欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (03): 343-353.doi: 10.3724/SP.J.1006.2017.00343

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

云南哈尼梯田当前栽培水稻ALK基因的遗传多样性及与稻米糊化温度的关联分析

李闯1,2,**,刘承晨1,2,**,张昌泉1,朱霁晖1,徐小颖2,赵福伟3,黄绍文4,金银根2,*,刘巧泉1,*   

  1. 1 扬州大学江苏省作物遗传生理国家重点实验室培育建设点 / 粮食作物现代产业技术协同创新中心,江苏扬州 225009; 2 扬州大学生物科学与技术学院,江苏扬州 225009; 3 环境保护部南京环境科学研究所,江苏南京 210042; 4 云南红河学院,云南蒙自 661100
  • 收稿日期:2016-06-14 修回日期:2016-09-18 出版日期:2017-03-12 网络出版日期:2016-09-29
  • 通讯作者: 刘巧泉, E-mail: qqliu@yzu.edu.cn; 金银根, E-mail: ygenjin@hotmail.com
  • 基金资助:

    本研究由国家重点基础研究发展计划项目(2013CBA01402), 国家自然科学基金项目(31561143008, 31300324)和江苏省高校自然科学研究面上项目(13KJB180028)资助。

Genetic Diversity of ALK Gene and Its Association with Grain Gelatinization Temperature in Currently Cultivated Rice Landraces from Hani’s Terraced Fields in Yunnan Province

LI Chuang1,2,**, LIU Cheng-Chen1,2,**, ZHANG Chang-Quan1, ZHU Ji-Hui1, XU Xiao-Ying2, ZHAO Fu-Wei 3, HUANG Shao-Wen4, JIN Yin-Gen2,*,LIU Qiao-Quan1,*   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; 2 College of Biological Science and Technology, Yangzhou University, Yangzhou 225009, China; 3 Nanjing Institute of Environmental Sciences of Ministry of Environmental Protection, Nanjing 210042, China; 4 Yunnan Honghe University, Mengzi 661100, China
  • Received:2016-06-14 Revised:2016-09-18 Published:2017-03-12 Published online:2016-09-29
  • Contact: 刘巧泉, E-mail: qqliu@yzu.edu.cn; 金银根, E-mail: ygenjin@hotmail.com
  • Supported by:

    This study was supported by the National Basic Research Program of China (2013CBA01402), the National Natural Science Foundation of China (31561143008, 31300324)and the Natural Sciences Research Project of Higher Learning Institution in Jiangsu Province (13KJB180028).

摘要:

云南是世界公认的亚洲栽培稻遗传多样性和起源中心之一。利用51对SSR分子标记对云南哈尼梯田当前栽培的111份水稻材料进行多态性检测,并分析其群体结构。聚类分析表明,供试材料主要分为偏粳类群(group I)及偏籼类群(group II)两大类群,其中以偏籼类群居多,占83%,这两类群并未完全按地理来源聚类。所选材料稻米的糊化温度变异较广,可以分为低(<66°C)、中低(66~70°C)、中高(70~74°C)和高(>74°C)等4类。通过基因测序,分析了稻米糊化温度控制基因ALK的序列多样性,发现其可以分为10种单倍型。关联分析结果表明,所选水稻样品稻米的糊化温度主要由ALK基因3个SNP位点组合控制。其中,A-GC和G-TT两种组合主要控制低(<66°C)和中低(66~70°C)糊化温度,G-GC组合主要控制中高(70~74°C)和高(>74°C)糊化温度。SNP3402 T类型与高、中高糊化温度有关。绝大多数偏籼类品种的ALK基因含有G-GC组合,因此都倾向于高糊化温度。上述研究为水稻分子育种和种质资源保护研究提供了一定的参考价值。

关键词: 水稻, ALK基因, 遗传多样性, 哈尼梯田, 糊化温度

Abstract:

Yunnan province is one of the centers for genetic diversity of cultivated rice in Asia. A total of 111 rice landraces were collected from Hani’s rice terraces of Yunnan, and their population structure was analyzed by using 51 SSR molecular markers. The 111 rice landraces were divided into japonica group (group I) and indica group (group II); however, each of the two groups was not completely clustered according to its geographical origin. Most of the collected landraces, accounting for 83%, were indica. Gelatinization temperature (GT) is an important parameter affecting rice cooking and eating quality. The GT of rice flour was measured, which was widely different among the collected rice varieties, showing four classed very low (< 66°C), low (66-70°C), high (70-74°C) and very high ( >74°C). Meanwhile, ALK gene, also known as SSSIIa and controlling GT, was sequenced and compared, showing ten haploid types of the ALK gene among tested samples. Association analysis, revealed that GT is mainly controlled by the combination of three SNPs of ALK gene. Among them, the A-GC or G-TT combination type controls the very low and low GT, while the combination of G-GC controls high and very high GT. SNP3402 type T is associated with high and very high GT. It was also noticed that most of the varieties from indica group tended to contain the G-GC mutation and thus showed a relative high GT compared with those from the japonica group. The results have a meaningful value for rice molecular breeding and germplasm resources protection.

Key words: Oryza sativa L., ALK gene, Genetic diversity, Hani’s terrace, Gelatinization temperature

[1]刘承晨, 赵富伟, 吴晓霞, 张昌泉, 朱孔志, 薛达元, 武建勇, 黄绍文, 徐小颖, 金银根, 刘巧泉. 云南哈尼梯田当前栽培水稻遗传多样性及群体结构分析. 中国水稻科学, 2015, 29: 28–34
     Liu C C, Zhao F W, Wu X X, Zhang C Q, Zhu K Z, Xue D Y, Wu J Y, Huang S W, Xu X Y, Jin Y G, Liu Q Q. Genetic diversity and population structure analysis of currently cultivated rice landraces from Hani’s terraced fields in Yunnan Province. Chin J Rice Sci, 2015, 29: 28–34 (in Chinese with English abstract)
[2]Zeng Y W, Shen S Q, Li Z C, Yang Z Y, Wang X K, Zhang H L, Wen G S. Ecogeographic and genetic diversity based on morphological characters of indigenous rice (Oryza sativa L.) in Yunnan, China. Gen Res Crop Evol, 2003, 50: 567–577
[3]王象坤, 孙传清. 中国栽培稻的起源与演化研究专集. 北京: 中国农业大学出版社, 1996. pp 1–233
     Wang X K, Sun C Q. Research Question the Origins and Evolution of Cultivated Rice in China. Beijing: China Agricultural University Press, 1996. pp 1–233 (in Chinese)
[4]Manish K P, Rani N S, Madhav M S, Sundaram R M, Varaprasad G S, Sivaranjani A K P, Abhishek B, Kumar G R, Kumar A. Different isoforms of starch-synthesizing enzymes controlling amylose and amylopectin content in rice (Oryza sativa L.). Biotech Adv, 2012, 30: 1697–1706
[5]董超, 徐福荣, 杨文毅, 汤翠凤, 张恩来, 杨雅云, 阿新祥, 张斐斐, 卢光德, 王艳, 戴陆园. 云南元阳哈尼梯田水稻地方品种月亮谷的遗传变异分析. 中国水稻科学, 2013, 27: 137–144
Dong C, Xu F R, Yang W Y, Tang C F, Zhang E L, Yang Y Y, A X X, Zhang F F, Lu G D, Wang Y, Dai L Y. Genetic variation analysis of paddy rice landrace of Yuelianggu from Yuanyang Hani’s terraced fields in Yunnan Province. Chin J Rice Sci, 2013, 27: 137–144 (in Chinese with English abstract)
[6]董树斌, 卢宝荣, 王云月, 杨慧, 涂敏, 李林. 云南水稻传统品种内的遗传多样性及其维持机制初探. 云南农业大学学报, 2010, 25: 1–9
Dong S B, Lu B R, Wang Y Y, Yang H, Tu M, Li L. Preliminary studies on the within-varietal genetic diversity and its maintenance of traditional rice from Yunnan. J Yunnan Agric Univ, 2010, 25: 1–9 (in Chinese with English abstract)
[7]Gao Z Y, Zeng D L, Cui X ,Zhou Y H, Yan M X, Huang D N, Li J Y, Qian Q. Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice. Sci China C (Life Sci), 2003, 46: 661–668
[8]Bao J S, Corke H, Sun M. Nucleotide diversity in starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.). Theor Appl Genet, 2006, 113: 1113–1171
[9]Nakamura Y, Francisco P B, Hosaka Y, Sato A, Sawada T, Kubo A, Fujita N. Essential amino acid of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol Rep, 2005, 58: 213–227
[10]Jeon J S, Ryoo N, Hahn T R, Walia H, Nakamura Y. Starch biosynthesis in cereal endosperm. Plant Physiol Biochem, 2010, 48: 383–392
[11]Umemoto T, Yano M, Satoh H, Shomura A, Nakamura Y. Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theor Appl Genet, 2002, 104: 1–8
[12]Li Z Y, Li D H, Du X H, Wang H, Larroque O, Jenkins C L D, Jobling S A, Morell M K. The barley amo1 locus is tightly linked to the starch synthase IIIa gene and negatively regulates expression of granule-bound starch synthetic genes. J Exp Bot, 2011, 62: 5217–5231
[13]孙川, 陈刚, 饶玉春, 张光恒, 高振宇, 刘坚, 鞠培娜, 胡江, 郭龙彪, 钱前, 曾大力. 水稻基因组DNA简易制备方法. 中国水稻科学, 2010, 24: 677–680
Sun C, Chen G, Rao Y C, Zhang G H,Gao Z Y, Liu J, Ju P N, Hu J, Guo L B, Qian Q, Zeng D L. A simple method for rapid preparation of rice genomic DNA. Chin J Rice Sci, 2010, 24: 677–680 (in Chinese with English abstract)
[14]Zhang C Q, Zhu L J, Shao K, Gu M H, Liu Q Q. Toward underlying reasons for rice starches having low viscosity and high amylose: physiochemical and structural characteristics. J Sci Food Agric, 2013, 93: 1543–1551
[15]Wei X, Wang R S, Cao L R, Yuan N N, Huang J, Qiao W G, Zhang W X, Zeng H L, Yang Q W. Origin of Oryza sativa in China inferred by nucleotide polymorphisms of organelle DNA. PLoS One, 2012, 7: e49546
[16]Yang F, Chen Y L, Tong C, Huang Y, Xu F F, Li K H, Corke H, Sun M, Bao J S. Association mapping of starch physicochemical properties with starch synthesis-related gene markers in nonwaxy rice (Oryza sativa L.). Mol Breed, 2014, 34: 1747–1763
[17]Gao Z Y, Zeng D L, Cheng F M, Tian Z X, Guo L B,Su Y, Yan M X, Jiang H, Dong G J, Huang Y C, Han B, Li J Y, Qian Q. ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice. J Integr Plant Biol, 2011, 53: 756–765
[18]Zhou Y, Zheng H Y, Wei G C, Zhou H, Han Y N, Bai X F, Xing Y Z, Han Y P. Nucleotide diversity and molecular evolution of the ALK gene in cultivated rice and its wild relatives. Plant Mol Biol Rep, 2016, DOI: 10.1007/s11105-016-0975-1
[19]Kharabian-Masouleh A, Waters D L, Reinke R F, Ward R, Henry R J. SNP in starch biosynthesis genes associated with nutritional and functional properties of rice. Sci Rep, 2012, 2: 557
[20]Zhang Z J, Li M , Fang Y W, Liu F C, Lu Y, Meng Q C, Peng J C, Yi X H, Gu M H, Yan C J. Diversification of the Waxy gene is closely related to variations in rice eating and cooking quality. Plant Mol Biol Rep, 2012, 30: 462–469
[21]Hori Y, Fujimoto R, Sato Y, Nishio T. A novel wx mutation caused by insertion of a retrotransposon-like sequence in a glutinous cultivar of rice (Oryza sativa). Theor Appl Genet, 2007, 115: 217–224
[22]肖鹏, 邵雅芳, 包劲松. 稻米糊化温度的遗传与分子机理研究进展. 中国农业科技导报, 2010, 12: 23–30
Xiao P, Shao Y F, Bao J S. Research progress on genetics and molecular mechanism of starch gelatinization temperature of rice grain. J Agric Sci Tech, 2010, 12: 23–30 (in Chinese with English abstract)
[23]Hoai T T T, Matsusaka H, Toyosawa Y, Suu T D, Satoh H, Kumamaru T. Influence of single-nucleotide polymorphisms in the gene encoding granule-bound starch synthase I on amylose content in Vietnamese rice cultivars. Breed Sci, 2014, 64: 142–148

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!