作物学报 ›› 2020, Vol. 46 ›› Issue (01): 1-8.doi: 10.3724/SP.J.1006.2020.94062
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
LIU Xie-Xiang,CHANG Ru-Zhen,GUAN Rong-Xia(),QIU Li-Juan()
摘要:
土壤盐渍化是影响农业生产的重要问题, 筛选耐盐大豆资源对于大豆主产区盐渍化土壤的利用具有重要意义。以中黄35、中黄39、Williams 82、铁丰8号、Peking和NY27-38为供试材料, 以蛭石为培养基质, 设0、100和150 mmol L -1NaCl 3个处理, 进行出苗期耐盐性鉴定, 分析与生长相关的6个指标, 旨在明确大豆出苗期耐盐性鉴定指标和评价方法。结果表明, 150 mmol L -1 NaCl处理显著降低大豆的成苗率、株高、地上部鲜重、根鲜重、地上部干重和根干重, 并且不同材料间差异显著。基于幼苗生长发育状况的耐盐指数方法与耐盐系数方法对6份种质耐盐性评价结果显著相关。耐盐指数法对植株无损坏、可省略种植对照, 节约人力和物力, 提高种质鉴定的效率。因此, 以150 mmol L -1 NaCl作为出苗期耐盐鉴定浓度, 以耐盐指数作为大豆出苗期耐盐鉴定评价指标, 鉴定27份大豆资源, 获得出苗期高度耐盐大豆(1级) 3份、耐盐大豆(2级) 7份, 其中4份苗期也高度耐盐(1级), 分别为运豆101、郑1311、皖宿1015和铁丰8号。本研究建立了一种以蛭石为基质, 利用150 mmol L -1 NaCl处理, 以耐盐指数作为评价指标的大豆出苗期耐盐性鉴定评价的简便方法, 并筛选出4份出苗期和苗期均耐盐的大豆, 对耐盐大豆种质资源的高效鉴定和耐盐大豆新品种培育具有重要意义。
[1] |
Hamwieh A, Xu D . Conserved salt tolerance quantitative trait loci (QTL) in wild and cultivated soybean. Breed Sci, 2008,58:355-359.
doi: 10.1270/jsbbs.58.355 |
[2] |
Hamwieh A, Tuyen D D, Cong H, Benitez E R, Takahashi R, Xu D H . Identification and validation of a major QTL for salt tolerance in soybean. Euphytica, 2011,179:451-459.
doi: 10.1007/s10681-011-0347-8 |
[3] |
Wang Z, Wang J, Bao Y, Wu Y, Zhang H . Quantitative trait loci controlling rice seed germination under salt stress. Euphytica, 2011,178:297-307.
doi: 10.1007/s10681-010-0287-8 |
[4] |
王佳丽, 黄贤金, 钟太洋, 陈志刚 . 盐碱地可持续利用研究综述. 地理学报, 2011,66:673-684.
doi: 10.11821/xb201105010 |
Wang J L, Huang X J, Zhong T Y, Chen Z G . Review on sustainable utilization of salt-affected land. Acta Geogr Sin, 2011,66:673-684 (in Chinese with English abstract).
doi: 10.11821/xb201105010 |
|
[5] | Abel G H, Mackenzie A J . Salt tolerance of soybean varieties (Glycine max L. Merrill) during germination and later growth. Crop Sci, 1964,4:14-28. |
[6] |
Wang D, Shannon M C . Emergence and seedling growth of soybean cultivars and maturity groups under salinity. Plant Soil, 1999,214:117-124.
doi: 10.1023/A:1004719420806 |
[7] |
Singleton P W, Bohlool B B . Effect of salinity on nodule formation by soybean. Plant Physiol, 1984,74:72-76.
doi: 10.1104/pp.74.1.72 pmid: 16663389 |
[8] |
Chen H, Cui S, Fu S, Gai J, Yu D . Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean (Glycine max L.). Aust J Agric Res, 2008,59:1086-1091.
doi: 10.1186/1471-2229-13-161 pmid: 24134188 |
[9] |
Phang T H, Lam H M . Salt tolerance in soybean. J Integr Plant Biol, 2008,50:1196-1212.
doi: 10.1111/j.1744-7909.2008.00760.x |
[10] | Pathan M S, Lee J D, Shannon J G, Nguyen H T. Recent advances in breeding for drought and salt stress tolerance in soybean. In: Jenks M A, Hasegawa P M, Jain S M, eds. Advances in Molecular-breeding Toward Drought and Salt Tolerant Crops. USA: Springer, 2007. pp 739-773. |
[11] | 邵桂花, 宋景芝, 刘惠令 . 大豆种质资源耐盐性鉴定初报. 中国农业科学, 1986,19(6):30-35. |
Shao G H, Song J Z, Liu H L . Preliminary studies on the evaluation of salt tolerance in soybean varieties. Sci Agric Sin, 1986,19(6):30-35 (in Chinese with English abstract). | |
[12] | 郭蓓, 邱丽娟, 邵桂花, 许占友 . 大豆耐盐性种质的分子标记辅助鉴定及其利用研究. 大豆科学, 2002,21:56-61. |
Guo B, Qiu L J, Shao G H, Xu Z Y . Markers-assisted identification of the salt tolerant accessions in soybean. Soybean Sci, 2002,21:56-61 (in Chinese with English abstract). | |
[13] |
Ha B K, Vuong T D, Velusamy V, Nguyen H T, Shannon J G, Lee J D . Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica, 2013,193:79-88.
doi: 10.1007/s10681-013-0944-9 |
[14] |
Tuyen D D, Lal S K, Xu D H . Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet, 2010,121:229-236.
doi: 10.1007/s00122-010-1304-y |
[15] |
Essa T A . Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. J Agron Crop Sci, 2002,188:86-93.
doi: 10.1046/j.1439-037X.2002.00537.x |
[16] |
Tuyen D D, Zhang H M, Xu D H . Validation and high-resolution mapping of a major quantitative trait locus for alkaline salt tolerance in soybean using residual heterozygous line. Mol Breed, 2013,31:79-86.
doi: 10.1007/s11032-012-9771-2 |
[17] |
Guan R X, Qu Y, Guo Y, Yu L L, Liu Y, Jiang J H, Chen J G, Ren Y L, Liu G Y, Tian L, Jin L G, Liu Z X, Hong H L, Chang R Z, Gilliham M, Qiu L J . Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J, 2015,80:937-950.
doi: 10.1111/tpj.12695 pmid: 25292417 |
[18] |
Qi X, Li M W, Xie M, Liu X, Ni M, Shao G, Song C, Yim K Y, Tao Y, Wong F L, Isobe S, Wong C F, Wong K S, Xu C, Li C, Wang Y, Guan R, Sun F, Fan G, Xiao Z, Zhou F, Phang T H, Liu X, Tong S W, Chan T F, Yiu S M, Tabata S, Wang J, Xu X, Lam H M . Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun, 2014,5:4340.
doi: 10.1038/ncomms5340 pmid: 25004933 |
[19] |
Do T D, Vuong T D, Dunn D, Smothers S, Patil G, Yungbluth D C, Chen P, Scaboo A, Xu D, Carter T E . Mapping and confirmation of loci for salt tolerance in a novel soybean germplasm, Fiskeby III. Theor Appl Genet, 2018,131:513-524.
doi: 10.1007/s00122-017-3015-0 pmid: 29151146 |
[20] |
Liu Y, Yu L L, Qu Y, Chen J J, Liu X X, Hong H L, Liu Z X, Chang R Z, Gilliham M, Qiu L J, Guan R X . GmSALT3, which confers improved soybean salt tolerance in the field, increases leaf Cl- exclusion prior to Na+ exclusion but does not improve early vigor under salinity. Front Plant Sci, 2016,7:1485.
doi: 10.3389/fpls.2016.01485 pmid: 27746805 |
[21] |
Munns R, James R A . Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil, 2003,253:201-218.
doi: 10.1023/A:1024553303144 |
[22] |
Khatun S, Flowers T J . Effects of salinity on seed set in rice. Plant Cell Environ, 1995,18:61-67.
doi: 10.1007/s10142-010-0203-2 pmid: 21213008 |
[23] |
Hosseini M, Powell A, Bingham I . Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Sci Res, 2002,12:165-172.
doi: 10.1079/SSR2002108 |
[24] | 邵桂花 . 大豆种质资源耐盐性田间鉴定方法. 作物杂志, 1986, (3):36-37. |
Shao G H . Field identification method for salt tolerance of soybean germplasm resources. Crops, 1986, (3):36-37 (in Chinese). | |
[25] | 罗庆云 . 野生大豆和栽培大豆耐盐机理及遗传研究. 南京农业大学博士学位论文, 江苏南京, 2003. |
Luo Q Y . Study on Mechanism and Inheritance of Salt Tolerance in Wild Soybean (Glycine soja) and Cultivated Soybean (G. max). PhD Dissertation of Nanjing Agriculture University, Nanjing, China, 2003 (in Chinese with English abstract). | |
[26] | 张海波, 崔继哲, 曹甜甜, 张佳彤, 刘千千, 刘欢 . 大豆出苗期和苗期对盐胁迫的响应及耐盐指标评价. 生态学报, 2011,31:2805-2812. |
Zhang H B, Cui J Z, Cao T T, Zhang J T, Liu Q Q, Liu H . Response to salt stresses and assessment of salt tolerability of soybean varieties in emergence and seedling stages. Acta Ecol Sin, 2011,31:2805-2812 (in Chinese with English abstract). | |
[27] |
Zhang W J, Niu Y, Bu S H, Li M, Feng J Y, Zhang J, Yang S X, Odinga M M, Wei S P, Liu X F, Zhang Y M . Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS One, 2014,9:e84750.
doi: 10.1371/journal.pone.0084750 pmid: 24416275 |
[28] |
Kan G, Zhang W, Yang W, Ma D, Zhang D, Hao D, Hu Z, Yu D . Association mapping of soybean seed germination under salt stress. Mol Genet Genomics, 2015,290:2147-2162.
doi: 10.1007/s00438-015-1066-y pmid: 26001372 |
[29] | 姬丹丹, 刘畅, 曹其聪, 向凤宁 . 不同大豆品种芽期和苗期耐盐性比较研究. 山东轻工业学院学报(自然科学版), 2011,25(2):4-7. |
Ji D D, Liu C, Cao Q C, Xiang F N . Comparison of the salt tolerance at sprout and seedling in different soybean. J Shandong Polytechnic Univ (Nat Sci Edn), 2011,25(2):4-7 (in Chinese with English abstract). | |
[30] | 郭蓓, 邵桂花 . 大豆耐盐基因的PCR标记. 中国农业科学, 2000,33(1):10-16. |
Guo B, Shao G H . Tagging salt tolerant gene using PCR marker in soybean. Sci Agric Sin, 2000,33(1):10-16 (in Chinese with English abstract). | |
[31] |
Flowers T J . Improving crop salt tolerance. J Exp Bot, 2004,55:307-319.
doi: 10.1093/jxb/erh003 pmid: 14718494 |
[32] |
Foolad M R, Lin G Y . Absence of genetic relationship between salt tolerance during seed germination and vegetative growth in tomato. Plant Breed, 1997,116:363-367.
doi: 10.1111/pbr.1997.116.issue-4 |
[33] |
Do T D, Chen H, Hien V T T, Hamwieh A, Yamada T, Sato T, Yan Y, Cong H, Shono M, Suenaga K . Ncl synchronously regulates Na+, K+, and Cl- in soybean and greatly increases the grain yield in saline field conditions. Sci Rep, 2016,6:19147.
doi: 10.1038/srep19147 pmid: 26744076 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[3] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[4] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[5] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[6] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[7] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[8] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[9] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[10] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[11] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[12] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[13] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[14] | 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379. |
[15] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
|