欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (7): 1787-1779.doi: 10.3724/SP.J.1006.2022.11030

• 耕作栽培·生理生化 • 上一篇    下一篇

黑龙港平原基于麦-玉复种的两年轮作模式农田水分消耗特征研究

赵影星1(), 王彪1(), 刘晴1, 宋彤1,2, 张学鹏1, 陈源泉1, 隋鹏1,*()   

  1. 1中国农业大学农学院, 北京 100193
    2淄博市数字农业农村发展中心, 山东济南 255000
  • 收稿日期:2021-03-19 接受日期:2021-11-29 出版日期:2022-07-12 网络出版日期:2021-12-28
  • 通讯作者: 隋鹏
  • 作者简介:赵影星, E-mail: zyx2020cau@163.com
    王彪, E-mail: wangbiao0312@outlook.com第一联系人:

    ** 同等贡献

  • 基金资助:
    国家重点研发计划项目(2016YFD0300203);农业农村部作物需水与调控重点实验室开放课题项目(FIRI2021010101)

Characteristics of farmland water consumption under two-year wheat-maize interannual rotation patterns in Heilonggang Plain

ZHAO Ying-Xing1(), WANG Biao1(), LIU Qing1, SONG Tong1,2, ZHANG Xue-Peng1, CHEN Yuan-Quan1, SUI Peng1,*()   

  1. 1College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    2Zibo Digital Agriculture Rural Development Center, Shandong 255000, Jinan, China
  • Received:2021-03-19 Accepted:2021-11-29 Published:2022-07-12 Published online:2021-12-28
  • Contact: SUI Peng
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Key Research and Development Program of China(2016YFD0300203);Open Project of Key Laboratory of Crop Water Demand and Regulation of Ministry of Agriculture and Rural Affairs(FIRI2021010101)

摘要:

为解决黑龙港平原地下水漏斗区传统冬小麦-夏玉米(简称麦-玉)一年两熟模式的水粮矛盾问题, 设计“一年传统麦-玉模式+一年轮作其他作物”的2年节水稳粮型轮作系统, 试图寻找适合该区域的节水稳粮型绿色种植制度。于2018年10月—2020年9月在河北吴桥地区开展田间试验, 以冬小麦-夏玉米一年两熟模式为对照, 设置春玉米→麦-玉、冬小麦→麦-玉、春甘薯→麦-玉、春花生→麦-玉、冬小麦-夏花生→麦-玉、马铃薯-青贮玉米→麦-玉6个处理, 分析各轮作模式的农田耗水特征。结果表明: (1) 相比对照, 除冬小麦-夏花生→麦-玉外, 不同轮作模式的年均耗水量可减少3.1%~15.2%。春玉米→麦-玉、马铃薯-青贮玉米→麦-玉、春花生→麦-玉和春甘薯→麦-玉模式轮作周期内年均耗水量较对照模式分别减少6.1%、7.2%、9.2%和15.2%, 4种模式的年均地下水净消耗量也较对照模式分别减少9.0%、10.3%、16.2%和32.9%; (2) 不同耗水层次的作物搭配可以在空间上实现水分互补。冬小麦作物主要消耗0~160 cm土层土壤水分, 其含水量相较于播种时减少了20%, 马铃薯作物主要消耗0~100 cm土层土壤水分, 其含水量相较于播种时减少了12%, 春花生作物主要消耗20~80 cm土层土壤水分, 其含水量相较于播种时减少了4%; (3) 部分轮作模式可以减少对灌溉水的需求, 同时有利于土壤水分的固持。2019轮作年, 春玉米→麦-玉和春花生→麦-玉模式在模式灌溉量分别比对照减少145 mm和175 mm的情况下, 2 m土壤贮水量较轮作年起始增加了27.2 mm和12.6 mm, 而麦-玉复种模式在灌溉量为300 mm的情况下, 2 m土壤贮水量较轮作年起始消耗了18.4 mm; (4) 部分轮作模式具有较好的经济水分利用效率, 达到对照的1.2~1.5倍。春花生→麦-玉和冬小麦-夏花生→麦-玉模式经济水分利用效率显著高于对照模式, 分别为对照的1.5倍和1.2倍。综合农田水分利用特征与经济水分利用效率, 春花生→麦-玉、春甘薯→麦-玉、马铃薯-青贮玉米→麦-玉和春玉米→麦-玉2年轮作模式降低了农田耗水量, 同时保持并提高经济水分利用效率, 可作为部分替代连年冬小麦-夏玉米两熟模式的参考模式。

关键词: 轮作, 耗水量, 张力计, 地下水, 经济水分利用效率

Abstract:

In order to solve the contradiction of water and grain about the traditional continuous winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) double-cropping system (W-M→W-M, CK) in the groundwater funnel area of Heilonggang Plain, the new rotation patterns with two-year cycle of “one-year traditional W-M + one-year other crops” were designed, trying to find out a water-saving and green stable cropping system suitable for this region. The field experiment was carried out in Wuqiao, Hebei province from October 2018 to September 2020. Setting spring maize→W-M (Ms→W-M), winter wheat→W-M (W→W-M), spring sweet potato (Dioscorea esculenta (Lour.) Burkill)→W-M (Psw→W-M), spring peanut (Arachis hypogaea Linn.)→W-M (As→W-M), winter wheat-summer peanut→W-M (W-A→W-M) and potato (Solanum tuberosum L.)-silage corn→W-M (P-C→W-M) six rotation patterns with two years cycle, we tried to analyze the characteristics of farmland water consumption. The results showed that: (1) Compared with CK, the annual water consumption of rotation patterns reduced by 3.1%-15.2%, expect W-A→W-M. The annual average water consumption of Ms→W-M, P-C→W-M, As→W-M and Psw→W-M decreased by 6.1%, 7.2%, 9.2%, and 15.2%, respectively, and the annual average net groundwater consumption of the four patterns also decreased by 9.0%, 10.3%, 16.2%, and 32.9%, respectively. (2) The combination of crops at different water consumption levels could achieve water complementary spatially. Winter wheat mainly consumed 0-160 cm soil moisture, which was reduced by 20% compared with sowing. Potato mainly consumed 0-100 cm soil moisture, which was reduced by 12% compared with sowing. Spring peanut mainly consumed 20-80 cm soil moisture, which was reduced by 4% compared with sowing. (3) Partial rotation patterns could reduce the demand for irrigation water and increase soil water storage. In 2019 rotation year, when the irrigation amount of Ms→W-M and As→W-M patterns were 145 mm and 175 mm less than CK, the soil water storage of 2 m increased by 27.2 mm and 12.6 mm compared with the start of rotation year, respectively. When the irrigation amount of W-M→W-M was 300 mm, the soil water storage of 2 m increased by 18.4 mm compared with the start of rotation year. (4) Partial rotation patterns had better economic water use efficiency (EWUE), which were 1.2-1.5 times of CK. The EWUE of As→W-M and W-A→W-M were 1.5 times and 1.2 times significantly higher than that of CK, respectively. Based on the characteristics of farmland water consumption and EWUE, the two-year rotation patterns of As→W-M, Psw→W-M, P-C→W-M, Ms→W-M could reduce the farmland water consumption, meanwhile, maintain and improve the economic water use efficiency, and could be implemented to partially replace the winter wheat and summer maize double-cropping system in Heilonggang Plain.

Key words: crop rotation, evapotranspiration, tension meter, groundwater, economic water use efficiency

图1

吴桥地区2018年10月至2020年9月逐月降雨量及2010-2019年逐月平均降雨量"

图2

不同轮作模式下作物的整个生育期分布 W-M→W-M: 冬小麦-夏玉米复种; Ms→W-M: 春玉米→冬小麦-夏玉米; W→W-M: 冬小麦→冬小麦-夏玉米; Psw→W-M: 春甘薯→冬小麦-夏玉米; As→W-M: 春花生→冬小麦-夏玉米; W-A→W-M: 冬小麦-夏花生→冬小麦-夏玉米; P-C→W-M: 马铃薯-青贮玉米→冬小麦-夏玉米。灰色部分代表休闲期。"

表1

不同作物田间管理措施"

年份
Year
作物
Crop
播种日期
Sowing date
(year-month-day)
收获日期
Harvest date
(year-month-day)
灌溉量
Irrigation
(mm)
施肥量Fertilizer rate (kg hm-2)
氮N 磷P2O5 钾K2O
2019 冬小麦 Winter wheat 2018-10-06 2019-06-09 225 225 112.5 225
夏玉米 Summer maize 2019-06-14 2019-09-29 75 180 103.5 112.5
春玉米 Spring maize 2019-05-21 2019-09-15 155 240 75 90
春甘薯 Spring sweet potato 2019-04-30 2019-10-06 80 54 138 225
春花生 Spring peanut 2019-05-16 2019-09-18 125 172 172.5 150
夏花生 Summer peanut 2019-06-14 2019-10-06 75 172 172.5 150
马铃薯 Potato 2019-03-11 2019-06-18 155 180 120 300
青贮玉米 Silage corn 2019-06-23 2019-09-28 75 180 103.5 112.5
2020 冬小麦 Winter wheat 2019-10-15 2020-06-09 225 225 112.5 225
夏玉米 Summer maize 2020-06-15 2020-09-24 120 180 103.5 112.5

表2

不同轮作模式试验期间(2018年10月至2020年9月)累计降雨分布"

年份
Year
模式
Rotation pattern
作物
Crops
生育期降水量
Precipitation during
growth period
休闲期降雨量Precipitation during
fallow period
总降雨量
Total precipitation
2019 W-M→W-M 冬小麦 Winter wheat 79.2 0 79.2
夏玉米 Summer maize 432.2 10.1 442.3
Ms→W-M 春玉米 Spring maize 457.5 64.0 521.5
W→W-M 冬小麦 Winter wheat 79.2 442.3 521.5
Psw→W-M 春甘薯 Spring sweet potato 465.0 56.5 521.5
As→W-M 春花生 Spring peanut 457.5 64.0 521.5
W-A→W-M 冬小麦 Winter wheat 79.2 0 79.2
夏花生 Summer peanut 439.7 2.6 442.3
P-C→W-M 马铃薯 Potato 67.8 11.4 79.2
青贮玉米 Silage corn 432.2 10.1 442.3
2020 冬小麦 Winter wheat 147.7 0 147.7
夏玉米 Summer maize 239.8 0.7 240.5

图3

不同轮作模式地下水净消耗量情况 地下水净消耗量=灌溉量-深层渗漏量。不同小写字母表示处理间采用LSD法比较在0.05水平上差异显著。"

图4

不同轮作模式0~200 cm土层土壤体积含水量变化"

图5

不同轮作模式0~200 cm土壤贮水量变化状况 贮水量变化=试验年结束时贮水量-试验年开始时贮水量; 正值表示贮水量增加, 负值表示减少(P<0.05)。不同小写字母表示处理间采用LSD法比较在0.05水平上差异显著。"

表3

不同轮作模式耗水量与耗水构成"

模式
Rotation pattern
2018-2019 2019-2020 2018-2020年均2018-2020 Average
降水量
P
灌溉量
I
土壤水
变化量
CSWS
深层
渗漏量
DP
周年
蒸散量
ETa
降水量
P
灌溉量
I
土壤水变化量
CSWS
深层
渗漏量
DP
周年
蒸散量
ETa
降水量
P
灌溉量
I
土壤水
变化量
CSWS
深层
渗漏量
DP
年均
蒸散量ETa
W-M→W-M 521.5 300.0 -18.4 a 92.6 ab 747.3 ab 388.2 345.0 -29.4 b 75.2 ab 687.4 b 454.9 322.5 -23.9 a 83.9 a 717.4 b
Ms→W-M 521.5 155.0 27.2 b 35.6 bc 613.7 d 388.2 345.0 -87.1 a 30.1 bc 790.1 a 454.9 250.0 -30.0 a 32.9 bc 701.9 b
W→W-M 521.5 225.0 4.4 ab 34.3 bc 707.8 bc 388.2 345.0 -44.2 b 36.3 bc 741.1 ab 454.9 285.0 -19.9 a 35.3 bc 724.5 b
Psw→W-M 521.5 80.0 -2.4 ab 11.5 c 592.4 d 388.2 345.0 -35.6 b 93.1 a 675.6 b 454.9 212.5 -19.0 a 52.3 abc 634.0 e
As→W-M 521.5 125.0 12.6 ab 21.0 c 612.9 d 388.2 345.0 -60.4 ab 49.1 abc 744.5 ab 454.9 235.0 -23.9 a 35.1 bc 678.7 bc
W-A→W-M 521.5 300.0 -13.6 a 25.4 c 809.7 a 388.2 345.0 -35.2 b 26.3 bc 742.1 ab 454.9 322.5 -24.4 a 25.8 c 775.9 a
P-SC→W-M 521.5 230.0 -19.6 a 128.8 a 642.3 cd 388.2 345.0 -29.3 b 18.1 c 744.4 ab 454.9 287.5 -24.5 a 73.4 ab 693.4 b

表4

2018-2020年不同轮作模式的经济水分利用效率(EWUE)比较"

模式
Rotation pattern
2018-2019 2019-2020 2018-2020年均2018-2020 average
经济效益
Benefits
(Yuan hm-2)
耗水量
ETa
(mm)
经济水分
利用效率
EWUE
(Yuan m-3)
经济效益
Benefits
(Yuan hm-2)
耗水量
ETa
(mm)
经济水分
利用效率
EWUE
(Yuan m-3)
经济效益
Benefits
(Yuan hm-2)
耗水量
ETa
(mm)
经济水分
利用效率
EWUE
(Yuan m-3)
W-M→W-M 21,402.1 b 747.3 ab 2.87 c 23,167.4 a 687.4 b 3.37 a 22,284.8 b 717.4 b 3.11 c
Ms→W-M 15,416.6 b 613.7 d 2.52 c 22,654.9 a 790.1 a 2.87 bc 19,035.8 b 701.9 b 2.72 c
W→W-M 6,789.4 c 707.8 bc 0.96 d 21,242.4 ab 741.1 ab 2.87 bc 14,015.9 c 724.5 b 1.94 d
Psw→W-M 16,478.1 b 592.4 d 2.78 c 22,445.0 a 675.6 b 3.34 ab 19,461.5 b 634.0 c 3.08 c
As→W-M 39,110.5 a 612.9 d 6.38 a 23,470.8 a 744.5 ab 3.16 ab 31,290.6 a 678.7 bc 4.61 a
W-A→W-M 36,890.7 a 809.7 a 4.56 b 23,115.3 a 742.1 ab 3.11 ab 30,003.0 a 775.9 a 3.87 b
P-C→W-M 20,783.8 b 642.3 cd 3.24 c 18,967.8 b 744.4 ab 2.55 c 19,875.8 b 693.4 b 2.87 c

附表1

2018-2020年不同轮作模式的作物产量"

模式
Rotation pattern
2018-2019 2019-2020
作物Crop 产量Yield (kg hm-2) 作物Crop 产量Yield (kg hm-2)
W-M→W-M 冬小麦 Winter wheat 6985 ± 594 冬小麦 Winter wheat 8947 ± 1150
夏玉米 Summer maize 11,118 ± 859 夏玉米 Summer maize 10,320 ± 137
Ms→W-M 春玉米 Spring maize 12,295 ± 451 冬小麦 Winter wheat 9243 ± 371
夏玉米 Summer maize 9673 ± 622
W→W-M 冬小麦 Winter wheat 7173 ± 813 冬小麦 Winter wheat 8763 ± 677
夏玉米 Summer maize 9546 ± 418
Psw→W-M 春甘薯 Spring sweet potato 33,576 ± 1529 冬小麦 Winter wheat 8585 ± 641
夏玉米 Summer maize 10,403 ± 375
As→W-M 春花生 Spring peanut 6487 ± 371 冬小麦 Winter wheat 9122 ± 500
夏玉米 Summer maize 10,254 ± 435
W-A→W-M 冬小麦 Winter wheat 7002 ± 708 冬小麦 Winter wheat 8804 ± 767
夏花生 Summer peanut 5252 ± 832 夏玉米 Summer maize 10,475 ± 463
P-SC→W-M 马铃薯 Potato 26,733 ± 5542 冬小麦 Winter wheat 8442 ± 482
青贮玉米 Silage maize 51,733 ± 3711 夏玉米 Summer maize 8766 ± 879
[1] 程亚男. 黑龙港地区水资源承载力评估与分析. 河北大学硕士学位论文,河北保定, 2019.
Cheng Y N. Analysis and Assessment of Water Resources Carrying Capacity in Heilonggang Region. MS Thesis of Hebei University, Baoding, Hebei, China, 2019. (in Chinese with English abstract)
[2] 尹宝重, 李海燕, 马燕会, 段玉波, 孙良忠, 甄文超. 黑龙港区春季减灌对不同小麦品种产量和水肥利用的影响. 江苏农业科学, 2015, 43(3): 63-66.
Yin B Z, Li H Y, Ma Y H, Duan Y B, Sun L Z, Zhen W C. Effect of spring irrigation reduction on yield and water and fertilizer utilization of different wheat varieties in Heilonggang Region. Jiangsu Agric Sci, 2015, 43(3): 63-66. (in Chinese)
[3] 郝彦珍. 黑龙港砂土区农用地下水资源合理利用试验研究. 石家庄经济学院硕士学位论文, 河北石家庄, 2012.
Hao Y Z. The Testing Research About Rational Use of Agricultural Groundwater Resources in Heilonggang Area. MS Thesis of Shijiazhuang University of Economics, Shijiazhuang, Hebei, China, 2012. (in Chinese with English abstract)
[4] 田北京. 基于玉米高生产力的华北平原不同轮作体系产量与水分利用综合评价. 中国农业大学博士学位论文, 北京, 2019.
Tian B J. Comprehensive Evaluation of Yield and Water Use of Different Rotation Systems Based on High Productivity of Maize in North China Plain. PhD Dissertation of China Agricultural University, Beijing, China, 2019 (in Chinese with English abstract).
[5] Liang H, Qin W, Hu K, Tao H, Li B. Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain. Agric Water Manage, 2019, 213: 732-741.
doi: 10.1016/j.agwat.2018.11.022
[6] Sun Q, Kröbel R, Müller T, Römheld V, Cui Z, Zhang F, Chen X. Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain. Agric Water Manage, 2011, 98: 808-814.
doi: 10.1016/j.agwat.2010.12.007
[7] 张晓. 浅议河北省黑龙港流域节水农业发展. 河北水利, 2017, (11): 30.
Zhang X. Discussion on the development of water saving agriculture in Heilonggang basin of Hebei province. Hebei Water Resour, 2017, (11): 30. (in Chinese)
[8] 秦欣, 刘克, 周丽丽, 周顺利, 鲁来清, 王润政. 华北地区冬小麦-夏玉米轮作节水体系周年水分利用特征. 中国农业科学, 2012, 45: 4014-4024.
Qin X, Liu K, Zhou L L, Zhou S L, Lu L Q, Wang R Z. Characteristics of annual water utilization in winter wheat-summer maize rotation system in North China Plain. Sci Agric Sin, 2012, 45: 4014-4024. (in Chinese with English abstract)
[9] Steward D R, Bruss P J, Yang X, Staggenborg S A, Welch S M, Apley M D. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110. Proc Natl Acad Sci USA, 2013, 110: E3477-E3486.
[10] Scanlon B R, Reedy R C, Gates J B, Gowda P H. Impact of agroecosystems on groundwater resources in the Central High Plains, USA. Agric Ecosyst Environ, 2010, 139: 700-713.
doi: 10.1016/j.agee.2010.10.017
[11] Castellazzi P, Martel R, Rivera A, Huang J, Pavlic G, Calderhead A I, Chaussard E, Garfias J, Salas J. Groundwater depletion in Central Mexico: Use of GRACE and InSAR to support water resources management. Water Resour Res, 2016, 52: 5985-6003.
doi: 10.1002/2015WR018211
[12] Aeschbach-Hertig W, Gleeson T. Regional strategies for the accelerating global problem of groundwater depletion. Nat Geosci, 2012, 5: 853-861.
doi: 10.1038/ngeo1617
[13] Kong X, Zhang X, Lal R, Zhang F, Chen X, Niu Z, Han L, Song W. Groundwater depletion by agricultural intensification in China’s HHH Plains, since 1980s. Adv Agron, 2016, 135: 59-106.
[14] Yang X L, Chen Y Q, Steenhuis T S, Pacenka S, Gao W S, Ma L, Zhang M, Sui P. Mitigating groundwater depletion in north China Plain with cropping system that alternate deep and shallow rooted crops. Front Plant Sci, 2017, 8: 980.
doi: 10.3389/fpls.2017.00980
[15] Yang X L, Chen Y Q, Pacenka S, Steenhuis T S, Sui P. Managing food and bioenergy crops with declining groundwater levels in the North China Plain. Field Crops Res, 2019, 234: 1-14.
doi: 10.1016/j.fcr.2019.02.003
[16] 杨美赞. 黑龙港地区地下水灌溉管理现状研究. 河北农业大学硕士学位论文, 河北保定, 2018.
Yang M Z. Current Situation Research on Groundwater Irrigation Management in Heilonggang Region. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2018. (in Chinese with English abstract)
[17] 张发旺, 程彦培, 王滨, 陈立, 郭晓晓. 黑龙港地区水土资源空间分布与农业种植结构优化研究. 安徽农业科学, 2011, 39: 13356-13359.
Zhang F W, Cheng Y P, Wang B, Chen L, Guo X X. Study on water-soil resources distribution and agricultural planting structure optimization in Heilonggang Area. J Anhui Agric Sci, 2011, 39: 13356-13359. (in Chinese with English abstract)
[18] 王滨, 张发旺, 程彦培, 陈立. 基于农业种植结构的黑龙港地区水资源供需平衡分析. 水土保持通报, 2012, 32(2): 182-185.
Wang B, Zhang F W, Cheng Y P, Chen L. Supplies and demands balance of water resource in consideration of agricultural cultivation structure in Heilonggang district. Bull Soil Water Conserv, 2012, 32(2): 182-185. (in Chinese with English abstract)
[19] 黄国勤, 赵其国. 中国典型地区轮作休耕模式与发展策略. 土壤学报, 2018, 55: 283-292.
Huang G Q, Zhao Q G. Rotation fallow pattern and development strategy in typical areas of China. Acta Pedol Sin, 2018, 55: 283-292. (in Chinese with English abstract)
[20] 杨晓琳. 华北平原不同轮作模式节水减排效果评价. 中国农业大学博士学位论文,北京, 2015.
Yang X L. Effects of Diversified Rotation Patterns on Conserving Groundwater Resource and Lowering Carbon Footprint in the North China Plain. PhD Dissertation of China Agricultural University,Beijing, China, 2015. (in Chinese with English abstract)
[21] Gao B, Ju X T, Meng Q F, Cui Z L, Christie P, Chen X P, Zhang F S. The impact of alternative cropping systems on global warming potential, grain yield and groundwater use. Agric Ecosyst Environ, 2015, 203: 46-54.
doi: 10.1016/j.agee.2015.01.020
[22] 郭步庆, 陶洪斌, 王璞, Heike K, Wilhelm C. 华北平原不同粮作模式下作物水分利用. 中国农业大学学报, 2013, 18(1): 53-60.
Guo B Q, Tao H B, Wang P, Heike K, Wilhelm C. Water utilization of different cropping production systems in North China Plain. J China Agric Univ, 2013, 18(1): 53-60. (in Chinese with English abstract)
[23] 马丽, 隋鹏, 高旺盛, 李丰蓉. 太行山前平原不同种植模式水资源利用效率分析. 干旱地区农业研究, 2008, 26(2): 177-183.
Ma L, Sui P, Gao W S, Li F R. Analysis on water resources utilization efficiency of different planting patterns in Taihang Piedmont Plain. Agric Res Arid Areas, 2008, 26(2): 177-183. (in Chinese with English abstract)
[24] 吴天龙, 马丽, 隋鹏, 高旺盛, 陈源泉. 太行山前平原不同轮作模式水资源利用效率评价. 中国农学通报, 2008, 24(5): 351-356.
Wu T L, Ma L, Sui P, Gao W S, Chen Y Q. Dynamic soil water variation and WUE of different cropping patterns in the Piedmont of Mt. Taihang. Chin Agric Sci Bull, 2008, 24(5): 351-356 (in Chinese with English abstract).
[25] 郑媛媛, 陈宗培, 王贵彦. 海河平原小麦-玉米不同种植制度节水特性分析. 干旱地区农业研究, 2019, 37(5): 9-15.
Zheng Y Y, Chen Z P, Wang G Y. Analysis on the water-saving characteristics of winter wheat and summer maize cropping system on Haihe Plain. Agric Res Arid Areas, 2019, 37(5): 9-15. (in Chinese with English abstract)
[26] 胡志桥, 田霄鸿, 张久东, 包兴国, 马忠明. 石羊河流域节水高产高效轮作模式研究. 中国生态农业学报, 2011, 19: 561-567.
Hu Z Q, Tian X H, Zhang J D, Bao X G, Ma Z M. High efficiency production and water-saving crop rotation systems in Shiyang River Area. Chin J Eco-Agric, 2011, 19: 561-567. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2011.00561
[27] 刘渊博. 饲用油菜-冬小麦轮作系统生产力及资源利用效率研究. 兰州大学硕士学位论文, 甘肃兰州, 2014.
Liu Y B. Productivity and Resource Utilization in a Forage Canola-Winter Wheat Rotation System. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2014. (in Chinese with English abstract)
[28] Kröbel R, Lemke R, Campbell C A, Zentner R, McConkey B, Steppuhn H, De Jong R, Wang H. Water use efficiency of spring wheat in the semi-arid Canadian prairies: effect of legume green manure, type of spring wheat, and cropping frequency. Can J Soil Sci, 2014, 94: 223-235.
doi: 10.4141/cjss2013-016
[29] Yang X L, Chen Y Q, Pacenka S, Gao W S, Ma L, Wang G Y, Yan P, Sui P, Steenhuis T S. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain. J Hydrol, 2015, 522: 428-438.
doi: 10.1016/j.jhydrol.2015.01.010
[30] He A B, Yuan B, Jin Z Q, Man J Q, Peng S B, Zhang L, Liu H Y, Nie L X. Comparative study on annual yield, water consumption, irrigation water use efficiency and economic benefits of different rice-oilseed rape rotation systems in central China. Agric Water Manage, 2021, 247: 106741.
doi: 10.1016/j.agwat.2021.106741
[31] Genuchten V T M. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J, 1980, 44: 892-898.
doi: 10.2136/sssaj1980.03615995004400050002x
[32] 孙宏勇, 刘小京, 巨兆强, 郭凯. 不同种植模式下水资源利用效率的探讨. 灌溉排水学报, 2015, 34(2): 45-48.
Sun H Y, Liu X J, Ju Z Q, Guo K. Discussion on utilization efficiency of water resources under different planting patterns. J Irrig Drain, 2015, 34(2): 45-48. (in Chinese)
[33] 刘沛松, 李军, 贾志宽, 于亚军, 刘世新. 宁南旱区苜蓿草地土壤水分消耗规律及粮草轮作土壤水分恢复效应研究. 中国农学通报, 2005, 21(9): 270-274.
Liu P S, Li J, Jia Z K, Yu Y J, Liu S X. Soil water study of alfalfa grass water consume disciplinarian and resume affection while grain-grass rotation in the arid regions of Southern Ningxia. Chin Agric Sci Bull, 2005, 21(9): 270-274 (in Chinese with English abstract).
[34] Fageria N K. The Role of Plant Roots in Crop Production. Boca Raton, US: CRC Press, 2012.
[35] Mi G, Chen F, Yuan L, Zhang F. Ideotype root system architecture for maize to achieve high yield and resource use efficiency in intensive cropping systems. Adv Agron, 2016, 139: 73-97.
[36] Semchenko M, Hutchings M J, John E A. Challenging the tragedy of the commons in root competition: confounding effects of neighbor presence and substrate volume. J Ecol, 2007, 95: 252-260.
doi: 10.1111/j.1365-2745.2007.01210.x
[37] Cai X, Wallington K, Shafiee-Jood M, Marston L. Understanding and managing the food-energy-water nexus- opportunities for water resources research. Adv Water Resour, 2018, 111: 259-273.
doi: 10.1016/j.advwatres.2017.11.014
[38] D’Odorico P, Davis K F, Rosa L, Carr J A, Chiarelli D, Dell’Angelo J, Gephart J, MacDonald G K, Seekell D A, Suweis S, Rulli M C. The global food-energy-water nexus. Rev Geophys, 2018, 56: 456-531.
doi: 10.1029/2017RG000591
[39] Van Duivenbooden N, Pala M, Studer C, Bielders C L, Beukes D J. Cropping systems and crop complementarity in dryland agriculture to increase soil water use efficiency: a review. NJAS-Wageningen J Life Sci, 2000, 48: 213-236.
doi: 10.1016/S1573-5214(00)80015-9
[1] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[2] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531.
[3] 张绪成, 马一凡, 于显枫, 侯慧芝, 王红丽, 方彦杰, 张国平, 雷康宁. 旋耕深度对西北黄土高原旱作区土壤水分特性和马铃薯产量的影响[J]. 作物学报, 2021, 47(1): 138-148.
[4] 武超, 刘贤文, 张炜, 王琼, 郭华春. 马铃薯不同品种(系)和稻、薯轮作模式对根结线虫病的防治效果[J]. 作物学报, 2020, 46(9): 1456-1463.
[5] 姚兆磊, 张继宗, 杜玉琼, 刘玉华, 张立峰. 华北寒旱区作物轮作的生产效应[J]. 作物学报, 2020, 46(12): 1923-1932.
[6] 吴玉红,郝兴顺,田霄鸿,陈浩,张春辉,崔月贞,秦宇航. 秸秆还田与化肥配施对汉中盆地稻麦轮作农田土壤固碳及经济效益的影响[J]. 作物学报, 2020, 46(02): 259-268.
[7] 张乃旭,赵财,赵良霞,蔡莉娟,王一帆,柴强. 绿洲灌区一膜覆两年玉米的节水潜力[J]. 作物学报, 2018, 44(6): 876-885.
[8] 王芳,陈井生,刘大伟. 不同种植方式大豆根际土壤细菌多样性分析[J]. 作物学报, 2018, 44(10): 1539-1547.
[9] 王巧梅,樊志龙,赵彦华,殷文,柴强. 绿洲灌区不同密度玉米群体的耗水特性研究[J]. 作物学报, 2017, 43(09): 1347-1356.
[10] 肖克,唐静,李继福,邹家龙,朱建强. 长期水稻-冬油菜轮作模式下钾肥的适宜用量[J]. 作物学报, 2017, 43(08): 1226-1233.
[11] 殷文**,冯福学**,赵财,于爱忠,柴强*,胡发龙,郭瑶. 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响[J]. 作物学报, 2016, 42(05): 751-757.
[12] 徐晖,崔怀洋,张伟,丁锦峰,李春燕,郭文善,朱新开. 播期、密度和施氮量对稻茬小麦光明麦1号氮肥表观利用率的调控[J]. 作物学报, 2016, 42(01): 123-130.
[13] 丁锦峰, 黄正金, 袁毅, 朱新开, 李春燕, 彭永欣, 郭文善. 稻–麦轮作下9000 kg hm–2产量水平扬麦20的群体质量及花后光合特征[J]. 作物学报, 2015, 41(07): 1086-1097.
[14] 赵亚丽,郭海斌,薛志伟,穆心愿,李潮海*. 耕作方式与秸秆还田对冬小麦–夏玉米轮作系统中干物质生产和水分利用效率的影响[J]. 作物学报, 2014, 40(10): 1797-1807.
[15] 秦舒浩,曹莉,张俊莲,师尚礼,王蒂. 轮作豆科植物对马铃薯连作田土壤速效养分及理化性质的影响[J]. 作物学报, 2014, 40(08): 1452-1458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .