作物学报 ›› 2023, Vol. 49 ›› Issue (8): 2122-2132.doi: 10.3724/SP.J.1006.2023.24205
陈力1,2(), 王靖1,2, 邱晓3, 孙海莲3, 张文浩1, 王天佐1,*()
CHEN Li1,2(), WANG Jing1,2, QIU Xiao3, SUN Hai-Lian3, ZHANG Wen-Hao1, WANG Tian-Zuo1,*()
摘要:
苜蓿是最重要的豆科牧草, 常被种植在干旱/半干旱地区。为研究不同耐旱性紫花苜蓿应对干旱胁迫的调控机制, 本研究以中科1号紫花苜蓿(Medicago sativa ‘Zhongke 1’)为试验材料, 以三得利紫花苜蓿(M. sativa ‘Sanditi’)为对照, 采用自然干旱法进行处理, 比较干旱胁迫对其生长性状、光合作用、叶绿素含量、叶片相对含水量、渗透调节物质和抗氧化酶活性等指标的影响, 并使用转录组测序分析2个品种响应干旱基因的差异。结果表明, 干旱胁迫显著降低了2个紫花苜蓿品种的株高、地上地下生物量、叶片相对含水量、光合速率、蒸腾速率、气孔导度、胞间二氧化碳浓度和叶绿素含量; 与三得利相比, 干旱胁迫下中科1号紫花苜蓿丙二醛含量和电导率更低, 渗透调节物质积累和活性氧清除能力更强。中科1号和三得利分别有5308个和8053个响应干旱的基因; GO功能注释分析发现, 中科1号的346个干旱响应基因被显著富集在6个GO类别, 而三得利的1683个干旱响应基因被显著富集在29个GO类别; 此外, 我们还筛选到19个在中科1号中表达量显著高于三得利的抗旱关键基因。本研究发现紫花苜蓿可能通过上调抗旱基因SUS、P5CS、LEA、SOD、POD、PEPC、NCED等的表达, 提高渗透调节能力和抗氧化酶活性来维持相对较高的光合速率, 从而增强抗旱能力。研究结果为进一步挖掘紫花苜蓿响应干旱胁迫的候选基因和抗旱育种提供了理论依据。
[1] | 韩德梁, 王彦荣. 紫花苜蓿对干旱胁迫适应性的研究进展. 草业学报, 2005, 14(6): 7-13. |
Han D L, Wang Y R. Adaptability of Medicago sativa under water stress. Acta Pratac Sin, 2005, 14(6): 7-13. (in Chinese with English abstract) | |
[2] |
Jia Y H, Shao M A. Temporal stability of soil water storage under four types of revegetation on the northern loess plateau of China. Agric Water Manag, 2013, 117: 33-42.
doi: 10.1016/j.agwat.2012.10.013 |
[3] | 王晓娟, 张树振, 林双双, 邓志刚, 金樑. 紫花苜蓿(Medicago sativa L.)生物能源利用的研究进展. 中国农业科学, 2013, 46: 1694-1705. |
Wang X J, Zhang S Z, Lin S S, Deng Z G, Jin L. Advances in study on bio-energy utilization of stem cell wall components in alfalfa (Medicago sativa L.). Sci Agric Sin, 2013, 46: 1694-1705. (in Chinese with English abstract) | |
[4] |
张迪, 任立飞, 刘广彬, 罗伏青, 张文浩, 王天佐. 不同干燥方式对苜蓿种子代谢物的影响. 草业学报, 2021, 30(3): 158-166.
doi: 10.11686/cyxb2020147 |
Zhang D, Ren L F, Liu G B, Luo F Q, Zhang W H, Wang T Z. Comparative metabolite profiling of alfalfa seeds dried at different temperatures. Acta Pratac Sin, 2021, 30(3): 158-166. (in Chinese with English abstract) | |
[5] |
Mickky B M, Abbas M A, Ei-shhaby O A. Alterations in photosynthetic capacity and morpho-histological features of leaf in alfalfa plants subjected to water deficit-stress in different soil types. Indian J Plant Physiol, 2018, 23: 426-443.
doi: 10.1007/s40502-018-0383-7 |
[6] |
Wang T, Zhang W H. Priorities for the development of alfalfa pasture in northern China. Fundam Res, 2022, doi:10.1016/j.fmre.2022.04.017.
doi: 10.1016/j.fmre.2022.04.017 |
[7] | 杨青川, 康俊梅, 张铁军, 刘凤歧, 龙瑞才, 孙彦. 苜蓿种质资源的分布、育种与利用. 科学通报, 2016, 61: 261-270. |
Yang Q C, Kang J M, Zhang T J, Liu F Q, Long R C, Sun Y. Distribution, breeding and utilization of alfalfa germplasm resources. Chin Sci Bull, 2016, 61: 261-270 (in Chinese with English abstract).
doi: 10.1360/N972015-00879 |
|
[8] |
陆姣云, 熊军波, 张鹤山, 田宏, 杨惠敏, 刘洋. 水分胁迫对紫花苜蓿产量、品质和微量元素的影响. 草业学报, 2020, 29(8): 126-133.
doi: 10.11686/cyxb2019462 |
Lu J Y, Xiong J B, Zhang H S, Tian H, Yang H M, Liu Y. Effects of water stress on yield, quality and trace element composition of alfalfa. Acta Pratac Sin, 2020, 29(8): 126-133. (in Chinese with English abstract) | |
[9] | 张立全, 贾旭慧, 赵静玮. PEG模拟干旱胁迫对紫花苜蓿种子发芽及幼苗生长的影响. 分子植物育种, 2020, 18: 3759-3764. |
Zhang L Q, Jia X H, Zhao J W. Effects of PEG simulated drought stress on seed germination and seedling growth of alfalfa. Mol Plant Breed, 2020, 18: 3759-3764 (in Chinese with English abstract). | |
[10] |
李佳欢, 刘希强, 吕进英, 任成, 王开丽, 黄顶, 邓波, 王堃. 基于植株各器官生理响应对12种苜蓿抗旱性的综合评价. 草地学报, 2020, 28: 1319-1328.
doi: 10.11733/j.issn.1007-0435.2020.05.017 |
Li J H, Liu X Q, Lyu J Y, Ren C, Wang K L, Huang D, Deng B, Wang K. drought resistance evaluation of 12 alfalfa varieties based on physiological response of four plant organs. Acta Agrest Sin, 2020, 28: 1319-1328. (in Chinese with English abstract) | |
[11] |
Bid M, Haddad M, Ben Khaled A, Mansour E, Bachar K, Lacheheb B, Ferchichi A. Water relations and gas exchange in alfalfa leaves under drought conditions in southern Tunisian oases. Polish J Environ Stud, 2016, 25: 917-924.
doi: 10.15244/pjoes/61282 |
[12] | 张曦, 王振南, 陆姣云, 杨梅, 杨惠敏. 紫花苜蓿叶性状对干旱的阶段性响应. 生态学报, 2016, 36: 2669-2676. |
Zhang X, Wang Z N, Lu J Y, Yang M, Yang H M. Responses of leaf traits to drought at different growth stages of alfalfa. Acta Ecol Sin, 2016, 36: 2669-2676. (in Chinese with English abstract) | |
[13] |
Roy M, Niu J P, Irshad A, Kareem H A, Hassan M U, Xu N, Sui X, Guo Z P, Amo A, Wang Q Z. Exogenous melatonin protects alfalfa (Medicago sativa L.) seedlings from drought-induced damage by modulating reactive oxygen species metabolism, mineral balance and photosynthetic efficiency. Plant Stress, 2021, 2: 100044.
doi: 10.1016/j.stress.2021.100044 |
[14] |
阿衣古力·阿布都瓦依提, 王铮, 木合塔尔·扎热, 齐曼·尤努斯. 干旱胁迫对3个苜蓿品种的生长及光合特性的影响. 中国农学通报, 2016, 32(14): 7-12.
doi: 10.11924/j.issn.1000-6850.casb15110133 |
Aygul A, Wang Z, Muhtar Z, Qiman Y. Effect of drought stress on plant growth and photosynthetic characteristics of three alfalfa varieties. Chin Agric Sci Bull, 2016, 32(14): 7-12. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb15110133 |
|
[15] |
Claeys H, Inzé D. The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol, 2013, 162: 1768-1779.
doi: 10.1104/pp.113.220921 pmid: 23766368 |
[16] |
Zhang C M, Shi S L, Liu Z, Yang F, Yin G L. Drought tolerance in alfalfa (Medicago sativa L.)varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. J Plant Physiol, 2019, 232: 226-240.
doi: 10.1016/j.jplph.2018.10.023 |
[17] |
SuzukI N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ, 2012, 35: 259-270.
doi: 10.1111/j.1365-3040.2011.02336.x |
[18] | Slama I, Tayachi S, Jdey A, Rouached A, Abdelly C. Differential response to water deficit stress in alfalfa (Medicago sativa) cultivars: growth, water relations, osmolyte accumulation and lipid peroxidation. Afr J Biotechnol, 2011, 10: 16250-16259. |
[19] | Quan W, Liu X, Wang H, Chan Z L. Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties. Front Plant Sci, 2016, 6: 1256. |
[20] |
冷暖, 刘晓巍, 张娜, 许立新. 草地早熟禾干旱胁迫转录组差异性分析. 草业学报, 2017, 26(12): 128-137.
doi: 10.11686/cyxb2017130 |
Leng N, Liu X W, Zhang N, Xu L X. Differential gene analysis of Poapratensis in response to drought stress. Acta Pratac Sin, 2017, 26(12): 128-137. (in Chinese with English abstract) | |
[21] |
Ma Q, Bao A K, Chai W W, Wang W Y, Zhang J L, Li Y X, Wang S M. Transcriptomic analysis of the succulent xerophyte Zygophyllum xanthoxylum in response to salt treatment and osmotic stress. Plant Soil, 2016, 402: 343-361.
doi: 10.1007/s11104-016-2809-1 |
[22] |
Swarbreck S M, Lindquist E A, Ackerly D D, Andersen G L. Analysis of leaf and root transcriptomes of soil-grown Avena barbata plants. Plant Cell Physiol, 2011, 52: 317-332.
doi: 10.1093/pcp/pcq188 |
[23] |
Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R, Rotter B, Steinhauer D, Amenc L, Drevon J J, Winter P, Kahl G. The salt-responsive transcriptome of chickpea roots and nodules via deep super SAGE. BMC Plant Biol, 2011, 11: 31.
doi: 10.1186/1471-2229-11-31 |
[24] |
汤海港, 黄艳华, 路海博, 田丹阳, 张蕴薇. 转录组测序技术及其在能源草基因挖掘和品种选育中的应用前景分析. 草地学报, 2016, 24: 731-737.
doi: 10.11733/j.issn.1007-0435.2016.04.004 |
Tang H G, Huang Y H, Lu H B, Tian D Y, Zhang Y W. The application perspective of transcriptome sequencing on discovering the genes and variety breeding of bioenergy grass. Acta Agrest Sin, 2016, 24: 731-737. (in Chinese with English abstract) | |
[25] | 王园园, 赵明, 张红香, 卢正宽, 穆春生. 干旱胁迫对紫花苜蓿幼苗形态和生理特征的影响. 中国草地学报, 2021, 43(9): 78-87. |
Wang Y Y, Zhao M, Zhang H X, Lu Z K, Mu C S. Effects of drought stress on morphological and physiological characteristics of alfalfa seedlings. Chin J Grassland, 2021, 43(9): 78-87. (in Chinese with English abstract) | |
[26] |
张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响. 中国农业科学, 2018, 51: 868-882.
doi: 10.3864/j.issn.0578-1752.2018.05.006 |
Zhang C M, Shi S L, Wu F. Effects of drought stress on root and physiological responses of different drought tolerant alfalfa varieties. Sci Agric Sin, 2018, 51: 868-882. (in Chinese with English abstract) | |
[27] |
Wang T Z, Chen L, Zhao M G, Tian Q Y, Zhang W H. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC Genomics, 2011, 12: 367.
doi: 10.1186/1471-2164-12-367 |
[28] |
Smart R E. Rapid estimates of relative water content. Plant Physiol, 1974, 53: 258-260.
doi: 10.1104/pp.53.2.258 pmid: 16658686 |
[29] |
Nayyar H. Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environ Exp Bot, 2003, 50: 253-264.
doi: 10.1016/S0098-8472(03)00038-8 |
[30] |
Arnon D I. Copper enzymes in isolated chloroplasts- polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1-5.
doi: 10.1104/pp.24.1.1 pmid: 16654194 |
[31] | 邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2007. |
Zou Q. Plant Physiology Experiment Guidance. Beijing: China Agriculture Press, 2007. (in Chinese) | |
[32] |
Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol, 1977, 59: 309-314.
doi: 10.1104/pp.59.2.309 pmid: 16659839 |
[33] | Pandolfini T, Gabbrielli R, Comparini C. Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environt, 1992, 15: 719-725. |
[34] |
Shen C, Du H L, Chen Z, Lu H W, Zhu F G, Chen H, Meng X Z, Liu Q W, Liu P, Zheng L H, Li X X, Dong J L, Liang C Z, Wang T. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol Plant, 2020, 13: 1250-1261.
doi: S1674-2052(20)30216-1 pmid: 32673760 |
[35] | 韩志顺, 郑敏娜, 梁秀芝, 康佳惠, 陈燕妮. 干旱胁迫对不同紫花苜蓿品种形态特征和生理特性的影响. 中国草地学报, 2020, 42(3): 37-43. |
Han Z S, Zheng M N, Liang X Z, Kang J H, Chen Y N. Effects of drought stress on morphological and physiological characteristics of different alfalfa cultivars. Chin J Grassland, 2020, 42(3): 37-43. (in Chinese with English abstract) | |
[36] | 刘军, 齐广平, 康燕霞, 马彦麟, 栗志. 土壤水分胁迫对紫花苜蓿光合特性及其生物量的影响. 干旱区研究, 2019, 36: 893-900. |
Liu J, Qi G P, Kang Y X, Ma Y L, Li Z. Effects of soil water stress on photosynthetic characteristics and biomass of Medicago sativa. Arid Zone Res, 2019, 36: 893-900. (in Chinese with English abstract) | |
[37] |
南思睿, 罗永忠, 于思敏, 何钰, 仝慧鑫. 干旱胁迫后复水对新疆大叶苜蓿幼苗光合和叶绿素荧光的影响. 草地学报, 2022, 30: 1141-1149.
doi: 10.11733/j.issn.1007-0435.2022.05.014 |
Nan S R, Luo Y Z, Yu S M, He Y, Tong H X. Effects of rewatering after drought stress on photosynthesis and chlorophyll fluorescence of Medicago sativa cv. Xingjiangdaye seedlings. Acta Agrest Sin, 2022, 30: 1141-1149 (in Chinese with English abstract). | |
[38] | 韩瑞宏, 卢欣石, 高桂娟, 杨秀娟. 紫花苜蓿(Medicago sativa)对干旱胁迫的光合生理响应. 生态学报, 2007, 27: 5229-5237. |
Han R H, Lu X S, Gao G J, Yang X J. Photosynthetic physiological response of alfalfa (Medicago sativa) to drought stress. Acta Ecol Sin, 2007, 27: 5229-5237 (in Chinese with English abstract). | |
[39] |
Leng P, Yuan B, Guo Y. The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot, 2014, 65: 4577-4588.
doi: 10.1093/jxb/eru204 pmid: 24821949 |
[40] |
王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征. 草业学报, 2022, 31(3): 71-84.
doi: 10.11686/cyxb2020557 |
Wang Z H, Wei Y Q, Zhao Y R, Wang Y J. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings. Acta Pratac Sin, 2022, 31(3): 71-84. (in Chinese with English abstract) | |
[41] |
Zhang C M, Shang L S. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress. Front Plant Sci, 2018, 9: 242.
doi: 10.3389/fpls.2018.00242 |
[42] |
韩瑞宏, 田华, 高桂娟, 卢欣石. 干旱胁迫下紫花苜蓿叶片水分代谢与两种渗透调节物质的变化. 华北农学报, 2008, 23(4): 140-144.
doi: 10.7668/hbnxb.2008.04.032 |
Han R H, Tian H, Gao G J, Lu X S. Change of water metabolism and two osmotic adjustment substances in the leaves of alfalfa under drought stress. Acta Agric Boreali-Sin, 2008, 23(4): 140-144. (in Chinese with English abstract) | |
[43] | 张美, 张会. 胚胎发育晚期丰富蛋白(LEA蛋白)与植物抗逆性研究进展. 生物资源, 2017, 39(3): 155-161. |
Zhang M, Zhang H. Research progress of late embryogenesis abundant (LEA) protein involved in plant tolerance to abiotic stresse. Biotic Resour, 2017, 39(3): 155-161. (in Chinese with English abstract) | |
[44] |
Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
doi: 10.1016/j.plaphy.2010.08.016 |
[45] |
权文利, 产祝龙. 紫花苜蓿抗旱机制研究进展. 生物技术通报, 2016, 32(10): 34-41.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.003 |
Quan W L, Chan Z L. Research progress on drought resistance mechanism of alfalfa. Biotechnol Bull, 2016, 32(10): 34-41. (in Chinese with English abstract) |
[1] | 王菲菲, 张胜忠, 胡晓辉, CHU Ye, 崔凤高, 钟文, 赵立波, 张天雨, 郭进涛, 于豪谅, 苗华荣, 陈静. 比较转录组分析花生种子休眠调控网络[J]. 作物学报, 2023, 49(9): 2446-2461. |
[2] | 胡鑫, 罗正英, 李纯佳, 吴转娣, 李旭娟, 刘新龙. 基于二代和三代转录组测序揭示甘蔗重要亲本对黑穗病菌侵染的响应机制[J]. 作物学报, 2023, 49(9): 2412-2432. |
[3] | 魏正欣, 刘昌燕, 陈宏伟, 李莉, 孙龙清, 韩雪松, 焦春海, 沙爱华. 基于干旱胁迫转录组信息的蚕豆ASPAT基因家族分析[J]. 作物学报, 2023, 49(7): 1871-1881. |
[4] | 王会伟, 张向歌, 李春鑫, 许欣然, 胡海燕, 朱雅婧, 王艳, 张新友. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J]. 作物学报, 2023, 49(7): 1882-1894. |
[5] | 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817. |
[6] | 王雁楠, 陈金金, 卞倩倩, 胡琳琳, 张莉, 尹雨萌, 乔守晨, 曹郭郑, 康志河, 赵国瑞, 杨国红, 杨育峰. 转录组与代谢组联合分析揭示遮阴胁迫下甘薯的代谢响应途径[J]. 作物学报, 2023, 49(7): 1785-1798. |
[7] | 丁洪艳, 冯晓溪, 汪柏宇, 张积森. 甘蔗割手密种LRRII-RLK基因家族演化和表达分析[J]. 作物学报, 2023, 49(7): 1769-1784. |
[8] | 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析[J]. 作物学报, 2023, 49(5): 1432-1444. |
[9] | 李兆伟, 莫祖意, 孙聪颖, 师宇, 尚平, 林伟伟, 范凯, 林文雄. OsNAC2d基因编辑水稻突变体的创建及其对干旱胁迫的响应[J]. 作物学报, 2023, 49(2): 365-376. |
[10] | 丁红, 张智猛, 徐扬, 张冠初, 郭庆, 秦斐斐, 戴良香. 氮素缓解花生干旱胁迫的生理和转录调控机制[J]. 作物学报, 2023, 49(1): 225-238. |
[11] | 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995. |
[12] | 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600. |
[13] | 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198. |
[14] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[15] | 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528. |
|