作物学报 ›› 2023, Vol. 49 ›› Issue (7): 1829-1842.doi: 10.3724/SP.J.1006.2023.24188
唐玉凤(), 姚敏, 何昕, 官梅, 刘忠松, 官春云, 钱论文*()
TANG Yu-Feng(), YAO Min, HE Xin, GUAN Mei, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen*()
摘要:
叶绿素是植物进行光合作用的一类绿色色素, 对植物生长有着直接的影响。本研究利用生物信息学方法在全基因组水平上对甘蓝型油菜(Brassica napus)、白菜(Brassica rapa)、甘蓝(Brassica oleracea)和拟南芥(Arabidopsis thaliana)中滞绿基因(STAY-GREEN, SGR)家族成员进行分析发现, 28个SGR基因大多数包含4个外显子, 编码碱性蛋白。染色体定位和共线性分析显示, 甘蓝型油菜SGR基因家族成员中不存在串联复制, SGR基因家族成员之间具有线性关系, 高度同源, 且在进化过程中非常保守。此外, 利用60K SNP对203份半冬性甘蓝型油菜自交系的叶绿素含量进行全基因组关联分析(Genome-wide association study, GWAS), 检测到2个单体型区域Chr.A01: 6,193,165~ 6,317,757 bp和Chr.C01: 9,059,861~9,906,618 bp携带的BnaSGR1a-A01和BnaSGR1-C01与叶绿素含量显著相关。同时, 结合50份半冬性甘蓝型油菜重测序数据, 对这2个单体型进行进区域关联分析, 检测到1个SNP定位在BnaSGR1a-A01的外显子2区域, 并与叶绿素含量显著关联。共表达网络分析结果验证了BnaSGR1a-A01与BnaSGR2-A03直接相连, 与BnaSGR1-C01、BnaSGR1-A08、BnaSGR2-C03、BnaSGR1-C07、BnaSGRL-C06、BnaSGRL-A10等基因间接相连形成了一个网络体系, 共同调节叶绿素含量。T2拟南芥转BnaSGR1a-A01基因超表达植株的叶绿素a、叶绿素b和总的叶绿素含量相比野生型显著降低, 表明BnaSGR1调控叶绿素降解。本研究为油菜SGR基因的功能研究和利用奠定了基础。
[1] | 何微, 李俊, 王晓梅, 林巧, 杨小薇. 全球油菜供需现状与我国油菜产业问题、对策. 中国油脂, 2022, 47(2): 1-7. |
He W, Li J, Wang X M, Lin Q, Yang X W. Current status of global rapeseed industry and problems, countermeasures of rapeseed industry in China. China Oils Fats, 2022, 47(2): 1-7. (in Chinese with English abstract) | |
[2] |
Czyczyło-Mysza I, Tyrka M, Marcińska I, Skrzypek E, Karbarz M, Dziurka M, Hura T, Dziurka K, Quarrie S A. Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol Breed, 2013, 32: 189-210.
doi: 10.1007/s11032-013-9862-8 |
[3] |
Wu X L, Liu Z H, Hu Z H, Huang R Z. BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J Integr Plant Biol, 2014, 56: 582-593.
doi: 10.1111/jipb.12158 |
[4] | 梁颖, 李加纳, 唐章林, 谌利, 张学昆. 油菜光合生理指标与产量的关联分析. 西南农业大学学报, 1999, (3): 38-41. |
Liang Y, Li J N, Tang Z L, Chen L, Zhang X K. Correlative analysis of photosynthesis physiological targets and yield of rape. J Southwest Univ, 1999, (3): 38-41 (in Chinese with English abstract). | |
[5] |
Thomas H, Ougham H. The stay-green trait. J Exp Bot, 2014, 65: 3889-3900.
doi: 10.1093/jxb/eru037 pmid: 24600017 |
[6] |
Ren G D, An K, Liao Y, Zhou X, Cao Y J, Zhao H F, Ge X C, Kuai B K.Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol, 2007, 144: 1429-1441.
doi: 10.1104/pp.107.100172 |
[7] | 康文霞, 董军刚, 梁晓芳, 许婷, 杨其东, 董振生. 甘蓝型油菜含油量与角果叶绿素质量分数的相关性. 西北农业学报, 2015, 24(11): 57-63. |
Kang W X, Dong J G, Liang X F, Xu T, Yang Q D, Dong Z S. Correlation study between oil content and chlorophyll in pod during pod formation in Brassica napus. Acta Agric Boreali-Occident Sin, 2015, 24(11): 57-63. (in Chinese with English abstract) | |
[8] |
Hua S J, Chen Z H, Zhang Y F, Yu H S, Lin B G, Zhang D Q. Chlorophyll and carbohydrate metabolism in developing silique and seed are prerequisite to seed oil content of Brassica napus L. Bot Stud, 2014, 55: 34.
doi: 10.1186/1999-3110-55-34 |
[9] |
Hua W, Li R J, Zhan G M, Liu J, Li J, Wang X F, Liu G H, Wang H Z. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Plant J, 2012, 69: 432-444.
doi: 10.1111/tpj.2012.69.issue-3 |
[10] | 李凤阳, 何激光, 官春云. 油菜叶片和角果光合作用研究进展. 作物研究, 2011, 25: 405-409. |
Li F Y, He J G, Guan C Y. Advances in photosynthesis of leaves and scones in rape. Crop Res, 2011, 25: 405-409. (in Chinese with English abstract) | |
[11] | 孙佩光, 吴琼, 徐碧, 常胜合, 苗红霞, 金志强. 植物滞绿基因STAY-GREEN的研究进展. 植物生理学报, 2015, 51: 1017-1023. |
Sun P G, Wu Q, Xu B, Chang S H, Miao H X, Jin Z Q. Progress in research on STAY-GREEN genes in plants. Plant Physiol J, 2015, 51: 1017-1023. (in Chinese with English abstract) | |
[12] |
Thomas H, Howarth C J. Five ways to stay green. J Exp Bot, 2000, 51: 329-337.
doi: 10.1093/jexbot/51.suppl_1.329 |
[13] | 任钧, 王晓磊, 高炯, 周强, 徐永平, 蒯本科. 国内大豆品种资源中滞绿(stay-green)性状的初步研究. 植物生理学报, 2014, 50: 1336-1346. |
Ren J, Wang X L, Gao J, Zhou Q, Xu Y P, Kuai B K. A preliminary study on the stay-green traits of soybean varieties. Plant Physiol J, 2014, 50: 1336-1346. (in Chinese with English abstract) | |
[14] |
Wang N, Kong X M, Luo M L, Sun Y Y, Liu Z Y, Feng H, Ji S J. SGR mutation in pak choi prolongs its shelf life by retarding chlorophyll degradation and maintaining membrane function. Posth Biol Technol, 2022, 191: 111986.
doi: 10.1016/j.postharvbio.2022.111986 |
[15] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[16] | Qian L W, Qian W, Snowdon R J. Haplotype hitchhiking promotes trait co-selection in Brassica napus. Plant Biotechnol J, 2016, 14: 1578-1588. |
[17] |
Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[18] |
Turner S D. qqman: an R package for visualizing GWAS results using QQ and Manhattan plots. J Open Source Softw, 2018, 3: 731.
doi: 10.21105/joss |
[19] | 刘蔚, 姚敏, 康郁, 王美, 解盼, 何昕, 刘忠松, 官春云, 钱伟, 华玮, 钱论文. GWAS结合共表达网络分析挖掘影响油菜种子硫苷积累的作用位点. 农业生物技术学报, 2019, 27: 1729-1741. |
Liu W, Yao M, Kang Y, Wang M, Xie P, He X, Liu Z S, Guan C Y, Qian W, Hua W, Qian L W. GWAS and coexpression network combination uncovers effect loci in the accumulation of glucosinolates content in Brassica napus. J Agric Biotechnol, 2019, 27: 1729-1741. (in Chinese with English abstract) | |
[20] | Dong H L, Tan C D, Li Y Z, He Y, Wei S, Cui Y X, Chen Y G, Wei D Y, Fu Y, He Y J, Wan H F, Liu Z, Xiong Q, Lu K, Li J N, Qian W. Genome-wide association study reveals both overlapping and independent genetic loci to control seed weight and silique length in Brassica napus. Front Plant Sci, 2018, 9: 921. |
[21] |
Aulchenko Y S, Ripke S, Isaacs A, Van Duijn C M. GenABEL: an R library for genome-wide association analysis. Bioinformatics, 2007, 23: 1294-1296.
doi: 10.1093/bioinformatics/btm108 pmid: 17384015 |
[22] |
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9: 559.
doi: 10.1186/1471-2105-9-559 pmid: 19114008 |
[23] |
Smoot M E, Ono K, Ruscheinski J, Wang P L, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 2011, 27: 431-432.
doi: 10.1093/bioinformatics/btq675 pmid: 21149340 |
[24] | 郝华玲. PIF4在6-BA诱导的拟南芥幼苗花青素及叶绿素含量变化中的重要作用. 兰州大学硕士学位论文, 甘肃兰州, 2013. |
Hao H L. The Key Role of PIF4 in 6-BA Induced Changes in Anthocyanin and Chlorophyll Content in Arabidopsis Seedlings. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2013. (in Chinese with English abstract) | |
[25] | 任国栋.拟南芥叶绿素降解相关基因NYE1、NYE2、CRN1的鉴定及其功能研究. 复旦大学博士学位论文, 上海, 2009. |
Ren G D.Identification of NYE1, NYE2, CRN1 and Their Roles in Chlorophyll Degradation in Arabidopsis. PhD Dissertation of Fudan University, Shanghai, China, 2009. (in Chinese with English abstract) | |
[26] | Bade R G, Bao M L, Jin W Y, Ma Y, Niu Y D, Hasi A. Genome-wide identification and analysis of the SGR gene family in Cucumis melo L. Genet Mol Res, 2016, 15: gmr15048485. |
[27] |
Barry C S, McQuinn R P, Chung M Y, Besuden A, Giovannoni J J. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol, 2008, 147: 179-187.
doi: 10.1104/pp.108.118430 pmid: 18359841 |
[28] |
Park S Y, Yu J W, Park J S, Li J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649-1664.
doi: 10.1105/tpc.106.044891 |
[29] |
Aubry S, Mani J, Hörtensteiner S. Stay-green protein, defective in Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide a oxygenase in the chlorophyll catabolic pathway. Plant Mol Biol, 2008, 67: 243-256.
doi: 10.1007/s11103-008-9314-8 |
[30] |
Yang X T, Zhang Z Q, Joyce D, Huang X M, Xu L Y, Pang X Q. Characterization of chlorophyll degradation in banana and plantain during ripening at high temperature. Food Chem, 2009, 114: 383-390.
doi: 10.1016/j.foodchem.2008.06.006 |
[31] | Wu S X, Li Z P, Yang L F, Xie Z K, Chen J Y, Zhang W, Liu T Q, Gao S, Gao J, Zhu Y H, Xin J W, Ren G D, Kuai B K. NON-YELLOWING 2 (NYE2), a close paralog of NYE1, plays a positive role in chlorophyll degradation in Arabidopsis. Mol Plant, 2016, 9: 624-627. |
[32] |
Sakuraba Y, Kim D, Kim Y S, Hörtensteiner S, Paek N C. Arabidopsis STAYGREEN-LIKE (SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth. FEBS Lett, 2014, 588: 3830-3837.
doi: 10.1016/j.febslet.2014.09.018 |
[33] |
Brychkova G, Xia Z L, Yang G H, Yesbergenova Z, Zhang Z L, Davydov O, Fluhr R, Sagi M. Sulfite oxidase protects plants against sulfur dioxide toxicity. Plant J, 2007, 50: 696-709.
doi: 10.1111/j.1365-313X.2007.03080.x pmid: 17425719 |
[1] | 王让剑, 杨军, 张力岚, 高香凤. 茶树新梢中香叶醇樱草糖苷含量的全基因组关联分析[J]. 作物学报, 2023, 49(7): 1843-1859. |
[2] | 袁大双, 张晓莉, 朱冬鸣, 杨友鸿, 姚梦楠, 梁颖. BnMAPK2 对甘蓝型油菜耐旱性的影响[J]. 作物学报, 2023, 49(6): 1518-1531. |
[3] | 杨一丹, 何督, 刘静, 张岩, 陈飞志, 巫燕飞, 杜雪竹. 寄主诱导的基因沉默干扰核盘菌致病基因OAH在甘蓝型油菜抗菌核病中的应用[J]. 作物学报, 2023, 49(6): 1542-1550. |
[4] | 田敏, 刘新春, 潘佳佳, 梁丽静, 董雷, 刘美池, 冯宗云. 大麦籽粒纤维素、半纤维素含量全基因组关联分析[J]. 作物学报, 2023, 49(6): 1726-1732. |
[5] | 马娟, 朱卫红, 刘京宝, 宇婷, 黄璐, 郭国俊. 玉米穗长一般配合力多位点全基因组关联分析和预测[J]. 作物学报, 2023, 49(6): 1562-1572. |
[6] | 刘佳, 龚方仪, 刘亚西, 颜泽洪, 钟晓英, 陈厚霖, 黄林, 伍碧华. 野生二粒小麦主要农艺特性融入普通小麦的全基因组关联分析[J]. 作物学报, 2023, 49(5): 1184-1196. |
[7] | 杨太桦, 杨福权, 郜耿东, 殷帅, 金庆东, 徐林珊, 蒯婕, 汪波, 徐正华, 葛贤宏, 王晶, 周广生. 初步探究LncRNA在甘蓝型油菜生态型分化中的作用[J]. 作物学报, 2023, 49(5): 1197-1210. |
[8] | 周海平, 张帆, 陈凯, 申聪聪, 朱双兵, 邱先进, 徐建龙. 水稻种质资源稻瘟病抗性全基因组关联分析[J]. 作物学报, 2023, 49(5): 1170-1183. |
[9] | 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43-FBXL调控模块参与甘蓝型油菜铝胁迫的功能分析[J]. 作物学报, 2023, 49(5): 1211-1221. |
[10] | 陈慧, 肖清, 汪华栋, 文静, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 易斌. 甘蓝型油菜SUMO蛋白家族成员鉴定及Bna.SUMO1.C08基因的功能研究[J]. 作物学报, 2023, 49(4): 917-925. |
[11] | 陈晓汉, 王丽琴, 汪华栋, 肖清, 陶保龙, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. BnABCI8影响甘蓝型油菜叶绿体发育[J]. 作物学报, 2023, 49(4): 893-905. |
[12] | 柏成成, 姚小尧, 王雨璐, 王赛玉, 李金莹, 蒋有为, 靳舒荣, 陈春杰, 刘渔, 魏星玥, 徐新福, 李加纳, 倪郁. 甘蓝型油菜长链烷烃合成相关基因的克隆及其与BnCER1-2的互作[J]. 作物学报, 2023, 49(4): 1016-1027. |
[13] | 杨斌, 乔玲, 赵佳佳, 武棒棒, 温宏伟, 张树伟, 郑兴卫, 郑军. 小麦旗叶叶绿素含量的QTL定位及验证[J]. 作物学报, 2023, 49(3): 744-754. |
[14] | 王珍, 张晓莉, 刘淼, 姚梦楠, 孟晓静, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1超量表达及中油821的转录差异表达分析[J]. 作物学报, 2023, 49(3): 856-868. |
[15] | 马雅杰, 鲍建喜, 高悦欣, 李雅楠, 秦文萱, 王彦博, 龙艳, 李金萍, 董振营, 万向元. 玉米株高和穗位高性状全基因组关联分析[J]. 作物学报, 2023, 49(3): 647-661. |
|