作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1843-1859.doi: 10.3724/SP.J.1006.2023.24173
王让剑1,2,*(), 杨军1,2, 张力岚1,2, 高香凤1,2
WANG Rang-Jian1,2,*(), YANG Jun1,2, ZHANG Li-Lan1,2, GAO Xiang-Feng1,2
摘要:
香叶醇是茶树中含有的一种重要的挥发性单萜醇, 在茶树与环境互作中起重要作用, 也是茶叶中关键呈香成分之一, 茶树新梢中的香叶醇主要以香叶醇樱草糖苷形式存在。发掘香叶醇樱草糖苷含量性状显著关联的SNP位点与候选基因, 对香叶醇樱草糖苷含量的遗传调控机制研究与茶树遗传改良具有重要意义。以169个茶树种质为研究对象, 连续3年对其新梢香叶醇樱草糖苷含量进行鉴定, 基于SLAF简化基因组测序技术开发SNP标记, 然后利用一般线性模型(GLM)对茶树新梢香叶醇樱草糖苷含量性状进行GWAS分析, 发掘该性状显著关联的SNP位点与候选基因, 最后对极端含量材料间的候选基因编码区碱基差异及其上游顺式作用元件进行分析。结果表明, 参试群体在3个环境下香叶醇樱草糖苷含量变异系数范围为77.6%~81.8%, 广义遗传力为62.6%。香叶醇樱草糖苷含量性状在基因型、环境间均呈现显著差异, 变异受遗传影响为主。3个环境下共检测到340个SNP与香叶醇樱草糖苷含量显著相关, 其中2个环境下重复检测到65个SNP。基于参考基因组与连锁不平衡衰减距离, 获得重复检测到的SNP两侧各100 kb范围内的基因共88个, 包含信号蛋白、激酶、磷酸酶、离子转运蛋白、转录因子、热激蛋白、激素相关蛋白、抗性蛋白、萜类代谢酶、糖基转移酶、糖苷酶, 从中初筛出10个与香叶醇樱草糖苷含量相关的候选基因。极端含量材料之间的候选基因编码区序列均存在SNP非同义突变, 多数候选基因上游2 kb区域存在不同数量的与环境胁迫和激素相关的顺式作用元件。本研究为阐明茶新梢中香叶醇樱草糖苷含量的遗传调控机制提供了新的视角, 为分子标记辅助选择茶树新品种提供了标记与基因资源。
[1] |
Inouye S, Takizawa T, Yamaguchi H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemoth, 2001, 47: 565-573.
doi: 10.1093/jac/47.5.565 pmid: 11328766 |
[2] |
Wei S, Reuveny H, Bravdo B A, Shoseyov O. Hydrolysis of glycosidically bound volatiles from apple leaves (cv. Anna) by Aspergillus niger β-glucosidase affects the behavior of codling moth (Cydia pomonella L.). J Agric Food Chem, 2004, 52: 6212-6216.
doi: 10.1021/jf0495789 |
[3] |
Magnard J, Roccia A, Caissard J, Vergne P, Sun P, Hecquet R, Dubois A, Oyant L, Jullien F, Nicole F, Raymond O, Huguet S, Baltenweck R, Meyer S, Claudel P, Jeauffre J, Rohmer M, Foucher F, Hugueneyp P, Bendahmane M, Baudino S. Biosynthesis of monoterpene scent compounds in roses. Science, 2015, 349: 81-83.
doi: 10.1126/science.aab0696 |
[4] |
Zhao M Y, Wang L, Wang J M, Jin J Y, Zhang N, Lei L, Gao T, Jing T T, Zhang S R, Wu Y, Wu B, Hu Y Q, Wan X C, Schwab W, Song C K. Induction of priming by cold stress via inducible volatile cues in neighboring tea plants. J Integr Plant Biol, 2020, 62: 1461-1468.
doi: 10.1111/jipb.12937 |
[5] |
Wang D M, Yoshimura T, Kubota K, Kobayashi A. Analysis of glycosidically bound aroma precursors in tea leaves: I. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds. J Agric Food Chem, 2000, 48: 5411-5418.
doi: 10.1021/jf000443m |
[6] |
Mizutani M, Nakanishi H, Ema J, Ma S, Noguchi E, Inohara-ochiiai M, Fukachimizutani F, Nakao M, Sakata K. Cloning of β-primeverosidase from tea leaves, a key enzyme in tea aroma formation. Plant Physiol, 2002, 130: 2164-2176.
doi: 10.1104/pp.102.011023 |
[7] |
Sarry J, Gunata Z. Plant and microbial glycoside hydrolases: volatile release from glycosidic aroma precursors. Food Chem, 2004, 87: 509-521.
doi: 10.1016/j.foodchem.2004.01.003 |
[8] |
Bock K W. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: animal-plant arms-race and co-evolution. Biochem Pharmacol, 2015, 99: 11-17.
doi: 10.1016/j.bcp.2015.10.001 |
[9] |
Stahlbiskup E, Intert F, Holthuijzen J, Stengele M, Schulz G.Glycosidically bound volatiles-a review 1986-1991. Flavour Frag J, 1993, 8: 61-80.
doi: 10.1002/(ISSN)1099-1026 |
[10] |
Guo W, Hosoi R, Sakata K, Watanabe N, Yagi A, Ina K, Luo S. (S)-linalyl,2-phenylethyl, and benzyl disaccharide glycosides isolated as aroma precursors from oolong tea leaves. Biosci Biotechnol Biochem, 1994, 58: 1532-1534.
doi: 10.1271/bbb.58.1532 |
[11] |
Candela L, Formato M, Crescente G, Piccolella S, Pacifico S. Coumaroyl flavonol glycosides and more in marketed green teas: an intrinsic value beyond much-lauded catechins. Molecules, 2020, 25: 1765.
doi: 10.3390/molecules25081765 |
[12] |
Gu X G, Yao C C, Zhang Z Z, Wan X C, Ning J M, Shao W F. GC-ECD method for determination of glucosidically bound aroma precursors in fresh tea leaves. Chromatographia, 2011, 73: 189-193.
doi: 10.1007/s10337-010-1816-2 |
[13] | Ogawa K, Moon J H, Guo W F, Yagi A, Watanabe N, Sakata K. A study on tea aroma formation mechanism: alcoholic aroma precursor amounts and glycosidase activity in parts of the tea plant. Zeitschrift Fur Naturforsch Sect C-J Biosci, 1995, 50: 493-498. |
[14] |
Wang D M, Kurasawa E, Yamaguchi Y, Kubota K, Kobayashi A. Analysis of glycosidically bound aroma precursors in tea leaves: II. Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process. J Agric Food Chem, 2001, 49: 1900-1903.
doi: 10.1021/jf001077+ |
[15] |
Dai W D, Tan J F, Lu M L, Xie D C, Li P L, Lyu H P, Zhu Y, Guo L, Zhang Y, Peng Q H, Lin Z. Nontargeted modification-specific metabolomics investigation of glycosylated secondary metabolites in tea (Camellia sinensis L.) based on liquid chromatography-high resolution mass spectrometry. J Agric Food Chem, 2016, 64: 6783-6790.
doi: 10.1021/acs.jafc.6b02411 |
[16] |
Rawat R, Gulati A. Seasonal and clonal variations in some major glycosidic bound volatiles in Kangra tea (Camellia sinensis (L.) O. Kuntze). Eur Food Res Technol, 2008, 226: 1241-1249.
doi: 10.1007/s00217-007-0753-2 |
[17] |
Cui J L, Katsuno T, Totsuka K, Ohnishi T, Takemoto H, Mase N, Toda M, Narumi T, Sato K, Matsuo T, Mizutani K, Yang Z Y, Watanabe N, Tong H R. Characteristic fluctuations in glycosidically bound volatiles during tea processing and identification of their unstable derivatives. J Agric Food Chem, 2016, 64: 1151-1157.
doi: 10.1021/acs.jafc.5b05072 |
[18] |
Ohgami S, Ono E, Horikawa M, Murata J, Totsuka K, Toyonaga H, Ohba Y, Dohra H, Asai T, Matsui K, Mizutani M, Watanabe N, Ohnishi T. Volatile glycosylation in tea plants: sequential glycosylations for the biosynthesis of aroma β-primeverosides are catalyzed by two Camellia sinensis glycosyltransferases. Plant Physiol, 2015, 168: 464-477.
doi: 10.1104/pp.15.00403 pmid: 25922059 |
[19] | Carl S R, Stephen G W. Glycosidase mechanisms. Curr Opin Plant Biol, 2000, 4: 573-580. |
[20] |
杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选. 作物学报, 2022, 48: 1813-1821.
doi: 10.3724/SP.J.1006.2022.12047 |
Yang F, Zhang Z F, Nan B, Xiao B Z. Genome-wide association analysis and candidate gene selection of yield related traits in rice. Acta Agron Sin, 2022, 48: 1813-1821. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.12047 |
|
[21] |
谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析. 作物学报, 2021, 47: 1891-1902.
doi: 10.3724/SP.J.1006.2021.01078 |
Xie L, Ren Y, Zhang X Z, Wang J Q, Zhang Z H, Shi S B, Geng H W. Genome-wide association study of pre-harvest sprouting traits in wheat. Acta Agron Sin, 2021, 47: 1891-1902. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01078 |
|
[22] |
渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构. 作物学报, 2022, 48: 304-319.
doi: 10.3724/SP.J.1006.2022.13002 |
Qu J Z, Feng W H, Zhang X H, Xu S T, Xue J Q. Dissecting the genetic architecture of maize kernel size based on genome-wide association study. Acta Agron Sin, 2022, 48: 304-319. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.13002 |
|
[23] |
Wang L, Yang Y M, Zhang S Y, Che Z J, Yuan W J, Yu D Y. GWAS reveals two novel loci for photosynthesis-related traits in soybean. Mol Genet Genomics, 2020, 295: 705-716.
doi: 10.1007/s00438-020-01661-1 pmid: 32166500 |
[24] |
Wang R J, Gao X F, Yang J, Kong X R. Genome-wide association study to identify favorable SNP allelic variations and candidate genes that control the timing of spring bud flush of tea (Camellia sinensis) using SLAF-seq. J Agric Food Chem, 2019, 67: 10380-10391.
doi: 10.1021/acs.jafc.9b03330 |
[25] |
Fang K X, Xia Z Q, Li H J, Jiang X H, Qin D D, Wang Q S, Wang Q, Pan C D, Li B, Wu H L. Genome-wide association analysis identified molecular markers associated with important tea flavor-related metabolites. Hortic Res, 2021, 8: 42.
doi: 10.1038/s41438-021-00477-3 |
[26] | 王让剑, 苏德森, 吴建衍, 黄崇耀, 陈立松. 超高效液相色谱-串联质谱法测定茶树新梢中两种香叶醇糖苷含量. 茶叶学报, 2020, 61(3): 114-119. |
Wang R J, Su D S, Wu J Y, Huang C Y, Chen L S. UHPLC MS/MS determination of geraniol glycosides in tea shoots. Acta Tea Sin, 2020, 61(3): 114-119 ( in Chinese with English abstract). | |
[27] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168 |
[28] |
Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, Depristo A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199 |
[29] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25: 2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943 |
[30] |
Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res, 2009, 19: 1655-1664.
doi: 10.1101/gr.094052.109 pmid: 19648217 |
[31] |
Alkes L P, Nick J P, Robert M P, Michael E W, Nancy A S, David R. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet, 2006, 38: 904-909.
doi: 10.1038/ng1847 pmid: 16862161 |
[32] |
Purcell S, Neale B, Todd-brown K, Thomas L, Ferreira M, Bender D, Maller J, Sklar P, Bakker P, Daly M J. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81: 559-575.
doi: 10.1086/519795 pmid: 17701901 |
[33] |
Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[34] |
Robinson M D, Mccarthy D J, Smyth G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26: 139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308 |
[35] | 王愿, 王晓坤, 戈海曼, 杨磊. 拟南芥富含亮氨酸重复序列类受体激酶AtLRR78A的定位及其分选序列研究. 植物生理学报, 2017, 53: 477-486. |
Wang Y, Wang X K, Ge H M, Yang L. The localization and trafficking mechanism of AtLRR78A, a leucine-rich repeat receptor-like kinase (LRR-RLK) in Arabidopsis. J Plant Physiol, 2017, 53: 477-486. (in Chinese with English abstract) | |
[36] |
Klauser D, Desurmont G A, Glauser G, Vallat A, Flury P, Boller T, Turlings T C J, Bartels S. The Arabidopsis Pep-PEPR system is induced by herbivore feeding and contributes to JA-mediated plant defence against herbivory. J Exp Bot, 2015, 66: 5327-5336.
doi: 10.1093/jxb/erv250 |
[37] |
Gou X, Li J. Paired receptor and coreceptor kinases perceive extracellular signals to control plant development. Plant Physiol, 2020, 182: 1667-1681.
doi: 10.1104/pp.19.01343 pmid: 32144125 |
[38] |
Peng H, Zhang Q, Li Y D, Lei C L, Zhai Y, Sun X H, Sun D Y, Sun Y, Lu T G. A putative leucine-rich repeat receptor kinase, OsBRR1, is involved in rice blast resistance. Planta, 2009, 230: 377-385.
doi: 10.1007/s00425-009-0951-1 pmid: 19468748 |
[39] |
Hu L, Ye M, Kuai P, Ye M, Erb M, Liu Y. OsLRRRLK1, an early responsive leucine-rich repeat receptor-like kinase, initiates rice defense responses against a chewing herbivore. New Phytol, 2018, 219: 1097-1111.
doi: 10.1111/nph.2018.219.issue-3 |
[40] |
Dure L. A repeating 11-mer amino acid motif and plant desiccation. Plant J, 1993, 3: 363-369.
pmid: 8220448 |
[41] | Jung E H, Jung H W, Lee S C, Sang W H, Heu S, Hwang B K. Identification of a novel pathogen-induced gene encoding a leucine-rich repeat protein expressed in phloem cells of Capsicun annuum. Biochim Biophys Acta, 2004, 1676: 211-222. |
[42] | Hasegawa P M, Brseean R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol, 2000, 51: 463-499. |
[43] |
Xie Y R, Raruang Y, Chen Z Y, Brown R L, Cleveland T E. ZmGns, a maize class I β-1,3-glucanase, is induced by biotic stresses and possesses strong antimicrobial activity. J Integr Plant Biol, 2015, 57: 271-283.
doi: 10.1111/jipb.12286 |
[44] | McFadden H G, Chapple R, Feyter R D E, Dennis E. Expression of pathogenesis-related genes in cotton stem in response to infection by Verticillium dahliae. Physiol Mol Plant Pathol, 2001, 58: 119-131. |
[45] |
Jongedijk E, Tigelaar H, Vanroekel J S C, Bresvloemans S A, Dekker I, Vandenelzen P J M, Cornelissen B J C, Melchers L S. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica, 1995, 85: 173-180.
doi: 10.1007/BF00023946 |
[46] |
Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 444: 323-329.
doi: 10.1038/nature05286 |
[47] |
Yuan X, Wang Z Y, Huang J Z, Xuan H, Gao Z Y. Phospholipidase Dδnegatively regulates the function of resistance to Pseudomonas syringae pv. Maculicola 1 (RPM1). Front Plant Sci, 2019, 9: 1991
doi: 10.3389/fpls.2018.01991 |
[48] |
Aharoni A, Jongsma M A, Bouwmeester H J. Volatile science? Metabolic engineering of terpenoids in plant. Trends Plant Sci, 2005, 10: 594-602.
doi: 10.1016/j.tplants.2005.10.005 pmid: 16290212 |
[1] | 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087. |
[2] | 李星, 杨会, 骆璐, 李华东, 张昆, 张秀荣, 李玉颖, 于海洋, 王天宇, 刘佳琪, 王瑶, 刘风珍, 万勇善. 栽培种花生单仁重QTL定位分析[J]. 作物学报, 2023, 49(8): 2160-2170. |
[3] | 唐玉凤, 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文. 甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析[J]. 作物学报, 2023, 49(7): 1829-1842. |
[4] | 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732. |
[5] | 马娟, 朱卫红, 刘京宝, 宇婷, 黄璐, 郭国俊. 玉米穗长一般配合力多位点全基因组关联分析和预测[J]. 作物学报, 2023, 49(6): 1562-1572. |
[6] | 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196. |
[7] | 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183. |
[8] | 杨俊芳, 王宙, 乔麟轶, 王亚, 赵宜婷, 张宏斌, 申登高, 王宏伟, 曹越. 基于高密度遗传图谱的蓖麻种子大小性状QTL定位[J]. 作物学报, 2023, 49(3): 719-730. |
[9] | 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661. |
[10] | 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕, 邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320. |
[11] | 殷芳冰, 李雅楠, 鲍建喜, 马雅杰, 秦文萱, 王锐璞, 龙艳, 李金萍, 董振营, 万向元. 玉米雌穗产量相关性状全基因组关联分析与候选基因鉴定[J]. 作物学报, 2023, 49(2): 377-391. |
[12] | 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96. |
[13] | 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152. |
[14] | 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179. |
[15] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
|