欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1829-1842.doi: 10.3724/SP.J.1006.2023.24188

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜SGR基因家族的全基因组鉴定与功能分析

唐玉凤(), 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文*()   

  1. 湖南农业大学农学院 / 南方粮油作物协同创新中心, 湖南长沙 410128
  • 收稿日期:2022-08-11 接受日期:2022-11-25 出版日期:2023-07-12 网络出版日期:2022-12-06
  • 通讯作者: *钱论文, E-mail: qianlunwen@163.com
  • 作者简介:E-mail: tyf331213@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31801399);湖南省教育厅科学研究重点项目(21A0135)

Genome-wide identification and functional analysis of SGR gene family in Brassica napus L.

TANG Yu-Feng(), YAO Min, HE Xin, GUAN Mei, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen*()   

  1. College of Agronomy, Hunan Agricultural University / Collaborative Innovation Center of Grain and Oil Crops in South China, Changsha 410128, Hunan, China
  • Received:2022-08-11 Accepted:2022-11-25 Published:2023-07-12 Published online:2022-12-06
  • Contact: *E-mail: qianlunwen@163.com
  • Supported by:
    The National Natural Science Foundation of China(31801399);The Research Foundation of Education Bureau of Hunan Province(21A0135)

摘要:

叶绿素是植物进行光合作用的一类绿色色素, 对植物生长有着直接的影响。本研究利用生物信息学方法在全基因组水平上对甘蓝型油菜(Brassica napus)、白菜(Brassica rapa)、甘蓝(Brassica oleracea)和拟南芥(Arabidopsis thaliana)中滞绿基因(STAY-GREEN, SGR)家族成员进行分析发现, 28个SGR基因大多数包含4个外显子, 编码碱性蛋白。染色体定位和共线性分析显示, 甘蓝型油菜SGR基因家族成员中不存在串联复制, SGR基因家族成员之间具有线性关系, 高度同源, 且在进化过程中非常保守。此外, 利用60K SNP对203份半冬性甘蓝型油菜自交系的叶绿素含量进行全基因组关联分析(Genome-wide association study, GWAS), 检测到2个单体型区域Chr.A01: 6,193,165~ 6,317,757 bp和Chr.C01: 9,059,861~9,906,618 bp携带的BnaSGR1a-A01BnaSGR1-C01与叶绿素含量显著相关。同时, 结合50份半冬性甘蓝型油菜重测序数据, 对这2个单体型进行进区域关联分析, 检测到1个SNP定位在BnaSGR1a-A01的外显子2区域, 并与叶绿素含量显著关联。共表达网络分析结果验证了BnaSGR1a-A01BnaSGR2-A03直接相连, 与BnaSGR1-C01BnaSGR1-A08BnaSGR2-C03BnaSGR1-C07BnaSGRL-C06BnaSGRL-A10等基因间接相连形成了一个网络体系, 共同调节叶绿素含量。T2拟南芥转BnaSGR1a-A01基因超表达植株的叶绿素a、叶绿素b和总的叶绿素含量相比野生型显著降低, 表明BnaSGR1调控叶绿素降解。本研究为油菜SGR基因的功能研究和利用奠定了基础。

关键词: 甘蓝型油菜, SGR基因, 全基因组关联分析, 叶绿素含量

Abstract:

Chlorophyll is a kind of green pigment for plant photosynthesis, which has a direct effect on plant growth. In this study, bioinformatics methods were used to identify the members of SGR gene family in Brassica napus, Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Most of the 28 SGR genes contained four exons, encoding basic proteins. Chromosome mapping and syntenic analysis showed that there was no tandem duplication in the SGR gene family members of Brassica napus. SGR gene family members had a linear relationship, highly homologous in evolution, and very conserved in the evolutionary process. Moreover, a genome-wide association study (GWAS) of chlorophyll content was performed using a Brassica 60K Illumina Infinium SNP array in 203 Brassica napus accessions. Two haplotype regions (Chr.A01: 6,193,165-6,317,757 bp and Chr.C01: 9,059,861-9,906,618 bp) carrying two SGR genes (BnaSGR1a-A01 and BnaSGR1-C01) were detected, which were significantly associated with chlorophyll content. Meanwhile, the regional association analysis of 50 resequenced rapeseed inbred lines revealed that a SNP located in exon 2 of BnaSGR1a-A01 significantly associated with chlorophyll content. Co-expression network analysis revealed that BnaSGR1a-A01 were directly linked with BnaSGR2-A03, and indirectly linked with BnaSGR1-C01, BnaSGR1-A08, BnaSGR2-C03, BnaSGR1-C07, BnaSGRL-C06, and BnaSGRL-A10, thus forming a molecular network involved in the potential regulation of chlorophyll content. Chlorophyll a, chlorophyll b, and the total chlorophyll content of T2 Arabidopsis transgenic plants overexpressing BnasSGR1a-A01 were significantly lower than wild type, indicating that BnaSGR1a-A01 regulated chlorophyll degradation. This study laid a foundation for the functional research and utilization of SGR gene in Brassica napus L.

Key words: Brassica napus, STAY-GREEN gene, GWAS, chlorophyll content

表1

本研究中所用的引物序列"

引物名称
Primer name
引物序列
Sequence (5°-3°)
BnaNYE1a-qRT F: TCTTCACATATTTACAGTAGAGGCC
R: GTTAGACATTTTCCCTCGGCC
AtACT2 F: CGCTCTTTCTTTCCAAGCTC
R: AACAGCCCTGGGAGCATC
19OV141T1 F: CTCTCTCGAGCTTTCGCGAGCTCTATTTTTGTTGATTATGCTTTTCAT
R: TAATGGAGTGAGAAATAGCTAAAGT
19OV141T2 F: CAGTGACATTACTGCTAAATTAACT
R: CCTGCAGGTCGACTCTAGAGGATCCTCAATAGAGTTTCTCTGGACTAGGA
HPT II F: ACACTACATGGCGTGATTTCAT
R: TCCACTATCGGCGAGTACTTCT

表2

SGR基因信息汇总"

拟南芥
Arabidopsis thaliana
基因编号
Gene ID
基因名称
Gene name
核苷酸长度
Gene length
氨基酸长度
Length of amino acids
等电点
pI
分子量
Molecular weight (kD)
内含子数目
No. of introns
外显子数目
No. of exons
亚细胞定位
Predicted subcellular localization
AT4G22920/SGR1
甘蓝型油菜 Brassica napus BnaA01g12570D BnaSGR1a-A01 1874 332 9.35 37.82 5 6 叶绿体Chloroplast
甘蓝型油菜 Brassica napus BnaA01g22870D BnaSGR1b-A01 1063 114 9.86 13.18 2 3 叶绿体Chloroplast
甘蓝型油菜 Brassica napus BnaA03g45630D BnaSGR1-A03 1484 266 8.67 29.83 3 4 叶绿体Chloroplast
甘蓝型油菜 Brassica napus BnaA08g10510D BnaSGR1-A08 1341 273 8.32 30.67 3 4 叶绿体Chloroplast
甘蓝型油菜 Brassica napus BnaCnng29210D BnaSGR1-Cnn 1378 264 8.85 29.57 3 4 叶绿体Chloroplast
甘蓝型油菜 Brassica napus BnaC01g14360D BnaSGR1-C01 5975 999 8.65 112.40 11 12 质膜Plasma membrane
甘蓝型油菜 Brassica napus BnaC07g37710D BnaSGR1-C07 1616 266 8.60 29.92 3 4 叶绿体Chloroplast
白菜 Brassica rapa Bra013656 BraSGR1a-A01 5705 950 8.48 106.87 10 11 质膜Plasma membrane
白菜 Brassica rapa Bra028385 BraSGR1b-A01 804 113 10.02 13.00 1 2 叶绿体Chloroplast
白菜 Brassica rapa Bra019346 BraSGR1-A03 1125 264 8.60 29.73 3 4 叶绿体Chloroplast
白菜 Brassica rapa Bra020829 BraSGR1-A08 982 254 8.57 28.55 3 4 叶绿体Chloroplast
甘蓝Brassica oleracea Bol014983 BoSGR1-C01 1252 269 9.01 30.49 3 4 叶绿体Chloroplast
甘蓝Brassica oleracea Bol010654 BoSGR1-C03 1018 264 8.85 29.57 3 4 叶绿体Chloroplast
甘蓝Brassica oleracea Bol042063 BoSGR1-C07 1106 266 8.41 29.78 3 4 叶绿体Chloroplast
AT4G11910/SGR2
甘蓝型油菜 Brassica napus BnaA03g24900D BnaSGR2-A03 1776 262 9.28 29.96 4 5 叶绿体Chloroplast
甘蓝型油菜 Brassica napus BnaC03g72930D BnaSGR2-C03 1654 274 9.00 31.14 3 4 叶绿体Chloroplast
白菜 Brassica rapa Bra000755 BraSGR2-A03 1335 274 9.22 31.08 3 4 叶绿体Chloroplast
甘蓝Brassica oleracea Bol030516 BoSGR2-C03 1194 263 8.94 30.15 3 4 叶绿体Chloroplast
AT1G44000/SGRL
甘蓝型油菜 Brassica napus BnaA10g08850D BnaSGRL-A10 1387 257 9.15 29.28 3 4 叶绿体Chloroplast
甘蓝型油菜 Brassica napus BnaC06g00560D BnaSGRL-C06 1455 257 9.15 29.17 3 4 叶绿体Chloroplast
白菜 Brassica rapa Bra036938 BraSGRL-Scaffold000123 1067 257 9.24 29.34 3 4 叶绿体Chloroplast
甘蓝Brassica oleracea Bol006958 BoSGRL-Scaffold000269 1096 259 8.40 29.29 3 4 叶绿体Chloroplast
AT4G11911/SGLP
甘蓝型油菜 Brassica napus BnaCnng70460D BnaSGLP-Cnn 983 246 7.99 28.05 3 4 叶绿体Chloroplast
甘蓝Brassica oleracea Bol044955 BoSGLP-C02 982 267 8.44 28.13 3 4 叶绿体Chloroplast

图1

甘蓝型油菜、白菜、甘蓝和拟南芥SGR基因家族的系统进化树分析"

图2

拟南芥、白菜、甘蓝和甘蓝型油菜SGR基因的系统比较分析"

图3

白菜、甘蓝、甘蓝型油菜染色体上SGR基因的分布 染色体编号标记在每个染色体的左侧。A和C分别是白菜和甘蓝的染色体; chrA和chrC分别是甘蓝型油菜的A亚组和C亚组染色体; Random意味着基因被随机分配到一个特定的染色体上, chrCnn表示属于C亚基因组但不确定染色体信息。"

图4

甘蓝型油菜、甘蓝、白菜和拟南芥的SGR基因共线性分析 同一条粉色曲线上的2个基因是甘蓝型油菜内的线性关系, 同一条绿色曲线是甘蓝型油菜对白菜、甘蓝的线性关系, 同一条棕色曲线是拟南芥对甘蓝型油菜、白菜和甘蓝的线性关系。"

图5

203份油菜苗期和抽薹期叶绿素含量全基因组关联分析 单体型区域(6,193,165~6,317,757 bp)和单体型区域(9,059,861~9,906,618 bp)与叶绿素含量显著相关。这2个单体型区域包含2个拟南芥直系同源基因BnaSGR1a-A01 (BnaA01g12570D)和BnaSGR1-C01 (BnaC01g14360D), 这些基因涉及到叶绿素合成。热图显示了这些SNPs之间存在强的连锁不平衡。水平红色虚线表示临界值(-log10(P)=4.0)。ss_GH: 在光照培养室调查苗期叶绿素含量指数, bs_GH: 在光照培养室调查抽薹期叶绿素含量指数。"

图6

50个重测序材料叶绿素含量候选基因关联分析 A: 单体型(6,193,165~6,312,172 bp; r2=0.55)区域叶绿素含量的关联分析。蓝色虚线表示全基因组显著性的阈值P值为1.0×10-3。B: BnaSGR1a-A01基因区域变异位点分析。该SNP chrA01:6306874定位于BnaSGR1a-A01基因外显子2区域。C和D: 比较分析等位基因G和T对应材料的表达和叶绿素表型分析。等位基因在群体中的频率大于0.05将被用于此分析。箱型图显示了等位基因G对应的材料有较高的叶绿素含量和相对高的基因表达水平。"

图7

BnaSGR1a-A01在拟南芥中超表达分析 A: 超表达骨架载体示意图; B: 野生型拟南芥与超表达拟南芥1个月苗龄第4~6片真叶对比, 标尺为5 mm; C: 野生型拟南芥与超表达拟南芥的qRT-PCR检测; D~F: 野生型拟南芥与超表达拟南芥的叶绿素a、叶绿素b及总叶绿素测定。Col-0: 非转基因植株, OE-BnaSGR1-13和OE-BnaSGR1-14: 转基因植株。用Excel软件的数据统计分析对数据进行t检验(Student’s t-test), *表示平均值间差异显著(P < 0.05), **表示平均值间差异极显著(P < 0.01), 误差线表示标准差(SD)。"

图8

BnaSGR1a-A01基因共表达网络分析 A: 甘蓝型油菜长角果中BnaSGR1a-A01的共表达网络。红色节点表示BnaSGR候选基因, 青绿色三角形节点代表着与BnaSGR基因直接相连接的基因。B: 在甘蓝型油菜长角果中的部分BnaSGR1a-A01共表达网络。基于功能注释, BnaSGR1a-A01共表达网络中的基因被分为以下3类: 叶绿素(浅蓝色节点)、光系统(青绿色节点)和转录因子(深橄榄绿节点)。C: BnaSGR1a-A01基因GO pathway分析网络。颜色的深浅表示BnaSGR1a-A01与这些代谢路径相关性的强弱。"

[1] 何微, 李俊, 王晓梅, 林巧, 杨小薇. 全球油菜供需现状与我国油菜产业问题、对策. 中国油脂, 2022, 47(2): 1-7.
He W, Li J, Wang X M, Lin Q, Yang X W. Current status of global rapeseed industry and problems, countermeasures of rapeseed industry in China. China Oils Fats, 2022, 47(2): 1-7. (in Chinese with English abstract)
[2] Czyczyło-Mysza I, Tyrka M, Marcińska I, Skrzypek E, Karbarz M, Dziurka M, Hura T, Dziurka K, Quarrie S A. Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol Breed, 2013, 32: 189-210.
doi: 10.1007/s11032-013-9862-8
[3] Wu X L, Liu Z H, Hu Z H, Huang R Z. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J Integr Plant Biol, 2014, 56: 582-593.
doi: 10.1111/jipb.12158
[4] 梁颖, 李加纳, 唐章林, 谌利, 张学昆. 油菜光合生理指标与产量的关联分析. 西南农业大学学报, 1999, (3): 38-41.
Liang Y, Li J N, Tang Z L, Chen L, Zhang X K. Correlative analysis of photosynthesis physiological targets and yield of rape. J Southwest Univ, 1999, (3): 38-41 (in Chinese with English abstract).
[5] Thomas H, Ougham H. The stay-green trait. J Exp Bot, 2014, 65: 3889-3900.
doi: 10.1093/jxb/eru037 pmid: 24600017
[6] Ren G D, An K, Liao Y, Zhou X, Cao Y J, Zhao H F, Ge X C, Kuai B K.Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol, 2007, 144: 1429-1441.
doi: 10.1104/pp.107.100172
[7] 康文霞, 董军刚, 梁晓芳, 许婷, 杨其东, 董振生. 甘蓝型油菜含油量与角果叶绿素质量分数的相关性. 西北农业学报, 2015, 24(11): 57-63.
Kang W X, Dong J G, Liang X F, Xu T, Yang Q D, Dong Z S. Correlation study between oil content and chlorophyll in pod during pod formation in Brassica napus. Acta Agric Boreali-Occident Sin, 2015, 24(11): 57-63. (in Chinese with English abstract)
[8] Hua S J, Chen Z H, Zhang Y F, Yu H S, Lin B G, Zhang D Q. Chlorophyll and carbohydrate metabolism in developing silique and seed are prerequisite to seed oil content of Brassica napus L. Bot Stud, 2014, 55: 34.
doi: 10.1186/1999-3110-55-34
[9] Hua W, Li R J, Zhan G M, Liu J, Li J, Wang X F, Liu G H, Wang H Z. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Plant J, 2012, 69: 432-444.
doi: 10.1111/tpj.2012.69.issue-3
[10] 李凤阳, 何激光, 官春云. 油菜叶片和角果光合作用研究进展. 作物研究, 2011, 25: 405-409.
Li F Y, He J G, Guan C Y. Advances in photosynthesis of leaves and scones in rape. Crop Res, 2011, 25: 405-409. (in Chinese with English abstract)
[11] 孙佩光, 吴琼, 徐碧, 常胜合, 苗红霞, 金志强. 植物滞绿基因STAY-GREEN的研究进展. 植物生理学报, 2015, 51: 1017-1023.
Sun P G, Wu Q, Xu B, Chang S H, Miao H X, Jin Z Q. Progress in research on STAY-GREEN genes in plants. Plant Physiol J, 2015, 51: 1017-1023. (in Chinese with English abstract)
[12] Thomas H, Howarth C J. Five ways to stay green. J Exp Bot, 2000, 51: 329-337.
doi: 10.1093/jexbot/51.suppl_1.329
[13] 任钧, 王晓磊, 高炯, 周强, 徐永平, 蒯本科. 国内大豆品种资源中滞绿(stay-green)性状的初步研究. 植物生理学报, 2014, 50: 1336-1346.
Ren J, Wang X L, Gao J, Zhou Q, Xu Y P, Kuai B K. A preliminary study on the stay-green traits of soybean varieties. Plant Physiol J, 2014, 50: 1336-1346. (in Chinese with English abstract)
[14] Wang N, Kong X M, Luo M L, Sun Y Y, Liu Z Y, Feng H, Ji S J. SGR mutation in pak choi prolongs its shelf life by retarding chlorophyll degradation and maintaining membrane function. Posth Biol Technol, 2022, 191: 111986.
doi: 10.1016/j.postharvbio.2022.111986
[15] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[16] Qian L W, Qian W, Snowdon R J. Haplotype hitchhiking promotes trait co-selection in Brassica napus. Plant Biotechnol J, 2016, 14: 1578-1588.
[17] Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829
[18] Turner S D. qqman: an R package for visualizing GWAS results using QQ and Manhattan plots. J Open Source Softw, 2018, 3: 731.
doi: 10.21105/joss
[19] 刘蔚, 姚敏, 康郁, 王美, 解盼, 何昕, 刘忠松, 官春云, 钱伟, 华玮, 钱论文. GWAS结合共表达网络分析挖掘影响油菜种子硫苷积累的作用位点. 农业生物技术学报, 2019, 27: 1729-1741.
Liu W, Yao M, Kang Y, Wang M, Xie P, He X, Liu Z S, Guan C Y, Qian W, Hua W, Qian L W. GWAS and coexpression network combination uncovers effect loci in the accumulation of glucosinolates content in Brassica napus. J Agric Biotechnol, 2019, 27: 1729-1741. (in Chinese with English abstract)
[20] Dong H L, Tan C D, Li Y Z, He Y, Wei S, Cui Y X, Chen Y G, Wei D Y, Fu Y, He Y J, Wan H F, Liu Z, Xiong Q, Lu K, Li J N, Qian W. Genome-wide association study reveals both overlapping and independent genetic loci to control seed weight and silique length in Brassica napus. Front Plant Sci, 2018, 9: 921.
[21] Aulchenko Y S, Ripke S, Isaacs A, Van Duijn C M. GenABEL: an R library for genome-wide association analysis. Bioinformatics, 2007, 23: 1294-1296.
doi: 10.1093/bioinformatics/btm108 pmid: 17384015
[22] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9: 559.
doi: 10.1186/1471-2105-9-559 pmid: 19114008
[23] Smoot M E, Ono K, Ruscheinski J, Wang P L, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 2011, 27: 431-432.
doi: 10.1093/bioinformatics/btq675 pmid: 21149340
[24] 郝华玲. PIF4在6-BA诱导的拟南芥幼苗花青素及叶绿素含量变化中的重要作用. 兰州大学硕士学位论文, 甘肃兰州, 2013.
Hao H L. The Key Role of PIF4 in 6-BA Induced Changes in Anthocyanin and Chlorophyll Content in Arabidopsis Seedlings. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2013. (in Chinese with English abstract)
[25] 任国栋.拟南芥叶绿素降解相关基因NYE1NYE2CRN1的鉴定及其功能研究. 复旦大学博士学位论文, 上海, 2009.
Ren G D.Identification of NYE1, NYE2, CRN1 and Their Roles in Chlorophyll Degradation in Arabidopsis. PhD Dissertation of Fudan University, Shanghai, China, 2009. (in Chinese with English abstract)
[26] Bade R G, Bao M L, Jin W Y, Ma Y, Niu Y D, Hasi A. Genome-wide identification and analysis of the SGR gene family in Cucumis melo L. Genet Mol Res, 2016, 15: gmr15048485.
[27] Barry C S, McQuinn R P, Chung M Y, Besuden A, Giovannoni J J. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol, 2008, 147: 179-187.
doi: 10.1104/pp.108.118430 pmid: 18359841
[28] Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649-1664.
doi: 10.1105/tpc.106.044891
[29] Aubry S, Mani J, Hörtensteiner S. Stay-green protein, defective in Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol Biol, 2008, 67: 243-256.
doi: 10.1007/s11103-008-9314-8
[30] Yang X T, Zhang Z Q, Joyce D, Huang X M, Xu L Y, Pang X Q. Characterization of chlorophyll degradation in banana and plantain during ripening at high temperature. Food Chem, 2009, 114: 383-390.
doi: 10.1016/j.foodchem.2008.06.006
[31] Wu S X, Li Z P, Yang L F, Xie Z K, Chen J Y, Zhang W, Liu T Q, Gao S, Gao J, Zhu Y H, Xin J W, Ren G D, Kuai B K. NON-YELLOWING 2 (NYE2), a close paralog of NYE1, plays a positive role in chlorophyll degradation in Arabidopsis. Mol Plant, 2016, 9: 624-627.
[32] Sakuraba Y, Kim D, Kim Y S, Hörtensteiner S, Paek N C. Arabidopsis STAYGREEN-LIKE (SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth. FEBS Lett, 2014, 588: 3830-3837.
doi: 10.1016/j.febslet.2014.09.018
[33] Brychkova G, Xia Z L, Yang G H, Yesbergenova Z, Zhang Z L, Davydov O, Fluhr R, Sagi M. Sulfite oxidase protects plants against sulfur dioxide toxicity. Plant J, 2007, 50: 696-709.
doi: 10.1111/j.1365-313X.2007.03080.x pmid: 17425719
[1] 王让剑, 杨军, 张力岚, 高香凤. 茶树新梢中香叶醇樱草糖苷含量的全基因组关联分析[J]. 作物学报, 2023, 49(7): 1843-1859.
[2] 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531.
[3] 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550.
[4] 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732.
[5] 马娟, 朱卫红, 刘京宝, 宇婷, 黄璐, 郭国俊. 玉米穗长一般配合力多位点全基因组关联分析和预测[J]. 作物学报, 2023, 49(6): 1562-1572.
[6] 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196.
[7] 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210.
[8] 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183.
[9] 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221.
[10] 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925.
[11] 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905.
[12] 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027.
[13] 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754.
[14] 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868.
[15] 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .