欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (01): 1-8.doi: 10.3724/SP.J.1006.2020.94062

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选

刘谢香,常汝镇,关荣霞(),邱丽娟()   

  1. 中国农业科学院作物科学研究所/国家农作物基因资源与遗传改良重大科学工程/农业部种质资源利用重点实验室, 北京 100081
  • 收稿日期:2019-04-17 接受日期:2019-08-09 出版日期:2020-01-12 网络出版日期:2019-09-03
  • 通讯作者: 关荣霞,邱丽娟
  • 作者简介:E-mail: 15311442897@163.com
  • 基金资助:
    本研究由国家自然科学基金项目资助(31830066)

Establishment of screening method for salt tolerant soybean at emergence stage and screening of tolerant germplasm

LIU Xie-Xiang,CHANG Ru-Zhen,GUAN Rong-Xia(),QIU Li-Juan()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Germplasm Utilization, Ministry of Agriculture, Beijing 100081, China
  • Received:2019-04-17 Accepted:2019-08-09 Published:2020-01-12 Published online:2019-09-03
  • Contact: Rong-Xia GUAN,Li-Juan QIU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31830066)

摘要:

土壤盐渍化是影响农业生产的重要问题, 筛选耐盐大豆资源对于大豆主产区盐渍化土壤的利用具有重要意义。以中黄35、中黄39、Williams 82、铁丰8号、Peking和NY27-38为供试材料, 以蛭石为培养基质, 设0、100和150 mmol L -1NaCl 3个处理, 进行出苗期耐盐性鉴定, 分析与生长相关的6个指标, 旨在明确大豆出苗期耐盐性鉴定指标和评价方法。结果表明, 150 mmol L -1 NaCl处理显著降低大豆的成苗率、株高、地上部鲜重、根鲜重、地上部干重和根干重, 并且不同材料间差异显著。基于幼苗生长发育状况的耐盐指数方法与耐盐系数方法对6份种质耐盐性评价结果显著相关。耐盐指数法对植株无损坏、可省略种植对照, 节约人力和物力, 提高种质鉴定的效率。因此, 以150 mmol L -1 NaCl作为出苗期耐盐鉴定浓度, 以耐盐指数作为大豆出苗期耐盐鉴定评价指标, 鉴定27份大豆资源, 获得出苗期高度耐盐大豆(1级) 3份、耐盐大豆(2级) 7份, 其中4份苗期也高度耐盐(1级), 分别为运豆101、郑1311、皖宿1015和铁丰8号。本研究建立了一种以蛭石为基质, 利用150 mmol L -1 NaCl处理, 以耐盐指数作为评价指标的大豆出苗期耐盐性鉴定评价的简便方法, 并筛选出4份出苗期和苗期均耐盐的大豆, 对耐盐大豆种质资源的高效鉴定和耐盐大豆新品种培育具有重要意义。

关键词: 大豆, 出苗期, 耐盐性, 鉴定方法

Abstract:

Salinity is an important factor affecting crop production. Screening salt tolerant soybean germplasm is of great significance for the utilization of salinized soil in major soybean production regions. In order to select salt tolerant soybean, a screening method was developed by using six soybean accessions, including Zhonghuang 35, Zhonghuang 39, Williams 82, Tiefeng 8, Peking, and NY27-38. Seeds were grown in vermiculite and treated with 0, 100, and 150 mmol L -1 NaCl solution. Seedling rate (SR), plant height (H), fresh weight of shoot and root (FWS and FWR), dry weight of shoot and root (DWS and DWR) were decreased significantly under 150 mmol L -1 NaCl treatment, with significant difference among varieties. Therefore, 150 mmol L -1 NaCl was suitable to identify salt tolerant soybean at emergence stage. The salt tolerance index (SI) based on the growth and development of seedlings and the salt tolerance coefficient (ST) were significantly correlated with the salt tolerance. The method using salt tolerance index is non-destructive and does not require planting control, which could save time and labor in salt tolerant germplasm identification. Twenty-seven soybean resources were screened, in which three were highly tolerant (grade 1) and seven tolerant (grade 2) at emergence stage. Among them, Yundou 101, Zheng 1311, Wansu 1015, and Tiefeng 8 also showed salt tolerance (grade 1) at seedling stage. In summary, an effective method for screening salt tolerant soybean at emergence stage was developed, with vermiculite as the substrate, 150 mmol L -1 NaCl as suitable treatment solution, and salt tolerance index as the indicator. Four soybean accessions were found to be salt tolerant at both emergence and seedling stages. This screening method will be useful for identification of salt tolerant soybean germplasm.

Key words: soybean, emergence stage, salt tolerance, screening method

图1

出苗期耐盐性单株分类记载法的标准"

表1

盐胁迫后大豆出苗期和苗期的盐害症状"

出苗期 Emergence stage 苗期 Seedling stage
类别
Category
表型特征
Symptom
级别
Grade
表型特征
Symptom
I 植株凋亡, 子叶干枯(类别数值为1)
Plant dead, cotyledons were dry (category value is 1)
1 健康的绿叶, 没有观察到损伤
Healthy green leaves, no damage observed
II 植株生长受到严重抑制, 子叶未展开(类别数值为2)
Plant growth was severely inhibited, cotyledon was not unfolded (category value is 2)
2 轻度坏死, 真叶轻微发黄
Slight chlorosis, light yellowish color observed in true leaves
III 植株生长受到抑制, 具有生长点, 但真叶未展开(类别数值为3)
Plant growth was inhibited with shoot apical meristem, but true leaves were not unfolded (category value is 3)
3 中度坏死, 三出复叶发黄
Moderate chlorosis, chlorosis observed in trifoliate leaves
IV 植株生长基本正常, 真叶未完全展开(类别数值为4)
Plant growth was basically normal, true leaves were not fully expanded (category value is 4)
4 严重坏死, 超过75%的叶面发黄
Severe chlorosis, more than 75% of the leaf area showed chlorosis
V 植株生长正常, 真叶完全展开(类别数值为5)
Plant growth was normal, true leaves were fully expanded (category value is 5)
5 凋亡, 植物完全枯萎
Dead, plants were completely withered

图2

不同浓度NaCl处理15 d后6份材料的表型 A、B、C分别表示0、100和150 mmol L-1 NaCl处理15 d的表型特征, 比例尺为1 cm。D: 成苗率。E: 根鲜重。F: 地上部鲜重。G: 株高。H: 根干重; I: 地上部干重。数据结果为3次生物学重复, 误差线为标准误(n = 3); 标以不同小写字母的柱值在同一品种的不同浓度处理间在0.05水平上差异显著。"

图3

150 mmol L-1 NaCl处理下6份材料的耐盐性 ST_SR: 相对成苗率; ST_H: 相对株高; ST_FWR: 相对根鲜重; ST_FWS: 相对地上部鲜重; ST_DWR: 相对根干重; ST_DWS: 相对地上部干重; 数据结果为3次生物学重复, 误差线为标准误(n = 3); 标以不同小写字母的柱值在同一指标的不同品种间在0.05水平上差异显著。"

表2

大豆出苗期不同耐盐评价指标间的相关系数"

指标
Index
相对成苗率
ST_SR
相对地上部鲜重
ST_FWS
相对根鲜重
ST_FWR
相对株高
ST_H
相对根干重
ST_DWR
相对地上部干重
ST_DWS
相对地上部鲜重 ST_FWS 0.97***
相对根鲜重 ST_FWR 0.81* 0.81*
相对株高 ST_H 0.97*** 0.96** 0.85*
相对根干重 ST_DWR 0.80 0.77 0.98*** 0.85*
相对地上部干重 ST_DWS 0.97*** 0.98*** 0.89* 0.99*** 0.87*
耐盐指数 SI 0.88* 0.83* 0.91** 0.87* 0.88* 0.90**

表3

27份大豆种质苗期和出苗期的耐盐等级"

品种
Variety
耐盐性 Salt tolerance 品种
Variety
耐盐性 Salt tolerance
出苗期
Emergence stage
苗期
Seedling stage
出苗期
Emergence stage
苗期
Seedling stage
中黄74 Zhonghuang 74 3 5 运豆101 Yundou 101 2 1
冀1507 Ji 1507 3 1 郑1311 Zheng 1311 2 1
冀豆29 Jidou 29 3 5 冀1503 Ji 1503 4 1
冀豆23 Jidou 23 4 1 皖宿1015 Wansu 1015 2 1
安豆1498 Andou 1498 1 5 齐黄39 Qihuang 39 1 4
石豆17 Shidou 17 4 1 中黄207 Zhonghuang 207 3 3
科豆13 Kedou 13 4 4 邯豆11 Handou 11 3 5
中黄206 Zhonghuang 206 4 3 Williams 82 1 4
中黄605 Zhonghuang 605 2 5 中黄35 Zhonghuang 35 3 5
中黄80 Zhonghuang 80 3 3 中黄39 Zhonghuang 39 2 5
中黄203 Zhonghuang 203 3 1 铁丰8号 Tiefeng 8 2 1
中黄204 Zhonghuang 204 3 1 Peking 2 5
中黄70 Zhonghuang 70 3 5 NY27-38 4 1
圣豆10号 Shengdou 10 3 1

图4

4份大豆种质苗期和出苗期耐盐性 A: 对照(0 mmol L-1 NaCl处理15 d)。B: 出苗期耐盐性(播种时150 mmol L-1 NaCl处理15 d)。C: 苗期耐盐性(真叶展开时200 mmol L-1 NaCl处理15 d)。比例尺 = 5 cm。"

[1] Hamwieh A, Xu D . Conserved salt tolerance quantitative trait loci (QTL) in wild and cultivated soybean. Breed Sci, 2008,58:355-359.
doi: 10.1270/jsbbs.58.355
[2] Hamwieh A, Tuyen D D, Cong H, Benitez E R, Takahashi R, Xu D H . Identification and validation of a major QTL for salt tolerance in soybean. Euphytica, 2011,179:451-459.
doi: 10.1007/s10681-011-0347-8
[3] Wang Z, Wang J, Bao Y, Wu Y, Zhang H . Quantitative trait loci controlling rice seed germination under salt stress. Euphytica, 2011,178:297-307.
doi: 10.1007/s10681-010-0287-8
[4] 王佳丽, 黄贤金, 钟太洋, 陈志刚 . 盐碱地可持续利用研究综述. 地理学报, 2011,66:673-684.
doi: 10.11821/xb201105010
Wang J L, Huang X J, Zhong T Y, Chen Z G . Review on sustainable utilization of salt-affected land. Acta Geogr Sin, 2011,66:673-684 (in Chinese with English abstract).
doi: 10.11821/xb201105010
[5] Abel G H, Mackenzie A J . Salt tolerance of soybean varieties (Glycine max L. Merrill) during germination and later growth. Crop Sci, 1964,4:14-28.
[6] Wang D, Shannon M C . Emergence and seedling growth of soybean cultivars and maturity groups under salinity. Plant Soil, 1999,214:117-124.
doi: 10.1023/A:1004719420806
[7] Singleton P W, Bohlool B B . Effect of salinity on nodule formation by soybean. Plant Physiol, 1984,74:72-76.
doi: 10.1104/pp.74.1.72 pmid: 16663389
[8] Chen H, Cui S, Fu S, Gai J, Yu D . Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean (Glycine max L.). Aust J Agric Res, 2008,59:1086-1091.
doi: 10.1186/1471-2229-13-161 pmid: 24134188
[9] Phang T H, Lam H M . Salt tolerance in soybean. J Integr Plant Biol, 2008,50:1196-1212.
doi: 10.1111/j.1744-7909.2008.00760.x
[10] Pathan M S, Lee J D, Shannon J G, Nguyen H T. Recent advances in breeding for drought and salt stress tolerance in soybean. In: Jenks M A, Hasegawa P M, Jain S M, eds. Advances in Molecular-breeding Toward Drought and Salt Tolerant Crops. USA: Springer, 2007. pp 739-773.
[11] 邵桂花, 宋景芝, 刘惠令 . 大豆种质资源耐盐性鉴定初报. 中国农业科学, 1986,19(6):30-35.
Shao G H, Song J Z, Liu H L . Preliminary studies on the evaluation of salt tolerance in soybean varieties. Sci Agric Sin, 1986,19(6):30-35 (in Chinese with English abstract).
[12] 郭蓓, 邱丽娟, 邵桂花, 许占友 . 大豆耐盐性种质的分子标记辅助鉴定及其利用研究. 大豆科学, 2002,21:56-61.
Guo B, Qiu L J, Shao G H, Xu Z Y . Markers-assisted identification of the salt tolerant accessions in soybean. Soybean Sci, 2002,21:56-61 (in Chinese with English abstract).
[13] Ha B K, Vuong T D, Velusamy V, Nguyen H T, Shannon J G, Lee J D . Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica, 2013,193:79-88.
doi: 10.1007/s10681-013-0944-9
[14] Tuyen D D, Lal S K, Xu D H . Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet, 2010,121:229-236.
doi: 10.1007/s00122-010-1304-y
[15] Essa T A . Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. J Agron Crop Sci, 2002,188:86-93.
doi: 10.1046/j.1439-037X.2002.00537.x
[16] Tuyen D D, Zhang H M, Xu D H . Validation and high-resolution mapping of a major quantitative trait locus for alkaline salt tolerance in soybean using residual heterozygous line. Mol Breed, 2013,31:79-86.
doi: 10.1007/s11032-012-9771-2
[17] Guan R X, Qu Y, Guo Y, Yu L L, Liu Y, Jiang J H, Chen J G, Ren Y L, Liu G Y, Tian L, Jin L G, Liu Z X, Hong H L, Chang R Z, Gilliham M, Qiu L J . Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J, 2015,80:937-950.
doi: 10.1111/tpj.12695 pmid: 25292417
[18] Qi X, Li M W, Xie M, Liu X, Ni M, Shao G, Song C, Yim K Y, Tao Y, Wong F L, Isobe S, Wong C F, Wong K S, Xu C, Li C, Wang Y, Guan R, Sun F, Fan G, Xiao Z, Zhou F, Phang T H, Liu X, Tong S W, Chan T F, Yiu S M, Tabata S, Wang J, Xu X, Lam H M . Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun, 2014,5:4340.
doi: 10.1038/ncomms5340 pmid: 25004933
[19] Do T D, Vuong T D, Dunn D, Smothers S, Patil G, Yungbluth D C, Chen P, Scaboo A, Xu D, Carter T E . Mapping and confirmation of loci for salt tolerance in a novel soybean germplasm, Fiskeby III. Theor Appl Genet, 2018,131:513-524.
doi: 10.1007/s00122-017-3015-0 pmid: 29151146
[20] Liu Y, Yu L L, Qu Y, Chen J J, Liu X X, Hong H L, Liu Z X, Chang R Z, Gilliham M, Qiu L J, Guan R X . GmSALT3, which confers improved soybean salt tolerance in the field, increases leaf Cl- exclusion prior to Na+ exclusion but does not improve early vigor under salinity. Front Plant Sci, 2016,7:1485.
doi: 10.3389/fpls.2016.01485 pmid: 27746805
[21] Munns R, James R A . Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil, 2003,253:201-218.
doi: 10.1023/A:1024553303144
[22] Khatun S, Flowers T J . Effects of salinity on seed set in rice. Plant Cell Environ, 1995,18:61-67.
doi: 10.1007/s10142-010-0203-2 pmid: 21213008
[23] Hosseini M, Powell A, Bingham I . Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Sci Res, 2002,12:165-172.
doi: 10.1079/SSR2002108
[24] 邵桂花 . 大豆种质资源耐盐性田间鉴定方法. 作物杂志, 1986, (3):36-37.
Shao G H . Field identification method for salt tolerance of soybean germplasm resources. Crops, 1986, (3):36-37 (in Chinese).
[25] 罗庆云 . 野生大豆和栽培大豆耐盐机理及遗传研究. 南京农业大学博士学位论文, 江苏南京, 2003.
Luo Q Y . Study on Mechanism and Inheritance of Salt Tolerance in Wild Soybean (Glycine soja) and Cultivated Soybean (G. max). PhD Dissertation of Nanjing Agriculture University, Nanjing, China, 2003 (in Chinese with English abstract).
[26] 张海波, 崔继哲, 曹甜甜, 张佳彤, 刘千千, 刘欢 . 大豆出苗期和苗期对盐胁迫的响应及耐盐指标评价. 生态学报, 2011,31:2805-2812.
Zhang H B, Cui J Z, Cao T T, Zhang J T, Liu Q Q, Liu H . Response to salt stresses and assessment of salt tolerability of soybean varieties in emergence and seedling stages. Acta Ecol Sin, 2011,31:2805-2812 (in Chinese with English abstract).
[27] Zhang W J, Niu Y, Bu S H, Li M, Feng J Y, Zhang J, Yang S X, Odinga M M, Wei S P, Liu X F, Zhang Y M . Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS One, 2014,9:e84750.
doi: 10.1371/journal.pone.0084750 pmid: 24416275
[28] Kan G, Zhang W, Yang W, Ma D, Zhang D, Hao D, Hu Z, Yu D . Association mapping of soybean seed germination under salt stress. Mol Genet Genomics, 2015,290:2147-2162.
doi: 10.1007/s00438-015-1066-y pmid: 26001372
[29] 姬丹丹, 刘畅, 曹其聪, 向凤宁 . 不同大豆品种芽期和苗期耐盐性比较研究. 山东轻工业学院学报(自然科学版), 2011,25(2):4-7.
Ji D D, Liu C, Cao Q C, Xiang F N . Comparison of the salt tolerance at sprout and seedling in different soybean. J Shandong Polytechnic Univ (Nat Sci Edn), 2011,25(2):4-7 (in Chinese with English abstract).
[30] 郭蓓, 邵桂花 . 大豆耐盐基因的PCR标记. 中国农业科学, 2000,33(1):10-16.
Guo B, Shao G H . Tagging salt tolerant gene using PCR marker in soybean. Sci Agric Sin, 2000,33(1):10-16 (in Chinese with English abstract).
[31] Flowers T J . Improving crop salt tolerance. J Exp Bot, 2004,55:307-319.
doi: 10.1093/jxb/erh003 pmid: 14718494
[32] Foolad M R, Lin G Y . Absence of genetic relationship between salt tolerance during seed germination and vegetative growth in tomato. Plant Breed, 1997,116:363-367.
doi: 10.1111/pbr.1997.116.issue-4
[33] Do T D, Chen H, Hien V T T, Hamwieh A, Yamada T, Sato T, Yan Y, Cong H, Shono M, Suenaga K . Ncl synchronously regulates Na+, K+, and Cl- in soybean and greatly increases the grain yield in saline field conditions. Sci Rep, 2016,6:19147.
doi: 10.1038/srep19147 pmid: 26744076
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[15] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!