欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2614-2624.doi: 10.3724/SP.J.1006.2022.13061

• 耕作栽培·生理生化 • 上一篇    下一篇

浅埋滴灌下不同滴灌量对玉米花后碳代谢和光合氮素利用效率的影响

杨恒山(), 张雨珊, 葛选良, 李维敏, 郭子赫, 郭暖   

  1. 内蒙古民族大学农学院 / 内蒙古自治区饲用作物工程技术研究中心, 内蒙古通辽 028043
  • 收稿日期:2021-10-28 接受日期:2022-02-25 出版日期:2022-10-12 网络出版日期:2022-04-05
  • 通讯作者: 杨恒山
  • 基金资助:
    国家自然科学基金项目(32160509)

Effects of different amount of drip irrigation on carbon metabolism and photosynthetic nitrogen utilization efficiency of maize after anthesis under shallow buried drip irrigation

YANG Heng-Shan(), ZHANG Yu-Shan, GE Xuan-Liang, LI Wei-Min, GUO Zi-He, GUO Nuan   

  1. College of Agronomy, Inner Mongolia Minzu University / Engineering Research Center of Forage Crops of Inner Mongolia Autonomous, Tongliao 028043, Inner Mongolia, China
  • Received:2021-10-28 Accepted:2022-02-25 Published:2022-10-12 Published online:2022-04-05
  • Contact: YANG Heng-Shan
  • Supported by:
    National Natural Science Foundation of China(32160509)

摘要:

为探明浅埋滴灌下不同滴灌量对玉米花后碳代谢和光合氮利用效率的影响, 以传统畦灌常规灌量(4000 m3 hm-2)为对照, 设置浅埋滴灌传统畦灌常规灌量40% (W1: 1600 m3 hm-2)、50% (W2: 2000 m3 hm-2)和60% (W3: 2400 m3 hm-2) 3个处理, 研究浅埋滴灌下不同滴灌量玉米产量和花后叶源特性、光合特性、光合碳代谢关键酶活性、光合氮素利用效率、非结构性碳水化合物含量的变化特征。结果表明, 2018—2020年玉米籽粒产量W3与CK差异不显著, W2和W1均显著低于CK, 3年产量平均降低3.91%和11.18%; 滴灌下W3产量与W2差异均不显著, 但显著高于W1, 3年平均产量分别较W1增加17.56%、9.06%和9.56%。开花期W3和CK瞬时光合利用率、瞬时水分利用效率和瞬时羧化速率均较高且二者差异均不显著, W1均最低, 气孔限制值的表现则相反。叶源特性和光合碳代谢相关酶活性花后30 d至成熟期W1和W2均低于W3, W3优于CK, 其中, 单株叶面积、比叶重、穗位叶叶绿素含量和光合势W3较CK平均提高了20.29%、3.03%、14.80%和21.37%, 1,5-二磷酸核酮糖羧化酶、丙酮酸磷酸双激酶、苹果酸酶、苹果酸脱氢酶和磷酸烯醇式丙酮酸羧化酶活性W3分别较CK提高19.66%、12.53%、10.67%、21.17%和11.72%。花后至花后50 d, CK和W3光合氮素利用效率均较高且二者差异不显著, 其中花后20 d至50 d CK和W3均显著高于W1, 花后50 d至成熟期W3分别较CK、W2和W1提高3.24%、3.29%和7.40%。花后50 d至成熟期W3蔗糖最高且与CK、W1的差异显著, W3分别较W2、CK和W1提高11.31%、14.02%和43.48%; 花后30 d至成熟期W3可溶性糖含量均最高, W3分别较W2、CK和W1提高14.06%、17.78%和34.20%; 花后50 d至成熟期CK淀粉含量最高且与W3的差异不显著, CK分别较W3、W2和W1提高8.01%、14.52%和26.69%。由此可见, 浅埋滴灌下灌量达传统畦灌常规灌量60%时, 玉米花后叶源特性较好, 光合碳代谢酶活性较强, 光合氮素利用效率、非结构性碳水化合物含量和产量均较高, 可为玉米合理灌溉和节水稳产提供理论指导。

关键词: 浅埋滴灌, 滴灌量, 玉米, 碳代谢, 光合氮素利用效率

Abstract:

The objective of this study is to explore the effects of different amount of drip irrigation on carbon metabolism and photosynthetic nitrogen use efficiency of maize after anthesis under shallow buried drip irrigation. Three treatments of irrigation amount 40% (W1: 1600 m3 hm-2), 50% (W2: 2000 m3 hm-2), and 60% (W3: 2400 m3 hm-2) of traditional border irrigation (4000 m3 hm-2) were set to study dynamic characteristics of leaf source, photosynthesis, activities of photosynthetic carbon metabolism enzyme, photosynthetic nitrogen use efficiency, content of non-structural carbohydrate after anthesis, and yield of different amount drip irrigation under shallow buried drip irrigation. The results showed that there was no significant difference on mean yield between CK and W3, while W2 and W1 were both significantly lower than CK and the annual average yield of W2 and W1 respectively decreased by 3.91% and 11.18% compared with that of CK from 2018 to 2020. There was also no significant difference on yield W3 and W2, while W3 was significantly higher than W1. Compared with W1, the annual yield of W3 increased by 17.56%, 9.06%, and 9.56%, respectively. The instantaneous photosynthetic efficiency, instantaneous water use efficiency, and instantaneous carboxylation rate of W3 and CK were both higher at flowering stage and was the lowest in W1, while the performance of stomatal limit was the opposite. The leaf source characteristics and activities of photosynthetic carbon metabolism enzyme of W2 and W1 were both lower than W3 from 30 days after anthesis to maturity, in which the leaf area, specific leaf quality, content of chlorophyll, and LAD of W3 increased by 20.29%, 3.03%, 14.80%, and 21.37%, respectively. Compared with CK, the activities of 1,5-diphosphate ribulose carboxylase, pyruvate phosphate double kinase, malase, malate dehydrogenase, and phosphoenolpyruvate carboxylase of W3 increased by 19.66%, 12.53%, 10.67%, 21.17%, and 11.72%, respectively. There was no significant difference between the photosynthetic nitrogen use efficiency of CK and W3, which were both higher than W1 from 20 to 50 days after anthesis. Compared with W2, W1, and CK from 50th day after anthesis to maturity, the photosynthetic nitrogen use efficiency of W3 increased by 3.24%, 3.29%, and 7.40%, respectively. Compared with W2, CK, and W1, the sucrose content of W3 were the highest from the 50th day after anthesis to maturity of which increased by 11.31%, 14.02%, and 43.48% respectively. Compared with W2, CK and W1 from the 30th day after anthesis to maturity, the soluble sugar content of W3 was the highest from the 30th day after anthesis to maturity and W3 increased by 14.06%, 17.78%, and 34.20%, respectively. Compared with CK, W2, and W1, the starch content of CK had no significant difference with W3, which was the highest from the 50th day after anthesis to maturity, increased by 3.35%, 7.58%, and 24.93%, respectively. Consequently, when irrigation amount reached to 60% of normal irrigation amount of traditional border irrigation, maize under the shallow buried drip irrigation had better leaf source characteristics, strong activities of photosynthetic carbon metabolism enzyme, photosynthetic nitrogen use efficiency, non-structural carbohydrate content and yield, which could provide theoretical guide for rational irrigation, water saving and yield stability of maize.

Key words: shallow buried drip irrigation, amount of drip irrigation, maize, carbon metabolism, photosynthetic nitrogen utilization efficiency

表1

试验地点玉米生长季降水量概况"

年份
Year
4月
April
5月
May
6月
June
7月
July
8月
August
9月
September
10月
October
生长季
Growing season
1960-2020 14.8 34.6 71.4 106.9 85.1 28.4 17.9 359.3
2018 12.4 34.0 66.4 96.9 147.7 14.6 12.9 384.9
2019 2.5 90.1 88.7 56.6 130.2 9.2 18.3 395.6
2020 7.0 111.2 94.3 157.1 90.3 85.6 4.3 549.8
2018-2020 7.3 78.4 83.1 103.5 122.7 36.5 11.8 443.4

表2

不同处理灌溉方案"

处理
Treatment
灌水定额Irrigation quota (m3 hm-2) 灌溉定额总量
Total irrigation quota
(m3 hm-2)
灌溉频次
Irrigation frequency
播种-出苗期
Seeding-Emergence
拔节期-小喇叭口期
Jointing-Trumpet
大喇叭口期-吐丝期
Great trumpet-Spinning
吐丝期-灌浆期
Spinning-Grouting
灌浆期-成熟期
Grouting-Mature
1 550 240 220+220 150 110+110 1600 7
W2 550 335 300+300 215 150+150 2000 7
W3 550 425 385+385 275 190+190 2400 7
CK 550 575 1150 1150 575 4000 5

表3

不同处理追肥方案"

处理
Treatment
播种-出苗期
Seeding-Emergence
拔节期-小喇叭口期
Jointing-Trumpet
大喇叭口期-吐丝期
Great trumpet- Spinning
吐丝期-灌浆期
Spinning-Grouting
灌浆期-成熟期
Grouting-Mature
追肥总量
Total amount of topdressing
W1/W2/W3 0 172.8 345.6 57.6 0 576.0
CK 0 576.0 0 0 0 576.0

表4

不同滴灌量对玉米产量和产量构成因素的影响"

年份
Year
滴灌量
Drip irrigation amount
有效穗数
Effective panicles
(×104 ear hm-2)
穗粒数
Grains per ear
(grain)
千粒重
1000-grain weight
(g)
产量
Yield
(t hm-2)
2018 W1 8.50 a 415 c 335.8 c 11.05 c
W2 8.51 a 423 ab 350.8 b 12.63 b
W3 8.57 a 427 a 354.2 ab 12.99 ab
CK 8.52 a 429 a 362.3 a 13.04 a
2019 W1 8.47 a 415 b 345.7 c 12.03 c
W2 8.48 a 429 ab 351.4 b 12.53 bc
W3 8.51 a 438 a 359.3 ab 13.12 ab
CK 8.49 a 431 a 363.6 a 13.20 a
2020 W1 8.40 a 421 c 342.9 c 12.12 c
W2 8.49 a 436 b 348.2 b 12.92 b
W3 8.52 a 443 a 354.6 ab 13.28 ab
CK 8.49 a 436 b 361.8 a 13.39 a

图1

不同滴灌量对玉米花后叶源特性的影响(2020) 处理同表2。DAA 0、10、20、30、40、50和60分别代表开花期、花后10 d、花后20 d、花后30 d、花后40 d、花后50 d和完熟期。a: 叶面积; b: 比叶重; c: 叶绿素; d: 光合势。"

图2

不同滴灌量对玉米花后光合特性的影响(2020) 处理同表2。不同小写字母表示处理间在0.05水平差异显著。a: 瞬时光能利用率; b: 瞬时水分利用效率; c: 气孔限制值; d: 瞬时羧化速率。"

图3

不同滴灌量对玉米花后光合碳代谢酶活性的影响(2020) 处理同表2, 时期同图1。a: 核酮糖-1,5-二磷酸羧化酶; b: 丙酮酸磷酸二激酶; c: 苹果酸酶; d: 苹果酸脱氢酶; e: 磷酸烯醇式丙酮酸羧化酶。"

表5

不同滴灌量对玉米花后光合氮素利用效率的影响(2020)"

指标
Index
处理
Treatment
日期Date
DAA0 DAA10 DAA20 DAA30 DAA40 DAA50 DAA60
单位质量含氮量
Nitrogen content per unit mass (g kg-1)
W1 20.18 c 18.76 b 18.22 b 18.73 c 17.85 c 17.71 b 16.17 c
W2 21.31 b 19.41 ab 19.55 ab 19.04 bc 18.31 bc 17.95 ab 17.08 bc
W3 22.65 a 20.85 a 20.07 a 20.06 a 19.37 a 18.26 a 18.64 a
CK 22.08 ab 20.08 ab 19.61 ab 19.45 ab 18.94 ab 18.42 a 18.02 b
单位面积含氮量
Nitrogen content per unit area (mg cm-2)
W1 0.10 c 0.10 b 0.09 b 0.10 b 0.09 b 0.09 b 0.10 b
W2 0.11 b 0.10 b 0.10 a 0.10 b 0.10 a 0.10 a 0.11 ab
W3 0.12 a 0.11 a 0.10 a 0.11 a 0.10 a 0.11 a 0.12 a
CK 0.11 b 0.11 a 0.10 a 0.10 b 0.10 a 0.10 a 0.11 ab
净光合速率
Net photosynthetic rate (μmol m-2 s-1)
W1 19.88 b 19.34 c 17.45 c 17.32 c 14.98 c 14.00 c 13.38 c
W2 20.65 ab 19.78 bc 19.32 b 18.43 b 16.59 ab 16.21 b 14.35 b
W3 22.19 a 22.08 a 20.55 a 20.37 a 18.63 a 17.24 a 16.93 a
CK 22.45 a 21.60 ab 19.86 ab 19.79 b 18.84 a 16.73 ab 14.69 b
光合氮素利用效率
Photosynthetic nitrogen use efficiency
(μmol CO2 g-1 s-1)
W1 19.14 ab 19.79 ab 18.56 c 17.76 b 16.47 b 14.78 b 13.31 b
W2 18.96 b 19.52 b 19.16 b 18.31 ab 16.87 ab 15.92 a 13.29 b
W3 19.19 ab 20.18 a 19.74 a 18.96 ab 17.83 a 16.36 a 13.82 a
CK 19.75 a 20.28 a 19.57 ab 19.19 a 18.85 a 16.00 a 13.23 b

图4

不同滴灌量对玉米花后非结构性碳水化合物含量的影响(2020) 处理同表2, 时期同图1。a: 蔗糖; b: 可溶性糖; c: 淀粉。"

[1] 康绍忠. 水安全与粮食安全. 中国生态农业学报, 2014, 22: 880-885.
Kang S Z. Towards water and food security in China. Chin J Eco-Agric, 2014, 22: 880-885. (in Chinese with English abstract)
[2] Yang H, Du T S, Qiu R J, Chen J L, Wang F, Li Y, Wang C X, Gao L H, Kang S Z. Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agric Water Manage, 2017, 79: 193-204.
[3] 胡琦, 潘学标, 邵长秀. 内蒙古作物生长季降水资源空间分布及月尺度旱情特征分析. 干旱区资源与环境, 2014, 28(10): 61-67.
Hu Q, Pan X B, Shao C X. The distribution of precipitation during crop growth season and the monthly drought characteristics in Inner Mongolia. J Arid Res Environ, 2014, 28(10): 61-67. (in Chinese with English abstract)
[4] 越昆, 武荣盛, 桑婧, 姜少杰. 内蒙古春玉米气候适宜度变化特征及评价指标. 干旱地区农业研究, 2021, 39(3): 209-217.
Yue K, Wu R S, Sang Q, Jiang S J. Variation characteristics and indexes of climatic suitability of spring maize in Inner Mongolia. Agric Res Arid Areas, 2021, 39(3): 209-217. (in Chinese with English abstract)
[5] 郭金路, 谷健, 尹光华, 李雪. 辽西半干旱区浅埋式滴灌对春玉米耗水特性及产量的影响. 生态学杂志, 2017, 36: 2514-2520.
Guo J L, Gu J, Yin G H, Li X. Effect of shallow-buried drip irrigation on water consumption characteristics and yield of spring maize in semi-arid region of western Liaoning. Chin J Ecol, 2017, 36: 2514-2520. (in Chinese with English abstract)
[6] 梅园雪, 冯玉涛, 冯天骄, 汪伟, 孙宝忠. 玉米浅埋滴灌节水种植模式产量与效益分析. 玉米科学, 2018, 26(1): 98-102.
Mei Y X, Feng Y T, Feng T J, Wang W, Sun B Z. Brief discussion on the efficient water-saving planting mode of shallow buried drip irrigation. J Maize Sci, 2018, 26(1): 98-102. (in Chinese with English abstract)
[7] 王士杰, 尹光华, 李忠, 谷健, 马宁宁, 冯浩原, 刘泳圻. 浅埋滴灌水肥耦合对辽西半干旱区春玉米产量的影响. 应用生态学报, 2020, 31: 139-147.
Wang S J, Yin G H, Li Z, Gu J, Ma N N, Feng H Y, Liu Y X. Effects of water-fertilizer coupling on the yield of spring maize under shallow-buried drip irrigation in semi-arid region of western Liaoning province. Chin J Appl Ecol, 2020, 31: 139-147. (in Chinese with English abstract)
[8] 张明伟, 杨恒山, 范秀艳, 张瑞富, 张玉芹. 浅埋滴灌下水氮减量对春玉米干物质积累及水氮利用效率的影响. 玉米科学, 2021, 29(2): 149-156.
Zhang M W, Yang H S, Fan X Y, Zhang R F, Zhang Y Q. Effect of reduction of nitrogen and irrigation on dry matter accumulation and utilization efficiency of water and nitrogen of spring maize in shallow drip irrigation. J Maize Sci, 2021, 29(2): 149-156. (in Chinese with English abstract)
[9] Yoshida S. Physiological aspects of grain yield. Annu Rev Plant Physiol, 1972, 23: 437-464.
doi: 10.1146/annurev.pp.23.060172.002253
[10] Zelitch I. The close relationship between net photosynthesis and crop yield. Biol Sci, 1982, 32: 796-802.
[11] Simkin A J, López-Calcagno P E, Raines C A. Feeding the world: improving photosynthetic efficiency for sustainable crop production. J Exp Bot, 2019, 70: 1119-1140.
doi: 10.1093/jxb/ery445
[12] Zheng J, Fu J J, Gou M Y, Huai J L, Liu Y J, Jian M, Huang Q S, Guo X Y, Dong Z D, Wang H Z, Wang G Y. Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol Biol, 2010, 72: 407-421.
doi: 10.1007/s11103-009-9579-6 pmid: 19953304
[13] 熊炳霖, 王仕稳, 王鑫月, 陈道钳, 殷俐娜, 邓西平. 干旱胁迫下氮肥对玉米叶片衰老影响及与碳氮平衡的关系. 玉米科学, 2016, 24(3): 138-146.
Xiong B L, Wang S W, Wang X Y, Chen D Q, Yin L N, Deng X P. Effects of nitrogenous fertilizer on leaf senescence of maize and the associate with carbon/nitrogen balance under drought stress. J Maize Sci, 2016, 24(3): 138-146 (in Chinese with English abstract).
[14] Yang L M, Fountain J C, Ji P S, Ni X Z, Chen S X, Lee R D, Kemerait R C, Guo B Z. Deciphering drought-induced metabolic responses and regulation in developing maize kernels. Plant Biol J, 2018, 16: 1616-1628.
[15] 苏旺, 屈洋, 冯佰利, 柴岩. 沟垄覆膜集水模式提高糜子光合作用和产量. 农业工程学报, 2014, 30(13): 137-145.
Su W, Qu Y, Feng B L, Chai Y. Photosynthesis characteristics and yield of broomcorn millet under film mulching on ridge-furrow for harvesting rainwater model in semi-arid region of Northern Shaanxi. Trans CSAE, 2014, 30(13): 137-145. (in Chinese with English abstract)
[16] 王泽义, 张恒嘉, 王玉才, 陈谢田, 巴玉春. 亏缺灌溉对板蓝根叶片光合生理特性及产量的影响. 植物学报, 2020, 55: 705-714.
Wang Z Y, Zhang H J, Wang Y C, Chen X T, Ba Y C. Effects of deficit irrigation on the photosynthetic and physiological characteristics of leaves and yield of Isatis tinctoria. Chin Bull Bot, 2020, 55: 705-714. (in Chinese with English abstract)
[17] 周红亮, 张丽娟, 刘宁宁, 费聪, 苏继霞, 曾洲渊, 樊华. 调亏灌溉下氮肥管理对滴灌甜菜产量及水氮利用的影响. 干旱地区农业研究, 2020, 38(6): 159-166.
Zhou H L, Zhang L J, Liu N N, Fei C, Su J X, Zeng Z Y, Fan H. Effect of nitrogen management on yield and water and nitrogen utilization of sugar beet under regulated deficit irrigation. Agric Res Arid Areas, 2020, 38(6): 159-166. (in Chinese with English abstract)
[18] 杨恒山, 薛新伟, 张瑞富, 李金琴, 王宇飞, 邰继承, 刘晶. 灌溉方式对西辽河平原玉米产量及水分利用效率的影响. 农业工程学报, 2019, 35(21): 69-77.
Yang H S, Xue X W, Zhang R F, Li J Q, Wang Y F, Tai J C, Liu J. Effects of irrigation methods on yield and water use efficiency of maize in the West Liaohe Plain. Trans CSAE, 2019, 35(21): 69-77. (in Chinese with English abstract)
[19] 侯云鹏, 孔丽丽, 蔡红光, 刘慧涛, 高玉山, 王永军, 王立春. 东北半干旱区滴灌施肥条件下高产玉米干物质与养分的积累分配特性. 中国农业科学, 2019, 52: 3559-3572.
Hou Y P, Kong L L, Cai H G, Liu H T, Gao Y S, Wang Y J, Wang L C. The accumulation and distribution characteristics on dry matter and nutrients of high-yielding maize under drip irrigation and fertilization conditions in semi-arid region of northeastern China. Sci Agric Sin, 2019, 52: 3559-3572. (in Chinese with English abstract)
[20] 侯云鹏, 孔丽丽, 尹彩侠, 李前, 王立春, 徐新朋. 覆膜滴灌下氮肥与种植密度互作对东北春玉米产量、群体养分吸收与转运的调控效应. 植物营养与肥料学报, 2021, 27: 54-65.
Hou Y P, Kong L L, Yin C X, Li Q, Wang L C, Xu X P. Interaction between nitrogen fertilizer and plant density on nutrient absorption, translocation and yield of spring maize under drip irrigation in northeast China. J Plant Nutr Fert, 2021, 27: 54-65. (in Chinese with English abstract)
[21] 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2000. pp 115-122.
Zou Q. Experimental Guidance on Plant Physiology. Beijing: China Agriculture Press, 2000. pp 115-122. (in Chinese)
[22] 门福义, 刘梦芸. 马铃薯栽培生理. 北京: 中国农业出版社, 1995. pp 318-320.
Men F Y, Liu M Y. Potato Cultivation Physiology. Beijing: China Agriculture Press, 1995. pp 318-320. (in Chinese)
[23] Qi H Y, Li T L, Zhang J, Wang L, Chen Y H. Effects on sucrose metabolism, dry matter distribution and fruit quality of tomato under water deficit. Agric Sci, 2003, 2: 1253-1258.
[24] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 195-197.
Li H S. Principle and Technology of Plant Physiological and Biochemical Experiment. Beijing:Higher Education Press, 2000. pp 195-197. (in Chinese)
[25] 谷岩, 胡文河, 徐百军, 王思远, 吴春胜. 氮素营养水平对膜下滴灌玉米穗位叶光合及氮代谢酶活性的影响. 生态学报, 2013, 33: 7399-7407.
Gu Y, Hu W H, Xu B J, Wang S Y, Wu C S. Effects of nitrogen on photosynthetic characteristics and enzyme activity of nitrogen metabolism in maize under-mulch-drip irrigation. Acta Ecol Sin, 2013, 33: 7399-7407. (in Chinese with English abstract)
[26] 韩吉梅, 张旺锋, 熊栋梁, Flexas J, 张亚黎. 植物光合作用叶肉导度及主要限制因素研究进展. 植物生态学报, 2017, 41: 914-924.
doi: 10.17521/cjpe.2016.0337
Han J M, Zhang W F, Xiong D L, Flexas J, Zhang Y L. Mesophyll conductance and its limiting factors in plant leaves. Chin J Plant Ecol, 2017, 41: 914-924. (in Chinese with English abstract)
doi: 10.17521/cjpe.2016.0337
[27] 戚迎龙, 史海滨, 李瑞平, 赵举, 李彬, 李敏. 滴灌水肥一体化条件下覆膜对玉米生长及土壤水肥热的影响. 农业工程学报, 2019, 35(5): 99-110.
Qi Y L, Shi H B, Li R P, Zhao J, Li B, Li M. Effects of film mulching on maize growth and soil water, fertilizer and heat under fertigation of drip irrigation. Trans CSAE, 2019, 35(5): 99-110. (in Chinese with English abstract)
[28] Jia Y Y, Xiao W X, Ye Y S, Wang X L, Liu X L, Wang G H, Li G, Wang Y B. Response of photosynthetic performance to drought duration and re-watering in maize. Agronomy, 2020, 10: 533-550.
doi: 10.3390/agronomy10040533
[29] Badger M R, Price G D. The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 1994, 45: 369-392.
doi: 10.1146/annurev.pp.45.060194.002101
[30] Kromer S. Respiration during photosynthesis. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46: 45-70.
doi: 10.1146/annurev.pp.46.060195.000401
[31] 李耕, 高辉远, 赵斌, 董树亭, 张吉旺, 杨吉顺, 王敬锋, 刘鹏. 灌浆期干旱胁迫对玉米叶片光系统活性的影响. 作物学报, 2009, 35: 1916-1922.
Li G, Gao H Y, Zhao B, Dong S T, Zhang J W, Yang J S, Wang J F, Liu P. Effects of drought stress on activity of photosystems in leaves of maize at grain filling stage. Acta Agron Sin, 2009, 35: 1916-1922. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.01916
[32] 孙泽东, 马兴华. 滴灌施肥对作物生长及土壤氮素特征影响的研究进展. 中国农业科技导报, 2016, 18(5): 164-170.
doi: 10.13304/j.nykjdb.2015.694
Sun Z D, Ma X H. Research progress on effects of drip fertilization on plant growth and soil nitrogen characteristics. J Agric Sci Technol, 2016, 18(5): 164-170. (in Chinese with English abstract)
[33] 孙永健, 孙园园, 严奉君, 杨志远, 徐徽, 李玥, 王海月, 马均. 氮肥后移对不同氮效率水稻花后碳氮代谢的影响. 作物学报, 2017, 43: 407-419.
doi: 10.3724/SP.J.1006.2017.00407
Sun Y J, Sun Y Y, Yan F J, Yang Z Y, Xu H, Li Y, Wang H Y, Ma J. Effects of postponing nitrogen topdressing on post-anthesis carbon and nitrogen metabolism in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2017, 43: 407-419. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00407
[34] 王帅, 韩晓日, 战秀梅, 杨劲峰, 王月, 刘轶飞, 李娜. 氮肥水平对玉米灌浆期穗位叶光合功能的影响. 植物营养与肥料学报, 2014, 20: 280-289.
Wang S, Han X R, Zhan X M, Yang J F, Wang Y, Liu Y F, Li N. Effect of nitrogenous fertilizer levels on photosynthetic functions of maize ear leaves at grain filling stage. Plant Nutr Fert Sci, 2014, 20: 280-289 (in Chinese with English abstract).
[1] 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析[J]. 作物学报, 2022, 48(9): 2155-2167.
[2] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[3] 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8): 1871-1883.
[4] 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006.
[5] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[6] 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850.
[7] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[8] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[9] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[10] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[11] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[12] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[13] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[2] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[3] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[4] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[5] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[6] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .
[7] 刘珊珊;田福东;高丽辉;王志坤;葛玉君;刁桂珠;李文滨. 大豆7S球蛋白亚基组成对品质性状的影响[J]. 作物学报, 2008, 34(05): 909 -913 .
[8] 李浩;张平平;查向东;夏先春;何中虎. 优质面包小麦品种济南17和豫麦34灌浆期高温胁迫差异表达基因的分离[J]. 作物学报, 2007, 33(10): 1644 -1653 .
[9] 汤圣祥;江云珠;魏兴华;李自超; 余汉勇. 中国栽培稻同工酶的遗传多样性[J]. 作物学报, 2002, 28(02): 203 -207 .
[10] 俞履圻;林权. 中国栽培稻种亲缘的研究[J]. 作物学报, 1962, 1(03): 232 -258 .