欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (10): 2625-2637.doi: 10.3724/SP.J.1006.2022.13057

• 耕作栽培·生理生化 • 上一篇    下一篇

不同年代玉米品种籽粒产量形成对种植密度的响应

王利青1(), 于晓芳1,2,*(), 高聚林1,2,*(), 马达灵1,2, 胡树平2,3, 郭怀怀1, 刘爱业4   

  1. 1内蒙古农业大学农学院, 内蒙古呼和浩特 010019
    2内蒙古自治区作物栽培与遗传改良重点实验室, 内蒙古呼和浩特 010019
    3内蒙古农业大学职业技术学院, 内蒙古萨拉齐 014109
    4巴彦淖尔市乌拉特前旗农牧和科技局, 内蒙古乌拉山 014400
  • 收稿日期:2021-09-18 接受日期:2022-02-25 出版日期:2022-10-12 网络出版日期:2022-03-25
  • 通讯作者: 于晓芳,高聚林
  • 作者简介:第一作者联系方式: E-mail: 18447053543@163.com
  • 基金资助:
    内蒙古自治区“科技兴蒙”行动重点专项(KJXM2020001-06);国家自然科学基金项目(31560360);国家重点研发计划项目(2017YFD0300804);财政部和农业农村部国家现代农业产业技术体系建设专项(玉米, CARS-02-50);农业农村部华北黄土高原地区作物栽培科学观测实验站项目(25204120)

Response of grain yield formation to planting density of maize varieties in different eras

WANG Li-Qing1(), YU Xiao-Fang1,2,*(), GAO Ju-Lin1,2,*(), MA Da-Ling1,2, HU Shu-Ping2,3, GUO Huai-Huai1, LIU Ai-Ye4   

  1. 1Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
    2Key Laboratory of Crop Cultivation and Genetic Improvement in Inner Mongolia Autonomous Region, Hohhot 010019, Inner Mongolia, China
    3Vocational and Technical College, Inner Mongolia Agricultural University, Salaqi 014109, Inner Mongolia, China
    4Bureau of Agriculture, Animal Husbandry and Science and Technology of Urad Front Banner, Wulashan 014400, Inner Mongolia, China
  • Received:2021-09-18 Accepted:2022-02-25 Published:2022-10-12 Published online:2022-03-25
  • Contact: YU Xiao-Fang,GAO Ju-Lin
  • Supported by:
    Key Program of Action Plan to Revitalize Inner Mongolia through Science and Technology(KJXM2020001-06);National Natural Science Foundation of China(31560360);National Key Research and Development Program of China(2017YFD0300804);China Agriculture Research System of MOF and MARA (Meize, CARS-02-50);Scientific Observation and Experimental Station of Crop cultivation in North China Loess Plateau, Ministry of Agriculture and Rural Affairs(25204120)

摘要:

为了明确不同年代玉米品种的光合和灌浆特性对增加种植密度的响应差异, 为玉米合理增密增产提供理论依据。本研究以我国1970s—2010s五个在生产中大面积种植的玉米品种为材料, 设置了4.5万株 hm-2和10.5万株 hm-2两个种植密度, 进行3年大田试验。对不同种植密度下, 各年代玉米品种的产量及其构成因素、叶片光合性能和籽粒灌浆特性等指标进行对比分析。结果表明, 在低种植密度下, 2010s品种(登海618, Denghai 618, DH618)吐丝后穗位叶SPAD值、吐丝-吐丝后50 d穗位叶Pn和籽粒平均灌浆速率均较1970s—2000s品种显著提高了2.18~12.05、0.57~4.88 μmol CO2 m-2 s-1和0.02~0.09 g kernel-1 d-1, 活跃灌浆期显著延长了2.62~4.74 d, 从而使其粒重和产量显著增加(P<0.05)。增密后, 1970s和1980s品种产量降低, 1990s品种产量变化不显著, 而2000s和2010s品种产量显著增加, 且2010s品种产量增加幅度最大, 达到2.11 t hm-2。进一步对光合性能、灌浆特性与百粒重和产量等指标的相关分析表明, 高种植密度下2010s品种的百粒重对活跃灌浆期依赖程度增大(r=0.70), 其在吐丝期、乳熟期和成熟期均较1970s—2000s品种保持相对高的SPAD (提高了6.42%~41.92%), 延缓了叶片衰老, 使花后玉米叶片仍维持较高的光合势(leaf area duration, LAD)和吐丝后30~50 d的Pn (提高了1.09%~88.95%), 从而积累了较多的光合产物, 促使活跃灌浆期延长8.73%~15.80%, 平均灌浆速率增加了3.39%~24.33%, 进而维持了相对稳定的百粒重。

关键词: 玉米, 不同年代品种, 种植密度, 灌浆特性, 冠层结构

Abstract:

To clarify the difference of photosynthetic and grain-filling characteristics of maize varieties in different ages in response to increasing planting density, and to provide a theoretical basis for the reasonable density and production of maize, in this study, five maize varieties planted in large areas during production from 1970s to 2010s in China were used as materials, two planting densities of 45,000 plants hm-2 and 105,000 plants hm-2 were set for three-year field experiment. The yield and its components, leaf photosynthetic performance, and grain filling characteristics of maize varieties in different years were compared and analyzed under different planting densities. The results showed that under low planting density, compared with varieties of 1970s-2000s, the SPAD value of ear-leaf after anthesis, Pn of ear-leaf at 50 d after anthesis, and the average grain filling rate of 2010s varieties (DH618) were significantly increased by 2.18-12.05, 0.57-4.88 μmol CO2 m-2 s-1, and 0.02-0.09 g kernel-1 d-1. The active grain-filling period was significantly prolonged by 2.62-4.74 d, which significantly increasing grain weight and yield at P<0.05. After densification, the yield of varieties in 1970s and 1980s decreased, the yield of varieties in the 1990s did not change significantly, but the yield of varieties in 2000s and 2010s increased significantly and the largest increased in 2010s was 2.11 t hm-2. Further correlation analysis to the indicators of photosynthetic performance, filling characteristics, 100-grain weight, and yield, the results showed that 100-grain weight of 2010s varieties under high planting density was more dependent during active grain filling period (r = 0.70). Compared with 1970s to 2000s, the 2010s varieties kept relatively high SPAD at silking stage, milking stage, and maturity stage (increased by 6.42%-41.92%), delayed leaf senescence and maintained high LAD in maize leaves after anthesis and Pn in 30-50 d after anthesis (increased by 1.09%-88.95%). Therefore, more photosynthates were accumulated, which prolonged the active grain filling period by 8.73% to 15.80% and the average filling rate increased by 3.39% to 24.33%, and then maintained a relatively stable 100-grain weight.

Key words: maize, varieties of different eras, planting density, grain filling characteristics, canopy configuration

表1

试验区土壤基础生产力"

年份
Year
全氮
Total nitrogen
(g kg-1)
碱解氮
Alkaline N (mg kg-1)
速效钾
Alkaline K
(mg kg-1)
速效磷
Alkaline P
(mg kg-1)
有机质
Organic matter
(g kg-1)
pH
2018 1.48 78.18 155.19 17.06 19.63 7.95
2019 1.31 79.31 144.00 18.45 17.74 8.50
2020 1.54 74.89 136.28 21.32 17.83 8.36

图1

试验区生育期内主要气象因子"

表2

玉米叶面积指数(LAI)的方差分析"

变异来源
Sources of variations
大喇叭口期
12-leave stage
吐丝期
Silking stage
乳熟期
Milking stage
成熟期
Maturity stage
年份Year 82.68** 23.63** 168.48** 547.47**
密度Density (D) 8036.83** 8320.00** 25,462.73** 2425.42**
品种Variety (V) 91.80** 61.31** 36.47** 683.29**
密度×品种D×V 9.25** 11.31** 24.20** 114.77**
误差均方Error MS 0.004 0.008 0.002 0.001

图2

种植密度对不同年代玉米品种LAI的影响 LAI: 叶面积指数。V12: 大喇叭口期; R1: 吐丝期; R3: 乳熟期; R6: 成熟期。D1: 4.5万株 hm-2; D2: 10.5万株 hm-2。ZD2: 中单2号; DY13: 丹玉13; YD13: 掖单13; XY335: 先玉335; DH618: 登海618。"

表3

玉米光合势(LAD)的方差分析"

变异来源
Sources of variation
花前
Post anthesis stage
花后
After anthesis stage
年份Years 174.50** 1315.52**
密度Density (D) 1077.98** 1077.98**
品种Varieties (V) 157.61** 157.61**
密度×品种D×V 14.04** 14.04**
误差均方Error MS 0.198 0.198

图3

种植密度对不同年代玉米品种光合势(LAD)的影响 缩写同图2。"

表4

玉米穗位叶叶绿素相对含量(SPAD)的方差分析"

变异来源
Sources of
variation
吐丝期
Silking
stage
乳熟期
Milking stage
成熟期
Maturity stage
年份Year 6.41** 162.59** 164.41**
密度Density (D) 255.37** 545.08** 1604.17**
品种Variety (V) 32.25** 87.81** 328.07**
密度×品种D×V 2.31 5.87** 2.01
误差均方Error MS 0.918 1.182 0.0503

图4

种植密度对不同年代玉米品种穗位叶叶绿素相对含量(SPAD)的影响 缩写同图2。"

表5

玉米穗位叶Pn的方差分析"

变异来源
Sources of variation
吐丝期
Silking stage
吐丝后10 d
10 days after anthesis
吐丝后30 d
30 days after anthesis
吐丝后50 d
50 days after anthesis
吐丝后65 d
65 days after anthesis
年份Year 2022.76** 275.50** 120.20** 136.93** 5.34*
密度Density (D) 1191.46** 1519.13** 3210.76** 8031.43** 35,150.95**
品种Variety (V) 31.15** 78.22** 160.17** 511.91** 335.89**
密度×品种D×V 10.12** 16.53** 3.52* 12.83** 93.47**
误差均方Error MS 0.198 0.208 0.114 0.050 0.014

图5

种植密度对不同年代玉米品种穗位叶Pn值的影响 缩写同图2。"

表6

种植密度对不同年代玉米品种籽粒灌浆特性的影响"

密度
Density
品种
Variety
2018 2019 2020
Gmean
(g kernel-1 d-1)
D
(d)
Gmean
(g kernel-1 d-1)
D
(d)
Gmean
(g kernel-1 d-1)
D
(d)
D1 中单2号ZD2 0.68 50.92 0.56 60.24 0.60 50.84
丹玉13 DY13 0.68 50.63 0.57 61.16 0.59 51.94
掖单13 YD13 0.64 50.47 0.56 59.86 0.57 49.98
先玉335 XY335 0.72 52.98 0.60 62.31 0.67 53.09
登海618 DH618 0.73 55.29 0.64 63.82 0.68 57.12
D2 中单2号ZD2 0.55 49.06 0.51 50.60 0.55 45.58
丹玉13 DY13 0.58 47.69 0.51 52.44 0.52 49.79
掖单13 YD13 0.55 49.33 0.48 59.10 0.54 49.22
先玉335 XY335 0.61 54.26 0.50 63.61 0.56 56.78
登海618 DH618 0.65 57.80 0.54 64.78 0.62 58.00

表7

玉米产量及其构成因素方差分析"

变异来源
Sources of variation
产量
Yield
有效穗数
Harvested number
穗粒数
Number of grains per panicle
百粒重
100-grain weight
年份Year 7.83** 36.39** 1.01 237.49**
密度Density (D) 0.22 8680.29** 1643.75** 1840.78**
品种Variety (V) 312.81** 44.51** 73.62** 513.04**
密度×品种D×V 43.53** 26.09** 20.55** 21.68**
误差均方Error MS 0.057 0.019 91.696 0.164

图6

种植密度对不同年代玉米品种产量及其构成因素的影响 缩写同图2。"

图7

百粒重、产量与籽粒灌浆灌浆特性的相关性分析 Gmean: 平均灌浆速率; D: 活跃灌浆持续时间; 其余缩写同图2。"

表8

灌浆特性与冠层指标的相关分析"

指标
Index
生育阶段
Growth stage
灌浆特性参数Grouting characteristic parameters
平均灌浆速率Gmean 活跃灌浆持续时间D
叶面积指数
Leaf area index
大喇叭口期 12 leaves stage -0.748** -0.245
吐丝期Silking stage -0.780** -0.264
乳熟期Milking stage -0.705** -0.138
成熟期Maturity stage -0.346 0.125
叶绿素相对含量
Soil and plant analyzer development
吐丝期Silking stage 0.732** 0.544*
乳熟期Milking stage 0.793** 0.540*
成熟期Maturity stage 0.754** 0.605**
光合势
Leaf area duration
花前Post anthesis stage 0.029 0.117
花后After anthesis stage 0.566** 0.250
净光合速率Pn 吐丝期Silking stage 0.764** -0.330
花后10 d 10 days after anthesis 0.824** 0.136
花后30 d 30 days after anthesis 0.665** 0.537*
花后50 d 50 days after anthesis 0.707** 0.487*
花后65 d 65 days after anthesis 0.730** 0.330
[1] Tilman D, Balzer C, Hill J, Befort B L. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011, 108: 20260-20264.
doi: 10.1073/pnas.1116437108
[2] Listed N. How to feed a hungry world. Nature, 2021, 466: 531-532.
doi: 10.1038/466531a
[3] 刘小丹, 杜妍, 任军, 代玉仙, 于明彦, 李淑华, 徐国良, 才卓. 2019年美国玉米高产竞赛简报. 玉米科学, 2020, 28(4): 56-60.
Liu X D, Du Y, Ren J, Dai Y X, Yu M Y, Li S H, Xu G L, Cai Z. Bulletin of American corn high yield competition in 2019. J Maize Sci, 2020, 28(4): 56-60 (in Chinese with English abstract).
[4] 程雅婷, 李荣发, 王克如, 谢瑞芝, 侯鹏, 明博, 薛军, 张国强, 刘广周, 李少昆. 中国春玉米高产纪录的创造与思考. 玉米科学, 2021, 29(2): 56-59.
Cheng Y T, Li R F, Wang K R, Xie R Z, Hou P, Ming B, Xue J, Zhang G Q, Liu G Z, Li S K. Creation and thinking of high yield record of spring maize in China. J Maize Sci, 2021, 29(2): 56-59. (in Chinese with English abstract)
[5] 柯福来, 马兴林, 黄瑞冬, 王传海, 徐安波. 种植密度对先玉335群体子粒灌浆特征的影响. 玉米科学, 2011, 19(2): 58-62.
Ke F L, Ma X L, Huang R D, Wang C H, Xu A B. Effects of planting densities on population grain filling characteristics of maize hybrid Xianyu 335. J Maize Sci, 2011, 19(2): 58-62. (in Chinese with English abstract)
[6] Chen Y J, Hoogenboom G, Ma Y T, Li B G. Maize kernel growth at different floret positions of the ear. Field Crops Res, 2013, 149: 177-186.
doi: 10.1016/j.fcr.2013.04.028
[7] Sadras V O, Egli D B. Seed size variation in grain crops: allometric relationships between rate and duration of seed growth. Crop Sci, 2008, 48: 408-416.
doi: 10.2135/cropsci2007.05.0292
[8] Johnson D R, Tanner J W, Calculation of the rate and duration of grain filling in corn (Zea mays L.). Crop Sci, 1972, 12: 485-486.
doi: 10.2135/cropsci1972.0011183X001200040028x
[9] 孟战赢, 王育红, 王向阳, 沈东风. 密度对夏玉米灌浆特性及产量的影响. 河南农业科学, 2011, 40(12): 48-51.
Meng Z Y, Wang Y H, Wang X Y, Shen D F. The effects of increasing density on summer grouting characteristics and yield. J Henan Agric Sci, 2011, 40(12): 48-51. (in Chinese with English abstract)
[10] Wang X Y, Wang X L, Xu C C, Tan W M, Wang P, Meng Q F. Decreased kernel moisture in medium-maturing maize hybrids with high yield for mechanized grain harvest. Crop Sci, 2019, 59: 2794-2805.
doi: 10.2135/cropsci2019.04.0218
[11] 张明, 宋振伟, 陈涛, 闫孝贡, 朱平, 任军, 邓艾兴, 张卫建. 不同春玉米品种干物质生产和子粒灌浆对种植密度的响应. 玉米科学, 2015, 23(3): 57-65.
Zhang M, Song Z W, Chen T, Yan X G, Zhu P, Ren J, Deng A X, Zhang W J. Differences in responses of biomass production and grain-filling to planting density between spring maize cultivars. J Maize Sci, 2015, 23(3): 57-65. (in Chinese with English abstract)
[12] 刘娟, 董树亭, 刘鹏, 张吉旺, 赵斌. 增密与施氮对不同耐密型玉米产量及籽粒灌浆特性的影响. 山东农业科学, 2017, 49(1): 38-47.
Liu J, Dong S T, Liu P, Zhang J W, Zhao B. Effects of increasing density and nitrogen application rate on yield and grain-filling characteristics of different density-tolerance maize hybrids. Shandong Agric Sci, 2017, 49(1): 38-47. (in Chinese with English abstract)
[13] 王婷, 柴守玺. 不同播种密度对西北绿洲冬小麦灌浆特性的影响. 甘肃农业大学学报, 2008, 43(5): 33-40.
Wang T, Chai S X. Effect of different density on winter wheat filling characters in the northwest oasis. J Gansu Agric Univ, 2008, 43(5): 33-40. (in Chinese with English abstract)
[14] Antonietta M, Fanello D D, Acciaresi H A, Guiamet J J. Senescence and yield responses to plant density in stay green and earlier-senescing 11 maize hybrids from Argentina. Field Crops Res, 2014, 155: 111-119.
doi: 10.1016/j.fcr.2013.09.016
[15] Xu W J, Liu C W, Wang K R, Xie R Z, Ming B, Wang Y H, Zhang G Q, Liu G Z, Zhao R L, Fan P P, Li S K, Hou P. Adjusting maize plant density to different climatic conditions across a large longitudinal distance in China. Field Crops Res, 2017, 212: 126-134.
doi: 10.1016/j.fcr.2017.05.006
[16] Chen X C, Chen F J, Chen Y L, Gao Q, Yang X L, Yuan L X, Zhang F S, Mi G H. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change. Global Change Biol, 2013, 19: 923-936.
doi: 10.1111/gcb.12093
[17] Liu G Z, Yang J M, Liu W M, Guo Z Y. Leaf removal affects Maize morphology and grain yield. Agronomy, 2020, 10: 269-281.
doi: 10.3390/agronomy10020269
[18] 苌建峰, 张海红, 李鸿萍, 董朋飞, 李潮海. 不同行距配置方式对夏玉米冠层结构和群体抗性的影响. 作物学报, 2016, 42: 104-112.
doi: 10.3724/SP.J.1006.2016.00104
Chang J F, Zhang H H, Li H P, Dong P F, Li C H. Effects of different row spaces on canopy structure and resistance of summer maize. Acta Agron Sin, 2016, 42: 104-112. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00104
[19] Huang S B, Gao Y B, Li Y B, Xu L N, Tao H B, Wang P. Influence of plant architecture on maize physiology and yield in the Heilonggang River valley. Crop J, 2017, 5: 52-62.
doi: 10.1016/j.cj.2016.06.018
[20] 冀华, 李宏, 张树伟. 玉米雌雄穗发育及其与产量的关系. 山西农业科学, 2011, 39: 754-755.
Ji H, Li H, Zhang S W. Differentiation and growth of the male and female ears and the relationship with yield in maize. J Shanxi Agric Sci, 2011, 39: 754-755. (in Chinese with English abstract)
[21] Sangoi L, Gracietti M A, Rampazzo C, Bianchetti P. Response of Brazilian maize hybrids from different area to change in plant density. Field Crops Res, 2002, 79: 39-51.
doi: 10.1016/S0378-4290(02)00124-7
[22] Tokatlidis I S, Koutroubas S D. A review of maize hybrids dependence on high plant populations and its implications for crop yield stability. Field Crops Res, 2004, 88: 103-114.
doi: 10.1016/j.fcr.2003.11.013
[23] Meng Q F, Hou P, Wu L, Chen X P, Cui Z L, Zhang F S. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Res, 2013, 143: 91-97.
doi: 10.1016/j.fcr.2012.09.023
[24] Zhao J, Xue Q W, Hao B Z, Marek T H, Jessup K E, Xu W W, Bean B W, Colaizzi P D. Yield determination of maize hybrids under limited irrigation. J Crop Improv, 2019, 33: 410-427.
doi: 10.1080/15427528.2019.1606129
[25] Zhang D S, Sun Z X, Feng L S, Bai W, Yang N, Zhang Z, Du G J, Feng C, Cai Q, Wang Q, Zhang Y, Wang R N, Arshad A, Hao X Y, Sun M, Gao Z Q, Zhang L Z. Maize plant density affects yield, growth and source-sink relationship of crops in maize/ peanut intercropping. Field Crops Res, 2020, 257: 107926.
[26] 刘红杰, 倪永静, 任德超, 杜克明, 葛君, 朱培培, 赵敬领, 黄建英, 吕国华, 胡新. 不同基因型冬小麦籽粒灌浆特征及其与千粒重的关系. 中国农业气象, 2019, 40: 630-636.
Liu H J, Ni Y J, Ren D C, Du K M, Ge J, Zhu P P, Zhao J L, Huang J Y, Lyu G H, Hu X. Grain filling characters and its correlation with 1000-grain weight in different winter wheat varieties. Chin J Agrometeorol, 2019, 40: 630-636. (in Chinese with English abstract)
[27] Wiegand C L, Cuellar J A. Duration of grain filling and kernel weight of wheat as affected by temperature. Crop Sci, 1981, 21: 95-101.
doi: 10.2135/cropsci1981.0011183X001100010027x
[28] 魏珊珊, 王祥宇, 董树亭. 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014, 25: 441-450.
Wei S S, Wang X Y, Dong S T. Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize. Chin J Appl Ecol, 2014, 25: 441-450. (in Chinese with English abstract)
[29] 李德新, 宫秀杰, 钱春荣. 玉米籽粒灌浆及脱水速率品种差异与相关分析. 中国农学通报, 2011, 27(27): 92-97.
Li D X, Gong X J, Qian C R. Difference and correlation analysis of grain milking rate and grain dehydrating rate on maize. Chin Agric Sci Bull, 2011, 27(27): 92-97. (in Chinese with English abstract)
[30] Bolaños J. Physiological bases for yield differences in selected maize cultivars from central America. Field Crops Res, 1995, 42: 69-80.
doi: 10.1016/0378-4290(95)00022-I
[31] 王小春, 杨文钰, 龚江洪, 卢小红, 李燕蓉. 播期对不同株型玉米灌浆特性的影响. 作物杂志, 2009, (3): 55-57.
Wang X C, Yang W Y, Gong J H, Lu X H, Li Y R. Effects of sowing date on grain filling characteristics of maize with different plant types. Crops, 2009, (3): 55-57. (in Chinese with English abstract)
[32] 柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019, 45: 1868-1879.
doi: 10.3724/SP.J.1006.2019.93011
Bai Y W, Yang Y H, Zhu Y L, Li H J, Xue J Q, Zhang R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agron Sin, 2019, 45: 1868-1879. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.93011
[33] 徐丽娜, 闫艳, 梅沛沛, 陈士林, 王小龙. 种植密度对不同玉米品种籽粒灌浆特性的影响. 山东农业科学, 2020, 52(7): 20-23.
Xu L N, Yan Y, Mei P P, Chen S L, Wang X L. Effects of planting density on grain filling characteristics of different maize varieties. Shandong Agric Sci, 2020, 52(7): 20-23. (in Chinese with English abstract)
[34] 王晓慧, 张磊, 刘双利, 曹玉军, 魏雯雯, 刘春光, 王永军, 边少锋, 王立春. 不同熟期春玉米品种的籽粒灌浆特性. 中国农业科学, 2014, 47: 3557-3565.
Wang X H, Zhang L, Liu S L, Cao Y J, Wei W W, Liu C G, Wang Y J, Bian S F, Wang L C. Grain filling characteristics of spring maize varieties with different maturity. Sci Agric Sin, 2014, 47: 3557-3565. (in Chinese with English abstract)
[35] 朱亚利. 不同玉米品种与密度配置对光温资源利用效率及产量的影响. 西北农林科技大学硕士学位论文, 陕西杨凌, 2021.
Zhu Y L. Effects of Different Maize Varieties and Density Configuration on Utilization Efficiencies of Light and Temperature Resources and Yield. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2021. (in Chinese with English abstract)
[36] David G. Sánchez R, Fowler J L. Canopy light environment and yield of narrow-row cotton as affected by canopy architecture. Agron J, 2002, 94: 1317-1323.
doi: 10.2134/agronj2002.1317
[37] Yao H S, Zhang Y L, Yi X P, Zhang X J, Zhang W F. Cotton responds to different plant population densities by adjusting specific leaf area to optimize canopy photosynthetic use efficiency of light and nitrogen. Field Crops Res, 2016, 188: 10-16.
doi: 10.1016/j.fcr.2016.01.012
[38] Liu G Z, Liu W M, Yang Y S, Guo X X. Marginal superiority of maize: an indicator for density tolerance under high plant density. Sci Rep, 2020, 10: 15378-15384.
doi: 10.1038/s41598-020-72435-3
[39] 丁相鹏, 白晶, 张春雨, 张吉旺, 刘鹏, 任佰朝, 赵斌. 扩行缩株对夏玉米群体冠层结构及产量的影响. 中国农业科学, 2020, 53: 3915-3927.
Ding X P, Bai J, Zhang C Y, Zhang J W, Liu P, Ren B C, Zhao B. Effects of line-spacing expansion and row-spacing shrinkage on population structure and yield of summer maize. Sci Agric Sin, 2020, 53: 3915-3927. (in Chinese with English abstract)
[40] 徐庆章, 王庆成, 牛玉贞, 王忠孝, 张军. 玉米株型与群体光合作用的关系研究. 作物学报, 1995, 21: 492-496.
Xu Q Z, Wang Q C, Niu Y Z, Wang Z X, Zhang J. Studies on relationship between plant type and canopy photosynthesis in maize. Acta Agron Sin, 1995, 21: 492-496. (in Chinese with English abstract)
[41] 王志刚, 高聚林, 任有志, 赵明, 董志强, 李少昆, 杨凤山. 春玉米超高产群体冠层结构的研究. 玉米科学, 2007, 15(6): 51-56.
Wang Z G, Gao J L, Ren Y Z, Zhao M, Dong Z Q, Li S Q, Yang F S. Study on canopy structure of super-high yield colony in spring maize. J Maize Sci, 2007, 15(6): 51-56. (in Chinese with English abstract)
[42] Tollenaar M, Aguilera A. Radiation use efficiency of an old and a new maize hybrid. Agron J, 1992, 84: 536-541.
doi: 10.2134/agronj1992.00021962008400030033x
[43] 张仁和, 王博新, 杨永红, 杨晓军, 马向峰, 张兴华, 郝引川, 薛吉全. 陕西灌区高产春玉米物质生产与氮素积累特性. 中国农业科学, 2017, 50: 2238-2246.
Zhang R H, Wang B X, Yang Y H, Yang X J, Ma X F, Zhang X H, Hao Y C, Xue J Q. Characteristics of dry matter and nitrogen accumulation for high-yielding maize production under irrigated conditions of Shaanxi. Sci Agric Sin, 2017, 50: 2238-2246. (in Chinese with English abstract)
[1] 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析[J]. 作物学报, 2022, 48(9): 2155-2167.
[2] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[3] 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8): 1871-1883.
[4] 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006.
[5] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[6] 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850.
[7] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[8] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[9] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[10] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[11] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[12] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[13] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[14] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[15] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[3] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .
[4] 夏仲炎. 粳稻叶型的遗传与选择的研究[J]. 作物学报, 1983, 9(04): 275 -282 .
[5] 赵翔;汪延良;王亚静;王西丽;张骁. 盐胁迫条件下外源Ca2+对蚕豆气孔运动及质膜K+通道的调控[J]. 作物学报, 2008, 34(11): 1970 -1976 .
[6] 叶小利;李学刚;李加纳. 甘蓝型油菜种皮黑色素形成机理的研究[J]. 作物学报, 2002, 28(05): 638 -643 .
[7] 王旭;曾昭海;朱波;胡跃高. 箭筈豌豆与燕麦不同间作混播模式对产量和品质的影响[J]. 作物学报, 2007, 33(11): 1892 -1895 .
[8] 徐宁;程须珍;王素华;王丽侠;赵丹. 以地理来源分组和利用表型数据构建中国小豆核心种质[J]. 作物学报, 2008, 34(08): 1366 -1373 .
[9] 孟金陵;刘后利. 连续自交对甘蓝型油菜(Brassica napus L.)胚胎发育的影响[J]. 作物学报, 1986, 12(02): 79 -86 .
[10] 陈叔平;舒世珍. 甜菊种子贮藏技术研究[J]. 作物学报, 1995, 21(01): 102 -105 .