欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1860-1870.doi: 10.3724/SP.J.1006.2023.24259

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

转录组分析揭示光诱导转录因子StMYB113调控马铃薯块茎表皮叶绿素合成

赵喜娟1,2(), 刘圣宣2, 刘腾飞2, 郑洁2, 杜鹃2, 胡新喜1, 宋波涛2,*(), 何长征1,*()   

  1. 1湖南省蔬菜生物学重点实验室 / 园艺作物种质创新与新品种选育研究中心 / 湖南农业大学, 湖南长沙 410128
    2农业农村部马铃薯生物学与生物技术重点实验室 / 园艺植物生物学教育部重点实验室 / 华中农业大学, 湖北武汉 430070
  • 收稿日期:2022-11-21 接受日期:2023-02-24 出版日期:2023-07-12 网络出版日期:2023-03-02
  • 通讯作者: *何长征, E-mail: hecz@hotmail.com; 宋波涛, E-mail: songbotao@mail.hzau.edu.cn
  • 作者简介:E-mail: 704986451@qq.com
  • 基金资助:
    本研究由湖北省第三批现代农业产业技术体系项目(鄂采计[2020]-09533号);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-09-P07)

Transcriptome analysis reveals the regulatory role of the transcription factor StMYB113 in light-induced chlorophyll synthesis of potato tuber epidermis

ZHAO Xi-Juan1,2(), LIU Sheng-Xuan2, LIU Teng-Fei2, ZHENG Jie2, DU Juan2, HU Xin-Xi1, SONG Bo-Tao2,*(), HE Chang-Zheng1,*()   

  1. 1Key Laboratory for Vegetable Biology of Hunan Province / ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops / Hunan Agricultural University, Changsha 410128, Hunan, China
    2Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs / Key Laboratory of Horticultural Plant Biology, Ministry of Education / Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-11-21 Accepted:2023-02-24 Published:2023-07-12 Published online:2023-03-02
  • Contact: *E-mail: hecz@hotmail.com; E-mail: songbotao@mail.hzau.edu.cn
  • Supported by:
    The Third Batch of Modern Agricultural Industrial Technology System Project in Hubei Province(鄂采计[2020]-09533号);The China Agriculture Research System of MOF and MARA(CARS-09-P07)

摘要:

马铃薯块茎见光变绿严重影响了其食用安全性和经济效益, 但光诱导马铃薯块茎合成叶绿素的机制尚不清楚。本研究对不同光照时间处理的马铃薯块茎进行了相关代谢产物分析, 结果表明随着光照时间的延长块茎叶绿素含量逐渐上升, 且在36 h时叶绿素含量上升显著, 块茎表皮也随之出现明显的绿色; 对光诱导0、6、36 h的样品的转录组测序和生物信息学分析共鉴定到5646个差异表达基因(DEGs), 进一步通过共表达聚类分析和qRT-PCR定量验证, 9个主要的叶绿素生物合成结构基因StGAS1StCHLDStCrd1StHEMAStGUN4StPORAStURODStCHLMStCHLG以及6个转录因子StSBPStLSDStGATAStWRKYStMYB-likeStMYB113显著上调。对这9个结构基因的启动子序列的顺式作用元件的预测结果显示它们都含有多个MYB结合位点, 启动子元件分析和转录激活验证试验结果表明StMYB113具有光响应元件, 并能在烟草激活StUROD的表达, 由此说明StMYB113可能受光响应且调控马铃薯块茎的见光变绿。本研究结果为光诱导马铃薯块茎叶绿素合成调控机制研究提供参考, 对减少马铃薯块茎绿化造成的损失具有重要意义。

关键词: 马铃薯, 见光绿化, 叶绿素合成, StMYB113, 转录激活

Abstract:

Light-induced greening of tubers seriously affects its safety and economic benefits, but the mechanism of light-induced chlorophyll synthesis in potato tubers remains unclear. In this study, the related metabolites of potato tubers with different light durations were analyzed. The results were as follows: When the light duration prolonged, the chlorophyll content of the tubers gradually increased. Moreover, the chlorophyll content increased significantly at 36 hours, with which the tuber skin turned green obviously. Transcriptome sequencing and bioinformatics analysis were carried out on the samples taken at 0 hour, 6 hours, and 36 hours, and 5646 differentially expressed genes (DEGs) were identified. According to the co-expression cluster analysis and quantitative RT-PCR verification results, 9 major structure genes of chlorophyll biosynthesis pathway (StGAS1, StCHLD, StCrd1, StHEMA, StGUN4, StPORA, StUROD, StCHLM, and StCHLG) and 6 transcription factors (StSBP, StLSD, StGATA, StWRKY, StMYB-like, and StMYB113) were significant induced. Predictions of the cis-acting elements of the promoter sequences of these 9 structural genes indicated that they all contained multiple MYB binding sites. Promoter element analysis and transcriptional activation validation further revealed that StMYB113 had a light-responsive element and could activate the expression of StUROD in tobacco. Therefore, StMYB113 may be light-responsive and be able to regulate potato tuber greening in the light. This study provides a reference for the research on the regulatory mechanism of light-induced chlorophyll synthesis in potato tubers, which is important for reducing the loss caused by greening of potato tubers.

Key words: potato, light-induced greening, chlorophyll synthesis, StMYB113, transcriptional activation

表1

定量引物序列"

基因名称 正向引物 反向引物 基因ID
Gene name Forward primer (5°-3°) Reverse primer (5°-3°) Gene ID
GSA1 GTGGTGGGTTCATAAGGGGG TGGAGTGTGTGCTAAGCTGG Soltu.DM.04G005660.2
CHLD GACGCTAGTGGGAGTATGGC CCCCACCACAGGGAAGTTTT Soltu.DM.04G010510.1
Crd1 TGGTGCCAAGATGAGAACCG TGTGACATAAACCGAAAGGCA Soltu.DM.10G030260.1
HEMA GAGTGATTCATGGGAGAGATCCA GCAGGGTTCCAAAGTGAATGA Soltu.DM.04G031570.1
GUN4 TCGTTTTAGCCGGAGAAGCA TAACCGAATTTGCCGTCGCT Soltu.DM.06G028640.1
PORA GAGGGCAAAGCTAGTGCAAC TGACACCAGGAGAAGCAACC Soltu.DM.10G002270.1
UROD AGCTAGGCTTTCTCATTGTGT AAGCAAACCACAGAGACGGA Soltu.DM.06G011840.1
CHLM AACGCTAACGAATGGCAACG CGGCGAGGAGAAAGCCATAA Soltu.DM.03G032490.1
CHLG ACAACAACCCACTTCGCTCT TTATCCGGTGCCTGTGCTTT Soltu.DM.09G000240.1
SBP TCTGTCAACAATGCAGCCGA CTTCGCCTTTCGTTGTGTCC Soltu.DM.07G020030.1
LSD GCAGTAACAGCAGTACCACCT CACGAACATTGCACGCTTGT Soltu.DM.08G022900.1
GATA CAGCAGCGGAGAAAGTACGA GCCATCAACAAGAATGCTGCT Soltu.DM.12G001590.1
WRKY ACAGGGGTGAACACAACCAC GTCATTGCATACGGCTGCTC Soltu.DM.10G023760.1
MYB-like AAGACCTCAACCTCGGAACT TGCAACGTTTGTCGTCTTTGT Soltu.DM.10G020840.1
MYB113 TGGAACACACACCTACACAGG TCGAGGTCGTGGTCGTAGTA Soltu.DM.10G020780.1

图1

RM-210块茎在光照条件下0~120 h的表型和叶绿素含量变化 (A)光照0、6、12、36、48、120 h后块茎图片; (B)光照120 h期间叶绿素a和叶绿素b的含量变化。数据为3个重复的平均值±标准偏差。不同字母表示由方差分析确定的各组间的统计学差异(Tukey多重比较, P < 0.05)。"

图2

光照0、6和36 h块茎中DEGs的聚类图和富集分析 (A) 转录组数据的主成分分析; (B) 6 h vs 0 h和36 h vs 0 h的DEG火山图。蓝色代表显著表达的基因, 灰色代表不显著表达的基因; (C) DEGs的GO富集分析; (D) DEGs的KEGG通路分析。"

图3

光照0、6、36 h的块茎中DEG的聚类分析"

图4

qPCR测定RM-210块茎中叶绿素合成相关基因的表达 (A): 叶绿素生物合成途径中的结构基因; (B): 提取22℃下光照0、6、36和48 h 时块茎皮中的RNA, qPCR技术检测9个结构基因的表达量。不同字母表示由方差分析确定的各组间的统计学差异(Tukey多重比较, P < 0.05)。"

图5

qPCR验证转录因子表达量 (A): 转录因子的qPCR结果; (B): 转录因子的RNA-seq数据与qPCR数据的比较; (C): 转录因子的RNA-seq数据与qPCR数据的相关性分析(Pearson相关性分析)。不同字母表示由方差分析确定的各组间的统计学差异(Tukey多重比较, P < 0.05)。"

图6

结构基因(A)和转录因子(B)的启动子顺式元件预测"

图7

MYB转录因子对结构基因启动子的转录激活 EV代表空载与结构基因的启动子重组载体共注射烟草; TF代表相应转录因子重组载体与结构基因的启动子重组载体共注射烟草。星号表示由Student’s t测验确定的试验组与空载间的统计学差异(*为P < 0.05, **为P < 0.01)。"

[23] Wang P R, Zhang F T, Gao J X. An overview of chlorophyll biosynthesis in higher plants. Acta Bot Boreal-Occident Sin, 2009, 29: 629-636. (in Chinese with English abstract)
[24] 李佳佳, 于旭东, 菜泽坪, 吴繁花, 罗佳佳, 郑李婷, 楚文清. 高等植物叶绿素生物合成研究进展. 分子植物育种, 2019, 17: 6013-6019.
Li J J, Yu X D, Cai Z P, Wu F H, Luo J J, Zheng L T, Chu W Q. An overview of chlorophyll biosynthesis in higher plants. Mol Plant Breed, 2019, 17: 6013-6019 (in Chinese with English abstract).
[25] Beale S. Green genes gleaned. Trend Plant Sci, 2005, 10: 309-312.
doi: 10.1016/j.tplants.2005.05.005
[26] Nagata N, Tanaka R, Satoh S, Tanaka A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell, 2005, 17: 233-240.
doi: 10.1105/tpc.104.027276
[27] Gibson L C D, Marrison J L, Leech R M, Jensen P E, Bassham D C, Gibson M, Hunter C N. A putative Mg chelatase subunit from Arabidopsis thaliana cv C24. Plant Physiol, 1996, 111: 61-71.
pmid: 8685276
[28] Kumar A M, Söll D.Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiol, 2000, 122: 49-56.
[29] 李濯雪, 陈信波. 植物诱导型启动子及相关顺式作用元件研究进展. 生物技术通报, 2015, 31(10): 8-15.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.006
Li Z X, Chen X B. Research advances on plant inducible promoters and related cis-acting elements. Biotechnol Bull, 2015, 31(10): 8-15. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.006
[30] 瞿韵, 张宁, 常璟, 晋昕, 文义凯, 司怀军, 王蒂. 马铃薯光诱导型茎叶特异表达启动子ST-LS1的克隆与功能分析. 农业生物技术学报, 2013, 21: 828-837.
[1] 李辉尚, 乐姣. 2017年中国马铃薯市场形势回顾与2018年市场展望. 蔬菜, 2018, (6): 61-67.
Li H S, Le J. China’s potato market situation in 2017 and its prospect for 2018. Vegetable, 2018, (6): 61-67. (in Chinese with English abstract)
[2] Tanios S, Eyles A, Tegg R, Wilson C. Potato tuber greening: a review of predisposing factors, management and future challenges. Am J Potato Res, 2018, 95: 248-257.
doi: 10.1007/s12230-018-9648-y
[3] Jadhav S J, Salunkhe D K. Formation and control of chlorophyll and glycoalkaloids in tubers of Solanum tuberosum L. and evaluation of glycoalkaloid toxicity. Adv Food Res, 1975, 21: 307-354.
pmid: 1098418
[4] Okamoto H, Ducreux L J M, Allwood J W, Hedley P E, Wright A, Gururajan V, Taylor M A. Light regulation of chlorophyll and glycoalkaloid biosynthesis during tuber greening of potato S. tuberosum. Front Plant Sci, 2020, 11: 753.
doi: 10.3389/fpls.2020.00753 pmid: 32760410
[5] 郭凯, 侯留迪, 张莹莹, 周开明, 张丙林, 邹华文. 植物MYB基因家族研究进展. 长江大学学报(自然科学版), 2020, 17(6): 93-98.
Guo K, Hou L D, Zhang Y Y, Zhou K M, Zhang B L, Zou H W. Research progress of MYB gene family in plants. J Yangtze Univ (Nat Sci Edn), 2020, 17(6): 93-98 (in Chinese with English abstract).
[6] Newman L J, Perazza D E, Juda L, Campbell M M. Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark-photomorphogenic components of the det3 mutant phenotype. Plant J, 2004, 37: 239-250.
doi: 10.1046/j.1365-313x.2003.01953.x pmid: 14690508
[7] Mahjoub A, Hernould M, Joubes J, Decendit A, Mars M, Barrieu F, Hamdi S, Delrot S. Overexpression of a grapevine R2R3-MYB factor in tomato affects vegetative development, flower morphology and flavonoid and terpenoid metabolism. Plant Physiol Biochem, 2009, 47: 551-561.
doi: 10.1016/j.plaphy.2009.02.015
[8] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu C L. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290: 2105-2110.
doi: 10.1126/science.290.5499.2105 pmid: 11118137
[30] Qu Y, Zhang N, Chang J, Jin X, Wen Y K, Si H J, Wang D. Cloning and functional analysis of light-inducible, and stem and leaf-specific expression promoter ST-LS1 in potato. J Agric Biotechnol, 2013, 21: 828-837. (in Chinese with English abstract)
[31] 黄海群, 林拥军. 水稻rbcS基因启动子的克隆及结构功能分析. 农业生物技术学报, 2007, 15: 451-458.
Huang H Q, Lin Y J. Cloning and functional anlysis of the rice rbcS gene promoter. Chin J Agric Biotechnol, 2007, 15: 451-458. (in Chinese with English abstract)
[32] Sujit R, Swarup R C, Sanjay K S, Kali P D. Functional analysis of lightregulated promoter region of AtPolλ gene. Planta, 2012, 235: 411-432.
doi: 10.1007/s00425-011-1517-6 pmid: 21947619
[33] Zhang L, Yang T, Li X Y, Hao H Y, Xu S T, Cheng W, Sun Y L, Wang C Y. Cloning and characterization of a novel Athspr promoter specifically active in vascular tissue. Plant Physiol Biochem, 2014, 78: 88-96.
doi: 10.1016/j.plaphy.2014.02.019
[34] Luo Q L, Li Y G, Gu H Q, Zhao L, Gu X P, Li W B. The promoter of soybean photoreceptor GmPLP1gene enhances gene expression under plant growth regulator and light stresses. Plant Cell Tissue Organ Cult, 2013, 114: 109-119.
doi: 10.1007/s11240-013-0310-6
[35] Jeong Y S, Choi H, Kim J K, Baek S A, You M K, Lee D, Lim S H, Ha S H. Overexpression of OsMYBR22/OsRVE1transcription factor simultaneously enhances chloroplast-dependent metabolites in rice grains. Metab Eng, 2022, 70: 89-101.
doi: 10.1016/j.ymben.2021.12.014 pmid: 35032672
[9] Xu W J, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci, 2015, 20: 176-185.
doi: 10.1016/j.tplants.2014.12.001 pmid: 25577424
[10] Quattrocchio F, Wing J F, van der Woude K, Mol J N M, Koes R. Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J, 1998, 13: 475-488.
doi: 10.1046/j.1365-313x.1998.00046.x pmid: 9680994
[11] Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R. PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell, 2006, 18: 1274-1291.
doi: 10.1105/tpc.105.034041 pmid: 16603655
[12] Cao C, Qiu Z K, Wang X T, Van Giang T, Liu X L, Wang J, Wang X X, Gao J C, Guo Y M, Du Y C, Wang G P, Huang Z J. A putative R3 MYB repressor is the candidate gene underlying atroviolacium, a locus for anthocyanin pigmentation in tomato fruit. J Exp Bot, 2017, 68: 5745-5758.
doi: 10.1093/jxb/erx382 pmid: 29186488
[13] Li L Z, Li S H, Ge H Y, Shi S L, Li D L, Liu Y, Chen H Y. A light-responsive transcription factor SmMYB35 enhances anthocyanin biosynthesis in eggplant (Solanum melongena L.). Planta, 2021, 255: 12.
doi: 10.1007/s00425-021-03698-x
[14] Wu M B, Xu X, Hu X W, Liu Y D, Cao H H, Chan H E, Gong Z H, Yuan Y J, Luo Y Q, Feng B H, Li Z G, Deng W. SlMYB72 regulates the metabolism of chlorophylls, carotenoids, and flavonoids in tomato fruit. Plant Physiol, 2020, 183: 854-868.
doi: 10.1104/pp.20.00156
[15] 撒世娟, 伍涵宇, 张晓萍, 郑蕊, 姚新灵. 叶绿素结合蛋白CP24介导光照响应基因StRSM1调控叶绿素积累. 生物技术学报, 2021, 37: 198-204.
Sa S J, Wu H Y, Zhang X P, Zheng R, Yao X L. Light-responding gene StRSM1 mediated by chlorophyll-binding protein CP24 Regulates chlorophyll accumulation. Biotechnol Bull, 2021, 37: 198-204. (in Chinese with English abstract)
[16] Wassie M, Zhang W H, Zhang Q, Ji K, Chen L. Effect of heat stress on growth and physiological traits of alfalfa (Medicago sativa L.) and a comprehensive evaluation for heat tolerance. Agronomy, 2019, 9: 597.
doi: 10.3390/agronomy9100597
[17] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[18] Zhu Y S, Merkle-Lehman D L, Kung S D. Light-induced transformation of amyloplasts into chloroplasts in potato tubers. Plant Physiol, 1984, 75: 142-145.
doi: 10.1104/pp.75.1.142 pmid: 16663559
[19] Muraja-Fras J, Krsnik-Rasol M, Wrischer M. Plastid transformation in greening potato tuber tissue. J Plant Physiol, 1994, 144: 58-63.
doi: 10.1016/S0176-1617(11)80993-4
[20] Ljubičić J M, Wrischer M, Ljubešić N. Formation of the photosynthetic apparatus in plastids during greening of potato microtubers. Plant Physiol Biochem, 1998, 36: 747-752.
doi: 10.1016/S0981-9428(98)80025-9
[21] Grunenfelder L, Hiller L K, Knowles N R. Color indices for the assessment of chlorophyll development and greening of fresh market potatoes. Postharvest Biol Technol, 2006, 40: 73-81.
doi: 10.1016/j.postharvbio.2005.12.018
[22] Zhang W N, Zuo C W, Chen Z J, Kang Y C, Qin S H. RNA Sequencing reveals that both abiotic and biotic stress-responsive genes are induced during expression of steroidal glycoalkaloid in potato tuber subjected to light exposure. Genes (Basel), 2019, 10: 920.
doi: 10.3390/genes10110920
[23] 王平荣, 张帆涛, 高家旭. 高等植物叶绿素生物合成的研究进展. 西北植物学报, 2009, 29: 629-636.
[1] 索海翠, 刘计涛, 王丽, 李成晨, 单建伟, 李小波. 马铃薯锌转运蛋白基因StZIP12调控锌吸收功能[J]. 作物学报, 2023, 49(7): 1994-2001.
[2] 王硕, 鲍天旸, 刘建刚, 段绍光, 简银巧, 李广存, 金黎平, 徐建飞. 基于RGB颜色空间评价马铃薯块茎绿化程度[J]. 作物学报, 2023, 49(4): 1102-1110.
[3] 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905.
[4] 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995.
[5] 张卫娜, 余慧芳, 安珍, 柳文凯, 康益晨, 石铭福, 杨昕宇, 张茹艳, 王勇, 秦舒浩. StEFR1正调控马铃薯对晚疫病的抗性[J]. 作物学报, 2023, 49(4): 996-1005.
[6] 濮雪, 王凯彤, 张宁, 司怀军. 马铃薯StMAPKK4基因表达分析及互作蛋白筛选与鉴定[J]. 作物学报, 2023, 49(1): 36-45.
[7] 惠志明, 徐建飞, 简银巧, 卞春松, 段绍光, 胡军, 李广存, 金黎平. 基于2b-RAD测序的四倍体马铃薯熟性相关的分子标记开发[J]. 作物学报, 2022, 48(9): 2274-2284.
[8] 荐红举, 张梅花, 尚丽娜, 王季春, 胡柏耿, 吕典秋. 利用WGCNA筛选马铃薯块茎发育候选基因[J]. 作物学报, 2022, 48(7): 1658-1668.
[9] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682.
[10] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[11] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[12] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[13] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[14] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[15] 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .