1次, 2表示灌溉2次, 3表示灌溉3次, 4表示灌溉4次, 5表示灌溉5次。灌溉处理中Rainfed表示雨养, T表示返青期灌溉, J表示拔节期灌溉, B表示孕穗期灌溉, F表示开花期灌溉, G表示灌浆期灌溉。"

图7

不同降水年型下RZWQM-CERES模拟的冬小麦水分利用效率(WUE)对灌溉量和灌溉次数的响应 子图标题中字母a为丰水年, b为平水年, c为枯水年; 数字1表示灌溉1次, 2表示灌溉2次, 3表示灌溉3次, 4表示灌溉4次, 5表示灌溉5次。灌溉处理中Rainfed表示雨养, T表示返青期灌溉, J表示拔节期灌溉, B表示孕穗期灌溉, F表示开花期灌溉, G表示灌浆期灌溉。"

图8

筛选的不同降水年型下最优灌溉量方案的冬小麦产量(Yield)和水分利用效率(WUE) 处理同图6。"

[13] Liu Y, Li Y F, Li J S, Yan H J. Effects of mulched drip irrigation on water and heat conditions in field and maize yield in sub-humid region of northeast China. Trans CSAM, 2015, 46(10): 93-104. (in Chinese with English abstract)
[14] 李楠楠, 马卉, 王秀媛, 李军宏, 韩焕勇, 罗宏海. 滴灌定额对棉花株型、产量及纤维品质的影响. 干旱地区农业研究, 2019, 37(5): 16-21.
Li N N, Ma H, Wang X Y, Li J H, Han H Y, Luo H H. Effects of drip irrigation quota on plant shape, yield and fiber quality of cotton. Agric Res Arid Areas, 2019, 37(5): 16-21. (in Chinese with English abstract)
[15] 王志军, 王碧胜, 孙筱璐, 徐梦杰, 杨晓慧, 侯靳锦, 房全孝. 胶东半湿润区滴灌制度对冬小麦农田土壤水分、作物生长及水分利用的影响. 中国农学通报, 2021, 37(27): 6-15.
doi: 10.11924/j.issn.1000-6850.casb2021-0360
Wang Z J, Wang B S, Sun X L, Xu M J, Yang X H, Hou J J, Fang Q X. Effects of different drip irrigation schedules on soil moisture, wheat growth and water use at Jiaodong Semi-humid Region. Chin Agric Sci Bull, 2021, 37(27): 6-15. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2021-0360
[16] Yang M D, Leghari S J, Guan X K, Ma S C, Ding C M, Mei F J, Wei L, Wang T C. Deficit subsurface drip irrigation improves water use efficiency and stabilizes yield by enhancing subsoil water extraction in winter wheat. Front Plant Sci, 2020, 11: 508-508.
doi: 10.3389/fpls.2020.00508
[17] Zhang H H, Ma L W, Douglas-Mankin K R, Han M, Trout T J.Modeling maize production under growth stage-based deficit irrigation management with RZWQM2. Agric Water Manag, 2021, 248: 106767.
doi: 10.1016/j.agwat.2021.106767
[18] Sima M W, Fang Q X, Qi Z, Yu Q. Direct assimilation of measured soil water content in Root Zone Water Quality Model calibration for deficit-irrigated maize. Agron J, 2020, 112: 844-860.
doi: 10.1002/agj2.v112.2
[19] Ma L W, Trout T J, Ahuja L R, Bausch W C, Saseendran S A, Malone R W, Nielsen D C. Calibrating RZWQM2 model for maize responses to deficit irrigation. Agric Water Manag, 2012, 103: 140-149.
doi: 10.1016/j.agwat.2011.11.005
[20] Fang Q X, Ma L W, Ahuja L R, Trout TJ, Malone R W, Zhang H H, Gui D W, Yu Q. Long-term simulation of growth stage-based irrigation scheduling in maize under various water constraints in Colorado, USA. Front Agric Sci Eng, 2017, 4: 172-184.
doi: 10.15302/J-FASE-2017139
[21] 夏文, 林涛, 褚晓升, 丁奠元, 颜安, 尔晨, 汤秋香. RZWQM2模型模拟地膜覆盖时间对棉田氮素迁移特征和氮肥利用效率的影响. 植物营养与肥料学报, 2022, 28: 114-126.
Xia W, Lin T, Chu X S, Ding D Y, Yan A, Er C, Tang Q X. Effects of mulching time on water use efficiency and yield of cotton in southern Xinjiang simulated by RZWQM2 model. J Plant Nutr Fert, 2022, 28: 114-126. (in Chinese with English abstract)
[22] Ma L, Hoogenboom G, Ahuja L R, Ascough J C, Saseendran S A. Evaluation of the RZWQM-CERES-Maize hybrid model for maize production. Agric Syst, 2006, 87: 274-295.
doi: 10.1016/j.agsy.2005.02.001
[23] 苑晶晶, 袁国富, 罗毅, 孙晓敏, 张娜. 利用δ18O信息分析冬小麦对浅埋深地下水的利用. 自然资源学报, 2009, 24: 360-368.
doi: 10.11849/zrzyxb.2009.02.022
Yuan J J, Yuan G F, Luo Y, Sunday X M, Zhang N. Estimation of groundwater use of winter wheat using H218O signatures: a preliminary study. J Nat Res, 2009, 24: 360-368. (in Chinese with English abstract)
[24] 房全孝. 根系水质模型中土壤与作物参数优化及其不确定性评价. 农业工程学报, 2012, 28(10): 118-123.
Fang Q X. Optimizing and uncertainty evaluation of soil and crop parameters in root zone water quality model. Trans CSAE, 2012, 28(10): 118-123. (in Chinese with English abstract)
[25] Saseendran S A, Ahuja L R, Ma L, Nielsen D C, Trout T J.Enhancing the water stress factors for simulation of corn in RZWQM2. Agron J, 2014, 106(1): 81-94.
doi: 10.2134/agronj2013.0300
[26] Farahani H J, Ahuja L R. Evapotranspiration modeling of partial canopy/residue-covered fields. Trans Asae, 1996, 39: 2051-2064.
doi: 10.13031/2013.27708
[1] 李小涵, 武建军, 雷添杰, 周洪奎. 降水因素导致的水分亏缺对冬小麦产量影响的敏感期分析. 水利水电技术, 2020, 51(8): 209-217.
Li X H, Wu J J, Lei T J, Zhou H K. Analysis on the critical period of winter wheat yield impacted by water deficit caused by precipitation. Water Resour Hydr Eng, 2020, 51(8): 209-217. (in Chinese with English abstract)
[2] Fang Q X, Ma L, Yu Q, Ahuja L R, Malone R W, Hoogenboom G. Irrigation strategies to improve the water use efficiency of wheat- maize double cropping systems in North China Plain. Agric Water Manag, 2010, 97: 1165-1174.
doi: 10.1016/j.agwat.2009.02.012
[3] 李建民, 王璞, 周殿玺, 兰林旺. 灌溉制度对冬小麦耗水及产量的影响. 生态农业研究, 1999, (4): 25-28.
Li J, Wang P, Zhou D X, Lan L W. Effect of irrigation system on water consumption and yield of winter wheat. Ecol Agric Res, 1999, (4): 25-28. (in Chinese with English abstract)
[4] 张喜英. 华北典型区域农田蒸散与节水灌溉研究. 中国生态农业学报, 2018, 26: 1454-1464.
Zhang X Y. Water use and water-saving irrigation in typical farmlands in the North China Plain. Chin J Eco-Agric, 2018, 26: 1454-1464. (in Chinese with English abstract)
[5] 付佳祥, 党红凯, 李晓爽, 柴春岭, 高惠嫣, 王晓玲, 刘宏权. 灌溉制度和品种对冬小麦产量性状和水分利用效率的影响. 中国农村水利水电, 2022, (6): 169-174.
Fu J X, Dang H K, Li X S, Chai C L, Gao H Y, Wang X L, Liu H Q. Effects of irrigation system and variety on yield characters and water use efficiency of winter wheat. Chin Rural Water Hydr, 2022, (6): 169-174. (in Chinese with English abstract)
[6] 呼红伟.不同氮肥条件下非充分灌溉对冬小麦生长、耗水及产量特性研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2020.
[27] 李森, 魏红义, 武继承, 杨永辉, 丁晋利. 不同降水年型下免耕对冬小麦氮素积累与产量的影响. 农业机械学报, 2021, 52(6): 277-284.
Li S, Wei H Y, Wu J C, Yang Y H, Ding J L. Effects of no-tillage on nitrogen accumulation and yield of winter wheat under different precipitation patterns. Trans CSAM, 2021, 52(6): 277-284. (in Chinese with English abstract)
[28] Hu C, Saseendran S A, Green T R, Ma L W, Li X, Ahuja L. Evaluating nitrogen and water management in a double-cropping system using RZWQM. Vadose Zonwe J, 2006, 5: 493-505.
[29] 刘士平, 杨建锋, 李宝庆, 李运生. 新型蒸渗仪及其在农田水文过程研究中的应用. 水利学报, 2000, (3): 31-38.
Liu S P, Yang J F, Li B Q, Li Y S. A new large weighing lysimeter and its application to agro-hydrological process studies. J Hydraul Eng, 2000, (3): 31-38. (in Chinese with English abstract)
[30] 刘坤, 陈新平, 张福锁. 不同灌溉策略下冬小麦根系的分布与水分养分的空间有效性. 土壤学报, 2003, 40: 697-703.
Liu K, Chen X P, Zhang F S. Winter wheat root distribution and soil water and nutrient availability. Acta Pedol Sin, 2003, 40: 697-703. (in Chinese with English abstract)
[31] 张忠学, 于贵瑞. 不同灌水处理对冬小麦生长及水分利用效率的影响. 灌溉排水学报, 2003, (2): 1-4.
Zhang X Z, Yu G R. Effects of irrigation scheduling on development and water use efficiency in winter wheat. J Irrig Drain, 2003, (2): 1-4. (in Chinese with English abstract)
[32] 房全孝, 王建林, 于舜章. 华北平原小麦-玉米两熟制节水潜力与灌溉对策. 农业工程学报, 2011, 27(7): 37-44.
[6] Hu H W. Effect of Deficit Irrigation on Growth, Water Consumption And Yield characteristics of Winter Wheat under Different Nitrogen Fertilizer Conditions. MS Thesis of Northwest Agriculture and Forestry University, Yangling, Shaanxi, China, 2020. (in Chinese with English abstract)
[7] 宋同, 蔡焕杰, 徐家屯. 泾惠渠灌区冬小麦夏玉米连作需水量及灌水模式研究. 灌溉排水学报, 2017, 36(1): 52-56.
Song T, Cai H J, Xu J T. Water requirement and irrigation schedule of winter wheat and summer maize in Jinghuiqu irrigation district. J Irrig Drain, 2017, 36(1): 52-56. (in Chinese with English abstract)
[8] Guo D X, Olesen J E, Manevski K, Ma X. Optimizing irrigation schedule in a large agricultural region under different hydrologic scenarios. Agric Water Manag, 2021, 245: 106575.
doi: 10.1016/j.agwat.2020.106575
[9] 王文佳, 冯浩. 基于CROPWAT-DSSAT关中地区冬小麦需水规律及灌溉制度研究. 中国生态农业学报, 2012, 20: 795-802.
Wang W J, Feng H. Water requirement and irrigation systems of winter wheat: CROPWAT-DSSAT model solution in Guanzhong District. Chin J Eco-Agric, 2012, 20: 795-802. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2012.00795
[10] 房全孝, 于强, 王建林. 利用RZWQM-CERES模拟华北平原农田土壤水分动态及其对作物产量的影响. 作物学报, 2009, 35: 1122-1130.
Fang Q X, Yu Q, Wang J L. Simulating soil water dynamics and its effects on crop yield using RZWQM-CERES in the North China Plain. Acta Agron Sin, 2009, 35: 1122-1130. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.01122
[11] Xu J T, Wang X Y, Ding Y B, Mu Q, Cai H J, Ma C G, Saddique Q. Effects of irrigation and nitrogen fertilization management on crop yields and long-term dynamic characteristics of water and nitrogen transport at deep soil depths. Soil Tillage Res, 2020, 198: 104536.
doi: 10.1016/j.still.2019.104536
[12] 李前, 秦裕波, 尹彩侠, 孔丽丽, 王蒙, 侯云鹏, 孙博, 赵胤凯, 徐晨, 刘志全. 滴灌施肥模式对玉米产量、养分吸收及经济效益的影响. 中国农业科学, 2022, 55: 1604-1616.
doi: 10.3864/j.issn.0578-1752.2022.08.011
Li Q, Qin Y B, Yin C X, Kong L L, Wang M, Hou Y P, Sun B, Zhao Y K, X C, Liu Z Q. Effect of drip fertigation mode on maize yield, nutrient uptake and economic benefit. Sci Agric Sin, 2022, 55: 1604-1616. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.08.011
[13] 刘洋, 栗岩峰, 李久生, 严海军. 东北半湿润区膜下滴灌对农田水热和玉米产量的影响. 农业机械学报, 2015, 46(10): 93-104.
[32] Fang Q X, Wang J L, Yu S Z. Water-saving potential and irrigation strategies for wheat-maize double cropping system in the North China Plain. Trans CSAE, 2011, 27(7): 37-44. (in Chinese with English abstract)
[33] 史源.灌水总量与灌溉技术约束下华北典型区域冬小麦灌溉制度优化研究. 中国水利水电科学研究院博士学位论文, 2019.
Shi Y.Study on the Optimized Irrigation Schedule of Winter Wheat in Typical Regions of North China under the Constraints of Irrigation Amount and Irrigation Technique. PhD Dissertation of China Institute of Water Resources and Hydropower Research, Beijing, China, 2019. (in Chinese with English abstract)
[34] Gu Z, Qi Z, Burghate R, Yuan S Q, Jiao X Y. Irrigation scheduling approaches and applications: a review. J Irrig Drain Eng, 2020, 146(6). doi: 10.1061/(ASCE)IR.1943-4774.0001464.
doi: 10.1061/(ASCE)IR.1943-4774.0001464.
[1] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[2] 王玉珑, 于爱忠, 吕汉强, 吕奕彤, 苏向向, 王鹏飞, 柴健. 绿洲灌区麦后复种绿肥并还田对翌年玉米根系性状及水分利用效率的影响[J]. 作物学报, 2023, 49(5): 1350-1362.
[3] 张金鑫, 葛均筑, 马玮, 丁在松, 王新兵, 李从锋, 周宝元, 赵明. 华北平原冬小麦-夏玉米种植体系周年水分高效利用研究进展[J]. 作物学报, 2023, 49(4): 879-892.
[4] 王雪, 谷淑波, 林祥, 王威雁, 张保军, 朱俊科, 王东. 微喷补灌水肥一体化对冬小麦产量及水分和氮素利用效率的影响[J]. 作物学报, 2023, 49(3): 784-794.
[5] 高春华, 冯波, 李国芳, 李宗新, 李升东, 曹芳, 慈文亮, 赵海军. 施氮量对花后高温胁迫下冬小麦籽粒淀粉合成的影响[J]. 作物学报, 2023, 49(3): 821-832.
[6] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判[J]. 作物学报, 2023, 49(2): 570-582.
[7] 张翔宇, 胡鑫慧, 谷淑波, 林祥, 殷复伟, 王东. 减氮条件下分期施钾对冬小麦籽粒产量和氮素利用效率的影响[J]. 作物学报, 2023, 49(2): 447-458.
[8] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响[J]. 作物学报, 2023, 49(1): 277-285.
[9] 王海琪, 王荣荣, 蒋桂英, 尹豪杰, 晏世杰, 车子强. 施氮量对滴灌春小麦叶片光合生理性状的影响[J]. 作物学报, 2023, 49(1): 211-224.
[10] 张少华, 段剑钊, 贺利, 井宇航, 郭天财, 王永华, 冯伟. 基于无人机平台多模态数据融合的小麦产量估算研究[J]. 作物学报, 2022, 48(7): 1746-1760.
[11] 赵影星, 王彪, 刘晴, 宋彤, 张学鹏, 陈源泉, 隋鹏. 黑龙港平原基于麦-玉复种的两年轮作模式农田水分消耗特征研究[J]. 作物学报, 2022, 48(7): 1787-1779.
[12] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[13] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[14] 郑云普, 常志杰, 韩怡, 卢云泽, 陈文娜, 田银帅, 殷嘉伟, 郝立华. 土壤水分亏缺和大气CO2浓度升高对冬小麦光合特性的影响[J]. 作物学报, 2022, 48(11): 2920-2933.
[15] 杨恒山, 张雨珊, 葛选良, 李维敏, 郭子赫, 郭暖. 浅埋滴灌下不同滴灌量对玉米花后碳代谢和光合氮素利用效率的影响[J]. 作物学报, 2022, 48(10): 2614-2624.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .